Triple Voltage Regulator
TLE 4471
Features • • • • • • • • • • • • • • Triple Voltage Regulator Output Voltage 5 V with 450 mA Current Capability Two tracked Outputs for 50 mA and 100 mA Enable Function for main and tracked Output(s) Reset with adjustable Threshold Undervoltage- and Power On-Reset Watchdog Independent Watchdog- and Reset delay Wide Temperature Range Overtemperature Protection Overvoltage Protection Reverse Polarity Proof Green Product (RoHS compliant) AEC Qualified
Functional Description The TLE 4471 is a monolithic integrated very low-drop triple voltage regulator. The main output supplies loads up to 450 mA and the additional tracked outputs can provide up to 50 mA and 100 mA. In addition the device includes a watchdog for microcontrollersupervision, an undervoltage reset, a power on reset and extended enabling features. The watchdog and reset timing can be chosen independently of each other. The TLE 4471 is available in a Power PG-DSO-20 package. It is designed to supply microprocessor systems under the severe condition of automotive applications and therefore it is equipped with additional protection against overload, short circuit and overtemperature. Of course the TLE 4471 can be used in other applications as well. The TLE 4471 operates in the temperature range of Tj = -40 to 150 °C.
Type TLE 4471 G
Data Sheet 1
Package Power PG-DSO-20
Rev. 1.6, 2009-02-03
TLE 4471
Self Protection - Over Temperature - Short Circuit - Reverse Polarity Proof ESD Protection
I
E1 E2 E3
≥1
Main Regulator
5 V ±2%, 450 mA
Q1
Tracker 1
100 mA, ±0.5% Tracking Reference Voltage
Q2 REF2
Tracker 2 EN
50 mA, ±0.5% Tracking Reference Voltage
Q3 REF3
Reset Generator DR Reset Delay R RADJ Reset Level Adjust
W DW
Watchdog TLE 4471
AES02864
Figure 1
Block Diagram
Data Sheet
2
Rev. 1.6, 2009-02-03
TLE 4471
GND E1
I
Q2 REF2 R DR E2 Q1 GND
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
AEP02865
GND DW W Q3 E3 REF3 EN N.C. RADJ GND
Figure 2 Table 1 Pin No.
Pin Configuration (top view) Pin Definitions and Functions Symbol Function GROUND; all four pins connected to the heat sink Enable 1; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. Input; block to ground directly at the IC for line compensation. Tracking Output Q2; block to GND with min. 10 µF with ESR < 3 Ω. Reference Output; Reference Voltage related to Q2. Reset Output; the open collector Output is connected to Q1 via an integrated resistor. Reset Delay; connect a capacitor to GND for reset delay time adjustment. Enable 2; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. Main Output Q1; block to GND with min. 22 µF, ESR < 3 Ω. Reset Switching Threshold Adjust; The reset threshold can be set individually with an external voltage divider at the pin. If it is connected straight to GND the reset threshold remains at 4.65 V. Not Connected
1, 10, 11, GND 20 2 3 4 5 6 7 8 9 12 E1 I Q2 REF2 R DR E2 Q1 RADJ
13
NC
Data Sheet
3
Rev. 1.6, 2009-02-03
TLE 4471
Table 1 Pin No. 14 15 16 17 18 19 EN
