Data Sheet, Rev. 1.0, Sept. 2008
TLE4675
Low Drop Out Linear Voltage Regulator 5V Fixed Output Voltage
Automotive Power
TLE4675
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2 3 3.1 3.2 3.3 3.4 4 4.1 4.2 4.3 5 5.1 5.2 5.3 6 6.1 6.2 7 7.1 7.2 7.3 8 8.1 8.2 9 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4675D (PG-TO252-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4675D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment TLE4675G (PG-TO263-5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions TLE4675G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 5 6 6 7 7 8 9
10 10 11 12
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 20 21
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PG-TO252-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PG-TO263-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Data Sheet
2
Rev. 1.0, 2008-09-30
Low Drop Out Linear Voltage Regulator 5V Fixed Output Voltage
TLE4675
1
Features • • • • • • • • • • • • • •
Overview
Output Voltage 5 V ± 2% Output Current Capability 400 mA Ultra Low Current Consumption Very Low Drop Out Voltage Reset Circuit Sensing the Output Voltage with Programmable Delay Time Reset Output Active Low Down to VQ = 1 V Excellent Line Transient Robustness Maximum Input Voltage -42 V ≤ VI ≤ +45 V Reverse Polarity Protection Short Circuit Protected Overtemperature Shutdown Automotive Temperature Range -40 °C ≤ Tj ≤ 150 °C Green Product (RoHS compliant) AEC Qualified
PG-TO252-5
PG-TO263-5 Description The TLE4675 is a monolithic integrated low drop out fixed output voltage regulator for loads up to 400 mA. An input voltage up to 45 V is regulated to an output voltage of 5 V. The integrated reset function, as well as several protection circuits combined with the wide operating temperature range offered by the TLE4675 make it suitable for supplying microprocessor system in automotive environments.
Type TLE4675D TLE4675G Data Sheet
Package PG-TO252-5 PG-TO263-5 3
Marking TLE4675 TLE4675 Rev. 1.0, 2008-09-30
TLE4675
Block Diagram
2
Block Diagram
Figure 1
Block Diagram and Simplified Application Circuit
Data Sheet
4
Rev. 1.0, 2008-09-30
TLE4675
Pin Configuration
3
3.1
Pin Configuration
Pin Assignment TLE4675D (PG-TO252-5)
GND
1 Ι RO DQ
5
AEP02580
Figure 2
Pin Assignment (top view) TLE4675D
3.2
Pin 1
Pin Definitions and Functions TLE4675D
Symbol I Function Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pin is recommended. Reset Output Open collector output; external pull up resistor required; Leave open if the reset function is not needed. Internally connected to TAB D Reset Delay Timing Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing adjustment; Leave open, if reset functionality is not used. 5 V Regulator Output Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2 Functional Range. Ground, Cooling TAB Connect to heatsink area
2
RO
3 4
5
Q
TAB
GND
Data Sheet
5
Rev. 1.0, 2008-09-30
TLE4675
Pin Configuration
3.3
Pin Assignment TLE4675G (PG-TO263-5)
Ι
GND Q D RO
IEP02528
Figure 3
Pin Assignment (top view) TLE4675G
3.4
Pin 1
Pin Definitions and Functions TLE4675G
Symbol I Function Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pin is recommended Reset Output Open collector output; external pull up resistor required; Leave open if the reset function is not needed Ground Internally connected to TAB Reset Delay Timing Connect a ceramic capacitor from D (Pin 4) to GND for the reset delay timing adjustment; leave open, if reset functionality is not used 5 V Regulator Output Connect a capacitor between Q (Pin 5) and GND close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2 Functional Range Cooling TAB Connect to heatsink area and Ground
2
RO
3 4
GND D
5
Q
TAB
Data Sheet
6
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4
4.1
General Product Characteristics
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified) Pos. Voltages 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 Regulator Input and IC Supply I VI Regulator Output Q Reset Output RO Reset Delay Timing D Junction Temperature Storage Temperature ESD Resistivity -42 -1 -0.3 -0.3 -40 -55 -4 -1 45 7 7 7 150 150 4 1 V V V V °C °C kV kV – – – – – – Human Body Model 2) Charged Device Model 3) Parameter Symbol Min. Limit Values Max. Unit Conditions
VQ VRO VD Tj Tstg VESD,HBM VESD,CDM
Temperatures
ESD Susceptibility
1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to AEC-Q100-002 - JESD22-A114 3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
Data Sheet
7
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4.2
Pos. 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6
Functional Range
Parameter Input Voltage Range for Normal Operation Input Voltage Transient Immunity Junction Temperature Output Capacitor Requirements Symbol Min. Limit Values Max. 45 45 20 150 – 2.5 V V V/µs °C µF Ω
1)
Unit
Conditions
VI(nor)
VQ + Vdr
3.3 -10 -40 22 –
Extended Input Voltage Range VI(ext) dVI/dt
2)
dVI ≤ 10 V; VI > 9 V; No trigger of RO.3) – –4) –5)
Tj CQ ESRCQ
1) For specification of the input voltage VQ and the drop out voltage Vdr see Chapter 5 Voltage Regulator. 2) The output voltage VQ will follow the input voltage, but is outside the specified range. For details see Chapter 5 Voltage Regulator. 3) Transient measured directly at the input pin. Not subject to production test, specified by design. 4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30% 5) Relevant ESR value at f = 10 kHz
Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
8
Rev. 1.0, 2008-09-30
TLE4675
General Product Characteristics
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. Parameter Symbol Min. TLE4675D Package PG-TO252-5 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 TLE4675G Package PG-TO263-5 4.3.6 4.3.7 4.3.8 4.3.9 4.3.10 Junction to Case Junction to Ambient Junction to Case Junction to Ambient Limit Values Typ. 3.7 110 57 42 27 3.7 123 42 33 22 Max. – – – – – – – – – – K/W K/W K/W K/W K/W K/W K/W K/W K/W K/W
1)
Unit
Conditions
RthJC RthJA
– – – – –
Footprint only 1)2) 300 mm2 heatsink area on PCB 1)2) 600 mm2 heatsink area on PCB 1)2) 2s2p PCB 1)3)
1)
RthJC RthJA
– – – – –
Footprint only 1)2) 300 mm2 PCB heatsink area 1)2) 600 mm2 PCB heatsink area 1)2) 2s2p PCB 1)3)
1) Not subject to production test, specified by design 2) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu). 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
Data Sheet
9
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5
5.1
Voltage Regulator
Description Voltage Regulator
The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in the table “Operating Range” have to be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients. An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences. Connect the capacitors close to the IC terminals. Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of overtemperature. In order to avoid excessive power dissipation that could never be handled by the pass element and the package, the maximum output current is decreased at input voltages above VI = 22 V. The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction temperatures above 150 °C are outside the maximum ratings and therefore reduce the IC lifetime. The TLE4675 allows a negative supply voltage. However, several small currents are flowing into the IC increasing its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection circuit is not operating during reverse polarity condition.