Pin Definitions and Functions (cont’d) Symbol Function Enable Input; enables Q3 Reference Output; Reference Voltage related to Q3. Enable 3; Enable for Main Output Q1 and Q2; E1, E2 and E3 are ored together; connect to GND, if not needed. Tracker Output Q3; block to GND with min. 10 µF with ESR < 3 Ω. Watchdog Trigger Input; positive edge triggered input for monitoring a microcontroller. Watchdog Delay; connect a capacitor to GND for watchdog trigger time adjustment. REF3 E3 Q3 W DW
Data Sheet
4
Rev. 1.6, 2009-02-03
TLE 4471
Table 2
Absolute Maximum Ratings
Tj = -40 to 150 °C
Parameter Input I Input voltage Main Output Q1 Output voltage Output current Tracking Output Q2 Output voltage Output current Tracking Output Q3 Output voltage Output current Enable Input E1 Input voltage Input current Enable Input E2 Input voltage Input current Enable Input E3 Input voltage Input current Enable Input EN Input voltage Input current Reference Output REF2 Output voltage Output current Symbol Limit Values Min. Max. 42 60 7 – 27 – 27 – 16 20 6.5 – 16 20 7 – 4.5 – V V V mA V mA V mA V mA V mA V mA V mA V mA – Unit Notes
VI
-45
–
t < 400 ms
– internally limited – internally limited – internally limited – – – internally limited – – – internally limited – –
VQ1 IQ1 VQ2 IQ2 VQ3 IQ3 VE1 IE1 VE2 IE2 VE3 IE3 VEN IEN VREF2 IREF2
-0.3
–
-2
–
-2 -5
-0.3 -20
-0.3
– -0.3 -20 -0.3 – -0.3 –
Data Sheet
5
Rev. 1.6, 2009-02-03
TLE 4471
Table 2
Absolute Maximum Ratings (cont’d)
Tj = -40 to 150 °C
Parameter Reference Output REF3 Output voltage Output current Reset Adjust Input RADJ Input Voltage Input Current Reset Delay DR Voltage Reset Output R Voltage Watchdog Delay DW Voltage Watchdog Input W Input voltage Input current Temperature Junction temperature Storage temperature Thermal Data Junction-ambient ESD Human Body Model – -2 2 kV – Symbol Limit Values Min. Max. 4.5 – 7 – 7 7 7 7 – 150 150 – 4 V mA V mA V V V V mA °C °C K/W K/W – – – internally limited – – – – – – – – – Unit Notes
VREF3 IREF3 VRADJ IRADJ VDR VR VDW VW IW Tj TStg Rthja Rthjp
-0.3 – -0.3 –
-0.3
-0.3 -0.3 -0.3 –
-50 -65
– –
Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Data Sheet
6
Rev. 1.6, 2009-02-03
TLE 4471
Table 3 Parameter Input voltage
Operating Range Symbol Limit Values Min. Max. 40 150 44 V °C V – – – 5.5 -40 – Unit Notes
Junction temperature Shutdown voltage threshold
VI Tj Vshut
Note: In the operating range, the functions given in the circuit description are fulfilled.
Data Sheet
7
Rev. 1.6, 2009-02-03
TLE 4471
Table 4
Characteristics
VI = 13.5 V; Tj = -40 °C < Tj < 125 °C