Regulated Output Voltage
Supply
II
I
Q
IQ
+
Saturation Control Current Limitation
+
VI
CI Temperature Shutdown
CQ Bandgap Reference
VQ
LOAD
BlockDiagram _VoltageRegulator .vsd
GND
Figure 4
Block Diagram Voltage Regulator Circuit
Figure 5 Data Sheet
Output Voltage vs. Input Voltage 10 Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5.2
Electrical Characteristics Voltage Regulator
Electrical Characteristics: Voltage Regulator
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure (unless otherwise specified) Pos. 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11 5.2.12 5.2.13 5.2.14 5.2.15 Load Regulation steady-state Line Regulation steady-state Power Supply Ripple Rejection Drop Out Voltage dVQ,load dVQ,line Parameter Output Voltage Symbol Min. Limit Values Typ. 5.0 5.0 5.0 5.0 -5 5 65 120 250 550 -1 -2 -3 – 25 Max. 5.1 5.1 5.1 5.1 – 20 – 250 500 850 – – – 200 – V V V V mV mV dB mV mV mA mA mA mA °C K 200 µA ≤ IQ ≤ 400 mA; 8 V ≤ VI ≤ 1 8 V 200 µA ≤ IQ ≤ 300 mA; 6 V ≤ VI ≤ 18V 200 µA ≤ IQ ≤ 200 mA; 18 V ≤ VI ≤ 32 V1) 200 µA ≤ IQ ≤ 20 mA; 32 V ≤ VI ≤ 45 V1) 4.9 4.9 4.9 4.9 -30 – 60 – – 401 -2 -5 -10 151 – Unit Conditions
VQ
PSRR Vdr IQ,max IQ II Tj,sd Tj,hy
Vdr = VI - VQ
Output Current Limitation Reverse Current Reverse Current at Negative Input Voltage Overtemperature Shutdown Threshold Overtemperature Shutdown Threshold Hysteresis
IQ = 1 mA to 300 mA; VI = 6 V VI = 6 V to 32 V; IQ = 5 mA fripple = 100 Hz; Vripple = 1 Vpp2) IQ = 100 mA3) IQ = 300 mA3) 0 V ≤ VQ ≤ 4.8 V VI = 0 V ; VQ = 5 V VI = -16 V; VQ = 0 V VI = -42 V; VQ = 0 V Tj increasing2) Tj decreasing2)
1) See typical performance graph for details. 2) Parameter not subject to production test; specified by design. 3) Measured when the output voltage VQ has dropped 100 mV from its nominal value.
Data Sheet
11
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator
5.3
Typical Performance Characteristics Voltage Regulator
Output Capacitor Series Resistor ESRCQ vs. Output Current IQ
VQ -Tj v s d .
Output Voltage VQ vs. Junction Temperature Tj
VQ [V]
100
ESR 2 2 u .v s d -IQ
ESRCQ
[ Ω] 10
C Q ≥ 22 µF; 6 V ≤ VI ≤ 28 V; -40 °C ≤ Tj ≤ 150 °C
5.02
5.00
1
4.98
0 .1
Stable Region
4.96
-40 -20
0
20 40
60
80 100 120 140
0.01
0
80
160
240
320
400
T j [°C]
IQ [mA]
Output Current Limitation IQ,max vs. Input Voltage VI
SO A.v s d
Power Supply Ripple Rejection PSRR
PSRR.VSD
IQ,ma x
[mA]
Tj = 25 °C T j = 125 °C
400
PSRR [dB]
T J = -40 °C TJ = 25 °C T J = 150 °C
70
60
300
50
40
200
30
I Q = 10 mA C Q = 22 µF ceramic
100
20
VI = 13 .5 V Vripple = 1 Vpp
10
0
10
20
30
40
0 0,01 0,1 1 10 100 f [kHz] 1000
VI [V]
Data Sheet
12
Rev. 1.0, 2008-09-30
TLE4675
Voltage Regulator Dropout Voltage Vdr vs. Output Current IQ
Vd r-IQ .v s d
Dropout Voltage Vdr vs. Junction Temperature Tj
500
Vd r- Tj v s d .
Vdr [mV]
Vdr [mV]
200
300 250
T j = 125 °C
IQ = 400 mA
100
200 150 100
IQ = 200 mA
20
T j = 25 °C
50
100
IQ = 1 mA
1
2
10
0
I Q [mA]
-40 -20 0 20 40 60 80 100 120 140
Tj [°C]
Reverse Output Current IQ vs. Input Voltage VQ
0
IQ-VQ @ VI=0 v s d .