Parameter Main Output Q1 Output voltage Output voltage Output voltage Output current limit Output voltage drop Line regulation Load regulation Power Supply Ripple Rejection Output capacitor ESR of output capacitor Tracked Output Q2 Output voltage tracking accuracy Output voltage tracking accuracy Output voltage tracking accuracy Output current limit Output voltage drop Power Supply Ripple Rejection ∆VQ2 = VQ2 - VQ1 ∆VQ2 = VQ2 - VQ1 ∆VQ2 = VQ2 - VQ1 -25 -25 -25 110 – – – – – – – 30 25 25 25 – 0.6 – mV mV mV mA V dB 5.7 V < VI < 19 V; 1 mA < IQ2 < 100 mA 5.7 V < VI < 28 V; 1 mA < IQ2 < 80 mA 5.7 V < VI < 40 V; 1 mA < IQ2 < 50 mA Symbol Limit Values Min. Typ. Max. 5.0 5.0 5.0 – 0.25 – – 30 5.1 5.2 5.2 V V V 10 mA < IQ1 < 450 mA; 5.5 V < VI < 19 V 10 mA < IQ1 < 300 mA; 5.5 V < VI < 28 V 10 mA < IQ1 < 200 mA; 5.5 V < VI < 40 V Unit Measuring Condition
VQ1 VQ1 VQ1 IQ1 VDR ∆VQ1
∆VQ1
4.9 4.8 4.8 550 – -25 -25 –
1500 mA 0.55 25 25 – V mV mV dB
PSRR
VQ1 = 0.1 V IQ1 = 450 mA1) 8 V ≤ VI ≤ 16 V; IQ1 = 10 mA 10 mA < IQ1 < 450 mA; VI = 7 V CQ1 = 22 µF; 20 Hz < fr < 20 kHz; VPP = 0.5 V2)
2)
CQ1 ESR
22 –
– –
– 3
µF Ω
at 10 kHz2)
IQ2 VDR2 PSRR
VQ2 = 0.1 V IQ2 = 100 mA 20 Hz < fr < 20 kHz; VPP = 0.5 V; CQ2 = 10 µF2)
Data Sheet
8
Rev. 1.6, 2009-02-03
TLE 4471
Table 4
Characteristics (cont’d)
VI = 13.5 V; Tj = -40 °C < Tj < 125 °C
Parameter Output capacitor ESR of output capacitor Tracked Output Q3 Output voltage tracking accuracy Output voltage tracking accuracy Output voltage tracking accuracy Output current limit Output voltage drop Power Supply Ripple Rejection Output capacitor ESR of output capacitor ∆VQ3 = VQ3 - VQ1 ∆VQ3 = VQ3 - VQ1 ∆VQ3 = VQ3 - VQ1 -25 -25 -25 55 – – – – – – – 30 25 25 25 150 0.6 – mV mV mV mA V dB 5.7 V < VI < 19 V; 1 mA < IQ3 < 50 mA 5.7 V < VI < 28 V; 1 mA < IQ3 < 40 mA 5.7 V < VI < 40 V; 1 mA < IQ3 < 25 mA Symbol Limit Values Min. Typ. Max. – – – 3 µF Ω
2)
Unit Measuring Condition
CQ2 ESR
10 –
at 10 kHz2)
IQ3 VDR3 PSRR
VQ3 = 0.1 V 1 mA ≤ IQ3 ≤ 50 mA 20 Hz < fr < 20 kHz; VPP = 0.5 V; CQ3 = 10 µF2)
2)
CQ3 ESR
10 – -25
– – –
– 3 25
µF Ω mV
at 10 kHz2) –
Matching error ∆VQ2,3 = between VQ2 and VQ3 VQ3 - VQ2 Current Consumption Quiescent current (standby)
Iq
– – –
–
20
µA µA µA
Q1 OFF, Q2 OFF; Q3 OFF Q3 OFF, IQ1 < 1 mA; IQ2 < 1 mA
Current consumption; Iq Iq = II - IQ Current consumption; Iq Iq = II - IQ
1100 – 1800 –
IQ1 < 10 mA; IQ2 < 1 mA; IQ3 < 1 mA
Data Sheet
9
Rev. 1.6, 2009-02-03
TLE 4471
Table 4
Characteristics (cont’d)
VI = 13.5 V; Tj = -40 °C < Tj < 125 °C
Parameter Symbol Limit Values Min. Enable Function E1, E2, E3, EN Typ. Max. 4.1 – 50 – 1.7 1.2 15 – – 50 – 1.7 1.2 15 4.5 2.5 – 5 2.0 1.7 40 4.5 2.5 – 5 2.3 1.7 40 V V µA µA V V kΩ V V µA µA V V kΩ Unit Measuring Condition
VE1, on VE1, off E1 Off threshold E1 High input current IE1, on E1 Low input current IE1, off VE2, on E2 On threshold E2 Off threshold VE2, off E2 resistance to GND RE2 VE3, on E3 On threshold E3 Off threshold VE3, off E3 High input current IE3, on E3 Low input current IE3, off EN On threshold VEN, on EN Off threshold VEN, off Enable resistance to REN
E1 On threshold GND Reset Generator Switching threshold Reset headroom Reset pull-up Reset output low voltage Reset output Low voltage Reset output High voltage Reset adjust threshold
3.5 1.5 – -1 1.3 0.8 5 3.5 1.5 – -1 1.0 0.8 5
VQ1 > 4.8 V; VQ2 > 4.8 V
–
VE1 = 16 V VE1 = 0 V VQ1 > 4.8 V; VQ2 > 4.8 V
– –
VQ1 > 4.8 V; VQ2 > 4.8 V
–
VE3 = 16 V VE3 = 0 V VQ3 > 4.8 V; Q1 ON VQ3 < 0.1 V
–
VQ, rth Vhead RR VR, low VR, low VR, high VRADJ
4.5 250 2.4 – – 4.5 1.25
4.65 350 – – – – 1.35
4.8 500 6 0.4 0.4 – 1.45
V mV kΩ V V V V
RADJ connected to GND 10 mA < IQ1 < 450 mA – 1 V < VQ1 < VQ, rth
VQ1 = 1 V, IR = 50 µA
–
VQ1 > 3.5 V
Data Sheet
10
Rev. 1.6, 2009-02-03
TLE 4471
Table 4
Characteristics (cont’d)
VI = 13.5 V; Tj = -40 °C < Tj < 125 °C
Parameter Reset delay charging current Reset delay discharge current Upper reset timing threshold Lower timing threshold Reset delay time Reset reaction time Watchdog Watchdog input pull-down resistor Watchdog delay charging current Watchdog upper timing threshold Watchdog lower timing threshold Watchdog trigger pulse interval Voltage divider ratio Output impedance Symbol Limit Values Min. Typ. Max. 4 120 1.8 0.4 50 – 15 4 1.9 30 50 6 160 2.7 0.65 70 3 40 6 2.5 200 70 µA mA V V ms µs kΩ µA V mV ms 2 60 0.9 0.25 35 0.5 5 2 1.5 0 35 Unit Measuring Condition
IDR, ch IDR, dis VDR, dt VDR, st tdr trr RW IDW, ch VDW, dt VDW, st twp
VDR = 1 V VDR = 1 V
– –
CR = 100 nF CR = 100 nF
–
VDW = 1 V; VDR = 2.7 V
– –
CDW = 100 nF
Reference Output REF2
VREF2 RREF2
49.5 10 –
50 – –
50.5 20 4.5
% of –
VQ2
kΩ V – – Output clamp voltage –
Data Sheet
11
Rev. 1.6, 2009-02-03
TLE 4471
Table 4
Characteristics (cont’d)
VI = 13.5 V; Tj = -40 °C < Tj < 125 °C
Parameter Symbol Limit Values Min. Reference Output REF3 Voltage divider ratio Output impedance Typ. Max. 50 – – 50.5 20 4.5 % of – Unit Measuring Condition
VREF3 RREF3
49.5 10 –
VQ3
kΩ V – – Output clamp voltage –
1) Measured when the output voltage VQ dropped 100 mV from the nominal value. 2) Not subject to production test, specified by design.
Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and the given supply voltage.
Data Sheet
12
Rev. 1.6, 2009-02-03
TLE 4471
II VI IE1 VE1 IE2 VE2 IE3 VE3 IEN VEN IDR, dis IRADJ VRADJ IW VW CDW
100 nF W EN E3 E2 TLE 4471 REF2 E1 Q2 10 µF
IQ1 I
Q1 22 µF
VQ1 IQ2 VQ2 IREF2 VREF2 IQ3
CDR
100 nF
DR
Q3 10 µF
VQ3 IREF3
IDR, ch
RADJ REF3
VREF3 IR
DW
IDW, ch
GND
R
VR
IGND
AES02866
Figure 3
Measurement Circuit
Data Sheet
13
Rev. 1.6, 2009-02-03
TLE 4471
Application Information
Q2
VBAT KL. 30
I
Tracking Output 2
Sensor / Peripheral
REF2 optional
Main DR Watchdog / Reset DW
Q1 RADJ
AD
R W
Controller
Ignition KL. 15 Enable-Signal
E1 E3
Enable Logic
E2
EN REF3 Tracking Output 3
AD
Q3
Sensor / Peripheral
AES02867
Figure 4 Input
Application Diagram
With an input voltage between 5.5 V < VI < 40 V the regulator works in its normal operating range. If the input voltage exceeds the 40 V up to 60 V for less than 400 ms, e.g. caused by a load dump, the active components are switched off. For compensating line influences and to avoid steep input edges above 1 V/µs an input capacitor is needed. Using a resistor of approx. 1 Ω in series to the input capacitor, the oscillating circuit consisting of input inductance and input capacitor is damped.