Reverse Current II vs. Input Voltage VI
0
II-VI@VQ =0 .v s d
IQ [mA]
VI = 0 V
II [mA]
VQ = 0 V
-0.4
-1
T j = -40 °C
-0.6 -1.5
T j = 150 °C
-0.8 -2
Tj = -40 °C Tj = 25 °C
-2.5
T j = 150 °C
-32 - 24 -16 -8 0
0
1.6
3.2
4 .8
6
V Q [V]
VI [V]
Data Sheet
13
Rev. 1.0, 2008-09-30
TLE4675
Current Consumption
6
6.1
Current Consumption
Electrical Characteristics Current Consumption
Electrical Characteristics: Current Consumption
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, directions of currents as shown in Figure 6 (unless otherwise specified) Pos. 6.1.1 6.1.2 6.1.3 6.1.4 Parameter Current Consumption Symbol Min. Limit Values Typ. 65 70 6 15 Max. 80 85 10 25 µA µA mA mA – – – – Unit Conditions
Iq = II - IQ
Iq
IQ ≤ 200 µA; Tj ≤ 25 °C IQ ≤ 200 µA; Tj ≤ 85 °C IQ = 250 mA IQ = 400 mA
Supply
II
I Voltage Regulator
Q
IQ
Regulated Output Voltage
+
+
VI
CI
CurrentConsumption _ ParameterDefinition .vsd
CQ GND
VQ
LOAD
Iq
Figure 6
Parameter Definition
Data Sheet
14
Rev. 1.0, 2008-09-30
TLE4675
Current Consumption
6.2
Typical Performance Characteristics Current Consumption
Current Consumption Iq vs. Junction Temperature TjI
I q -Tj .v s d
Current Consumption Iq vs. Junction Temperature Tj
Iq [mA] VI = 13 .5V IQ = 40 0 mA
10
140
Iq 0 0 u _ Tj v s d 1 .
Iq [µA]
IQ = 200 µA VI = 13 .5 V
100
IQ = 100 mA
1
80
60
0.1
IQ = 2 mA
40
0.01 -40 -20
0
20
40
60
80 100 120 140
-40
0
40
80
120
150
Tj [°C]
T j [°C]
Current Consumption Iq vs. Output Current IQ
Iq -IQ .v s d
Current Consumption Iq vs. Input Voltage VI
36
Iq _ v s ._ VIN.v s d
Iq [mA]
10
I q [ mA]
Tj = 25 °C
24
RL = 50 Ω RL = 500 Ω
1
VI = 13 .5 V Tj = 125 °C VI = 13.5 V T j = 25 °C
18
0.1
12
6
0.01 0.2
1
2
10
100
0
2
4
6
8
IQ [mA]
VI [V]
Data Sheet
15
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
7
7.1
Reset Function
Description Reset Function
The reset function contains several features: Output Undervoltage Reset: An output undervoltage condition is indicated by setting the reset output “RO” to “low”. This signal might be used to reset a microcontroller during a low supply voltage condition. Power-On Reset Delay Time The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the upper reset switching threshold VRT,hi until the reset is released by switching the reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD connected to pin “D”, which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V. In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Item 7.2.15:
t d,PWR-ON C D = ---------------------------------- × 100 nF t d,PWR-ON,100nF
with • • •
td,PWR-ON: Desired power-on reset delay time td,PWR-ON,100nF: Power-on reset delay time specified in Item 7.2.15 CD: Delay capacitor required The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance.
Undervoltage Reset Delay Time Unlike the power-on reset delay time, the undervoltage reset delay td time considers a short output undervoltage event, where the delay capacitor CD is assumed to be discharged to VD = VDST,lo only before the charging sequence starts. Therefore, the undervoltage reset delay time td is defined by the delay capacitor charge current ID,ch starting from VD = VDST,lo and the external delay capacitor CD. A delay capacitor CD for a different undervoltage reset delay time as specified in Item 7.2.14 can be calculated similar as above:
td C D = --------------- × 100 nF t d,100nF
with
td: Desired reset delay time td,100nF: Reset delay time specified in Item 7.2.14 CD: Delay capacitor required The formula is valid for CD ≥ 10nF.For a precise calculation consider also the delay capacitor’s tolerance.