Data Sheet
14
Rev. 1.6, 2009-02-03
TLE 4471
Output Voltage To obtain an output voltage of VQ1 = 5 V with an accuracy of 2% at the main output Q1 an input voltage in the range of 5.5 V < VI < 40 V is needed. The main output Q1 supplies 5 V with 450 mA current capability. For stability it requires an output capacitor of at least 22 µF and a maximum ESR of 3 Ω. The two outputs Q2 and Q3 are tracked to Q1 and can supply currents of 100 mA and 50 mA. So any undervoltage condition or shutdown of Q1 will cause the same effect to Q2 and Q3. For Stability both outputs require an output capacitor of at least 10 µF with ESR < 3 Ω each. Q2 is switched on and off simultaneously with Q1, while the tracked output Q3 can be enabled or disabled individually. Two reference outputs REF2, REF3 with voltages of VREF2 = VQ2/2 and VREF3 = VQ3/2 are also available. In case of an overvoltage at the tracker outputs, the voltage references are limited internally to 4.5 V. Output Current The output current is a function of the input voltage. For high input voltages above 22 V, the output current is reduced linear. This is designed into the regulator for protection. Above 42 V the regulator is switched off. The thermal shutdown switches the regulator off, if it exceeds the thermal threshold of 160 °C typical. It is switched on again, as soon as the regulator is cooled down by typical 10 K (thermal hysteresis). Please note the device should not be operated above a junction temperature of 150 °C for long term reliability. Enable Function The TLE 4471 includes the possibility of enabling the main and tracked outputs. Three ORed enable inputs E1, E2, E3 are used to control the main output Q1 and the tracked output Q2. E1 and E3 can be supplied from the battery line or ignition key with input voltages up to 16 V. The enable inputs should be protected by a series resistor and a capacitor, e.g. RE1 = RE3 = 22 kΩ, CE1 = CE3 = 2.2 nF. E2 is intended for connection to the microcontroller. A logic HIGH at any enable input will switch on the related regulator and/or tracker. A separate enabling pin EN is available to switch on and off the second tracked output Q3 separately by the microcontroller. Reset The power on reset feature is necessary for a defined start of the microprocessor during power up. When the output voltage of the main regulator has reached the reset threshold voltage the reset delay capacitor CDR is charged. After a certain time, the reset delay time tdr, the voltage at the capacitor equals the upper reset timing threshold and the reset output goes HIGH.
Data Sheet 15 Rev. 1.6, 2009-02-03
TLE 4471
The reset delay time tdr is defined by the reset delay capacitor CDR at pin DR and can be calculated as follows:
VDR ,dt t rd = C DR × -------------I DR ,ch
Definitions: • • • •
(1)
CDR = reset delay capacitor tdr = reset delay time required by the application VDR, dt = typical 1.8 V for power up reset IDR, ch = charge current typical 4 µA For a delay capacitor CDR = 100 nF the typical power up reset delay time is 45 ms. The undervoltage reset circuitry supervises the output voltage. In case VQ1 falls below the reset threshold the reset output is set LOW after the reset reaction time trr (discharge of the reset delay capacitor). The reset LOW signal is held down to an output voltage VQ1
of 1 V. Both, the reset reaction time and the reset delay time are defined by the capacitor value. The reset reaction time trr is the time it takes the voltage regulator to set its reset output LOW after the output voltage has dropped below the reset threshold. The reset reaction time can be calculated using the following equation:
V DR ,dt – V DR ,st t rr = C DR × ----------------------------------I DR ,dis
(2)
Data Sheet
16
Rev. 1.6, 2009-02-03
TLE 4471
VΙ
VQ V Q, rth
< t rr
t
t VD VDR, dt VDR, st V RO t dr t rr t
t Power-on-Reset Thermal Shutdown Voltage Dip at Input Undervoltage Secondary Spike Overload at Output
AED03045
Figure 5
Reset Timing
The reset output is an open collector output with a pull-up-resistor of typical 4 kΩ to Q1. An external pull-up can be added with a resistor value of at least 20 kΩ. In addition the reset switching threshold can be adjusted by an external voltage divider. The feature is useful with microprocessors which guarantee safe operation down to voltages below the internally set reset threshold of 4.65 typical.
Data Sheet
17
Rev. 1.6, 2009-02-03
TLE 4471
TLE 4471
I
Q
Bandgap Reference 1.36 V
RRTH1
R
Vrth,ref
1
RADJ
RRTH2
AES02877
Figure 6
Adjusting the Reset Threshold
For using the preadjusted reset threshold voltage of typical VQ, rth = 4.65 V, the pin RADJ has to be connected to GND. If a lower reset threshold is required by the system, a voltage divider defines the reset threshold VQ, rthext between 3.5 V and 4.65 V:
RRTH1 V Q, rthext = V rth ,ref × 1 + -------------- RRTH2 Vrth,ref is typical 1.35 V.