• • •
Data Sheet
16
Rev. 1.0, 2008-09-30
TLE4675
Reset Function Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching threshold VDST,lo, the reset output RO will be set to “low”. Additionally to the delay capacitor discharge time trr,d an internal time trr,int applies. Hence the total reset reaction time trr,total becomes:
t rr,total = t rr,int + t rr,d
with • • •
trr,total: total reset reaction time trr,int: Internal reset reaction time; see Item 7.2.16 trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 7.2.17, see
typical performance graphs.
Reset Output Pull-Up Resistor RRO: The Reset Output RO is an open collector output requiring an external pull-up resistor to a voltage VIO, e.g. VQ. In Item 7.2.7 a minimum value for the external resistor RRO is given for the case it is connected to VQ. For applications, where the external pull-up resistor RRO has to be connected to a different voltage rail VIO than VQ, the minimum pull-up resistor RRO can be calculated out of the minimum sink current capability given in Item 7.2.6:
:
V IO – V RO,low R RO = --------------------------------I RO, max
with
RRO: Reset pull up resistor VIO: Voltage rail, where the pull up resistor is connected VRO,low: Maximum allowed voltage level for a logic “Low” signal inside the application Please be aware, that VIO should not exceed the ratings for the RO pin given in Item 4.1.3.
• • • Reset Output “RO” Low for VQ ≥ 1 V In case of an undervoltage reset condition reset output “RO” is held “low” for VQ ≥ 1 V, even if the input voltage VI is 0 V. This is achieved by supplying the reset circuit from the output capacitor.
Data Sheet
17
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
VIO
Supply I Q
e.g. +3.3V VDD
Control
Int. Supply
CQ I D ,ch
RO
or
RR O
Reset
VR T
VD ST
IR O
MicroController
ID R ,dsch
GND
BlockDiagram_Reset.vsd
D
GND
CD
Figure 7
Block Diagram Reset Circuit
Data Sheet
18
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
VI
t VQ VR T,hi VR T,lo VR H t < trr,blank
1V
t VD VD ST,hi VD ST,lo t VR O td,PWR-O N trr,total td,PWR-O N trr,total td,PWR-O N trr,total td
VR O,low
1V
t
Thermal Shutdown Input Voltage Dip Undervoltage Spike at output Overload
TimingDiagram_Reset_in_work.v s
Figure 8
Timing Diagram Reset
The timing diagram assumes that the external pull up resistor RRO is connected to the output voltage VQ.