(3)
Data Sheet
18
Rev. 1.6, 2009-02-03
TLE 4471
Watchdog The reset and watchdog timing can be defined independently of each other by two delay capacitors CDR and CDW at pins DR and DW. The watchdog function supervises the microcontroller including time base failures. If there is no positive edge within a certain pulse repetition time twp or the trigger pulse is too short a reset is generated. Programming of the max. repetition time is done by a delay capacitor CDW at pin DW. The frequency of the watchdog pulses generated by the microcontroller has to be higher than the minimum pulse sequence twp set by the external reset delay capacitor CDW. The pulse repetition time can be calculated as follows:
V DW ,dt – V DW ,st t wp = C DW × ------------------------------------I DW ,ch
(4)
VI t
VQ1
t t > 10 µs VW t VDW,dt t VDW,st VDR,dt VDR,st t > 25 µs
tWP VDW
VDR tdr VR trr
t
Missing edge at Watchdog
Watchdog pulses too short
t
AET03000
Figure 7
Watchdog Timing
If the watchdog is not used in an application the pin WD has to be connected to GND.
Data Sheet 19 Rev. 1.6, 2009-02-03
TLE 4471
Power Supply Ripple Rejection PSRR of Main Output Q1 versus Frequency f
80 dB CQ1 = 22 µF PSRR 70
AED02995
Power Supply Ripple Rejection PSRR of Output Q2 versus Frequency f
80 dB CQ2 = 10 µF PSRR 70
AED02996
I Q1 = 10 mA
I Q1 = 450 mA
60
60
IQ2 = 1 mA
50
50
IQ2 = 100 mA
40
40
30 0 10
10
1
10
2
10
3
10 Hz 10 f
4
5
30 0 10
101
102
103
Hz 105 f
Power Supply Ripple Rejection PSRR of Output Q3 versus Frequency f
80 dB CQ3 = 10 µF PSRR 70
AED02997
IQ3 = 1 mA
60
50
40
IQ3 = 50 mA
30 0 10
101
102
103
Hz 105 f
Data Sheet
20
Rev. 1.6, 2009-02-03
TLE 4471
Enable Currents IE1, IE3 and Output Voltage VQ1 versus Enable Voltages VE1, VE3
5 µA
AED02998
Enable Currents IE2, IEN and Output Voltage VQ3 versus Enable Voltages VE2, VEN
250 µA
AED02999
IE1, IE3
7.5 V
VQ1
IE2, IEN
7.5 V
VQ3
4
6
200
6
3
4.5
150
4.5
2
3
100
3
1
1.5
50
1.5
0 0
1
2
3
4V
0 5
0 0
0.5
1
1.5
VE1, VE3
0 2 V 2.5 VE2, VEN
Data Sheet
21
Rev. 1.6, 2009-02-03
TLE 4471
Package Outlines
3.5 MAX.
3.25 ±0.1
11 ±0.15 1)
B
0.25
+0.07 -0.02
0 +0.1
1.1 ±0.1
2.8
1.27
15.74 ±0.1 (Heatslug) 0.25 M A 20x
1.3
6.3 (Mold)
14.2 ±0.3
0.1
Heatslug 0.95 ±0.15 0.25 B
0.4 +0.13
3.2 ±0.1 (Metal)
20
11
20
Index Marking
1 x 45˚
1
10
10
15.9 ±0.15 1) (Mold)
1)
A
13.7 -0.2 (Metal)
1
Heatslug
Does not include plastic or metal protrusion of 0.15 max. per side
GPS05791
Figure 8
Power PG-DSO-20 (Plastic Dual Small Outline)
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Find all of our packages, sorts of packing and others in our Infineon Internet Page “Packages”: http://www.infineon.com/packages. SMD = Surface Mounted Device Data Sheet 22 Dimensions in mm Rev. 1.6, 2009-02-03
5.9 ±0.1 (Metal)
Bottom View 11
5˚ ±3˚
TLE 4471
Revision History
Version Rev. 1.6
Date
Changes
2009-02-03 Package bond wire modification according to PCN No. 2007-090. Change of package name in datasheet to “Power PG-DSO-20”. No change of package outline. 2007-03-20 Initial version of RoHS-compliant derivate of TLE 4471 Page 1: AEC certified statement added Page 1 and Page 22: RoHS compliance statement and Green product feature added Page 1 and Page 22: Package changed to RoHS compliant version Legal Disclaimer updated 2005-01-28 Parameter “Output Clamp Voltage” REF2 and REF3: Max. value changed from 4V to 4.5V in order to align with the Maximum Ratings
Rev. 1.5
Rev. 1.4
Data Sheet
23
Rev. 1.6, 2009-02-03
Edition 2009-02-03 Published by Infineon Technologies AG 81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.