Data Sheet
19
Rev. 1.0, 2008-09-30
TLE4675
Reset Function
7.2
Electrical Characteristics Reset Function
Electrical Characteristics: Reset Function
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified) Pos. Parameter Symbol Min. Output Undervoltage Reset Comparator Default Values 7.2.1 Output Undervoltage Reset Lower Switching Threshold Output Undervoltage Reset Upper Switching Threshold Output Undervoltage Reset Switching Hysteresis Output Undervoltage Reset Headroom Limit Values Typ. 4.7 Max. 4.8 V Unit Conditions
VRT,lo
4.6
VI = 0 V VQ decreasing VI within operating range VQ increasing VI within operating range
7.2.2
VRT,hi
4.7
4.8
4.9
V
7.2.3
VRT,hy
50
100
–
mV
7.2.4
VRH
250
300
–
mV
Calculated Value: VQ - VRT,lo VI within operating range IQ = 50 mA
Reset Output RO 7.2.5 Reset Output Low Voltage VRO,low – 0.2 0.8 V
VI = 0 V 1 V ≤ VQ < VRT,low; IRO = 0.3 mA VI = 0V; 1 V ≤ VQ < VRT,low; VRO = 5V
1 V ≤ VQ < VRT; VRO ≤ 0.4V 1)
7.2.6
Reset Output Sink Current Capability Reset Output External Pull-up Resistor to VQ Reset Output Leakage Current Delay Pin Output Voltage Upper Delay Switching Threshold Lower Delay Switching Threshold Delay Capacitor Charge Current Delay Capacitor Reset Discharge Current
IRO,max
0.3
–
–
mA
7.2.7
RRO
3.0
–
–
kΩ
7.2.8
IRO,leak
–
5
10
µA
VRO = 5 V
Reset Delay Timing 7.2.9 7.2.10 7.2.11 7.2.12 7.2.13 7.2.14
VD VDST,hi VDST,lo ID,ch IDR,dsch
– – – – – 16
– 1.1 0.3 3.5 70 23
5 – – – – 30
V V V µA mA ms
– – –
VD = 1 V VD = 1 V
Calculated value; CD = 100 nF2) CD discharged to VDST,lo
Undervoltage Reset Delay td,100nF Time
Data Sheet
20
Rev. 1.0, 2008-09-30
TLE4675
Reset Function Electrical Characteristics: Reset Function (cont’d)
VI = 13.5 V, Tj = -40 °C to +150 °C,
all voltages with respect to ground, direction of currents as shown in Figure 7 (unless otherwise specified) Pos. 7.2.15 Parameter Power-on Reset Delay Time Internal Reset Reaction Time Symbol Min. Limit Values Typ. 33 Max. 43 ms Unit Conditions
td,PWR-ON,100nF 23
7.2.16 7.2.17 7.2.18
trr,int
– – –
10 1 11
15 2 17
µs µs µs
Calculated value; CD = 100 nF2) CD discharged to 0 V CD = 0 nF CD = 100 nF
Calculated Value:
Delay Capacitor Discharge trr,d Time Total Reset Reaction Time trr,total
trr,total = trr,d + trr,int CD = 100 nF2)
1) Parameter not subject of production test. 2) For programming a different delay and reset reaction time, see Chapter 7.1 for calculation.
7.3
Typical Performance Characteristics Reset Function
Reset Delay Time td, td,PWR_ON versus Delay Capacitor CD
VRT-Tj .v s d
td -CD .v s d
Undervoltage Reset Switching Thresholds VRO,lo, VRO,hi versus Tj
VQ [V], VRT [V]
Pin RADJ = GND
td ,PWR- ON
[ms]
td ,
5.0
VQ
100
td,PWR-ON (typ.)
4,9
Output Undervoltage Reset Headroom VRH
4,8
VRT,hi
td (typ.)
10
4,7
VRT,lo
-40 -20
0
20
40
60
80 100 120 140
1 10
100
1000
Tj [°C]
CD [nF]
Data Sheet
21
Rev. 1.0, 2008-09-30
TLE4675
Package Outlines
8
8.1
Package Outlines
PG-TO252-5 Package
Figure 9
Package Outline PG-TO252-5
5.8
10.6
6.4
0.8 5.36
HLG09226
Figure 10
Footprint PG-TO252-5, Reflow Soldering Type
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Data Sheet
22
2.2
Rev. 1.0, 2008-09-30
TLE4675
Package Outlines
8.2
PG-TO263-5 Package
Figure 11
Package Outline PG-TO263-5
10.8
16.15 4.6
9.4
0.6 1.1 7.9
HLG09441
Figure 12
Footprint PG-TO263-5, Reflow Soldering Type
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on packages, please visit our website: http://www.infineon.com/packages. Data Sheet 23
Dimensions in mm Rev. 1.0, 2008-09-30
TLE4675
Revision History
9
Revision 1.0
Revision History
Date 2009-09-30 Changes Final Data Sheet
Data Sheet
24
Rev. 1.0, 2008-09-30
Edition 2008-09-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.