TLE8386EL
Smart Boost Controller
Datasheet
Rev. 1.0, 2009-11-30
Automotive Power
TLE8386EL
Table of Contents
Table of Contents
1 2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 6 6.1 6.2 7 7.1 7.2 8 8.1 8.2 9 9.1 9.2 10 11 11.1 12 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 8
Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Oscillator and Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Protection and Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Datasheet
2
Rev. 1.0, 2009-11-30
Smart Boost Controller
TLE8386EL
1
Features • • • • • • • • • • • • •
Overview
Wide Input Voltage Range from 4.75 V to 45 V Constant Current or Constant Voltage Regulation Very Low Shutdown Current: IQ< 10 µA Flexible Switching Frequency Range, 100 kHz to 500 kHz Synchronization with external clock source Output Open Circuit Diagnostic Output Available in a small thermally enhanced PG-SSOP-14 package Internal 5 V Low Drop Out Voltage Regulator Output Overvoltage Protection Internal Soft Start Over Temperature Shutdown Automotive AEC Qualified Green Product (RoHS) Compliant
PG-SSOP-14
Description The TLE8386EL is a boost controller with built in protection and diagnostic features. The main function of this device is step-up (boost) an input voltage to a larger output voltage. The diagnostics are communicated on a status output (pin ST) to indicate a fault conditions such as over temperature, open feedback and open load. The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can be synchronized to an external clock source. The TLE8386EL features an enable function reducing the shut-down current consumption to VIVCC,RTH,d
– –
Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Resistance
Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. 4.3.1 4.3.2 4.3.3 4.3.4 Parameter Junction to Case
1) 1) 2)
Symbol Min.
Limit Values Typ. 10 47 54 64 Max. – – – – – – – –
Unit K/W K/W K/W K/W
Conditions – 2s2p 1s0p + 600 mm2 1s0p + 300 mm2
Junction to Ambient
RthJC RthJA RthJA RthJA
1) Not subject to production test, specified by design. 2) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area at natural convection on FR4 board;
Datasheet
8
Rev. 1.0, 2009-11-30
TLE8386EL
Boost Regulator
5
5.1
Boost Regulator
Description
The TLE8386EL boost (step-up) regulator provides a higher output voltage than input voltage. The boost regulator function is implemented by a pulse width modulated (PWM) current mode controller. The PWM current mode controller uses the peak current through the external power switch and error in the output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The current mode controller it provides a PWM signal to an internal gate driver which then outputs the same PWM signal to external n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch. The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which is a characteristic of current mode controllers operating at high duty cycles (>50% duty). An additional built-in feature is an integrated soft start that limits the current through the inductor and external power switch during initialization. The soft start function gradually increases the inductor and switch current over 1 ms (typical) to minimize potential overvoltage at the output.
OVFB
OV FB
H when OVFB >1.25V
V Ref =
1.25 V COMP H when IVCC 0 OFF when H NOR
_
V Ref
4.0 V Gate Driver Supply
IVCC
> 1
Output Stage OFF when L R
INV
& &
Q
1 Gate Driver
SWO
0.3 V
VRef =
Soft start
L when Tj > 175 °C
R
& &
Q S Q
ISL O P E
Slope Comp FREQ/ SYNC Oscillator
I
PWM-FF Q NAND 2
Current Sense
I CS
SWCS
t
Clock
S
Error -FF
&
SGND
Figure 3
Boost Regulator Block Diagram
Datasheet
9
Rev. 1.0, 2009-11-30
TLE8386EL
Boost Regulator
5.2
1)
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Boost Regulator: 5.2.1 5.2.2 Feedback Reference Voltage Voltage Line Regulation Limit Values Typ. Max. Unit Conditions
VREF
∆VREF /∆VIN
0.28 –
0.30 –
0.32 0.15
V %/V
VIN = 19 V; VREF= VFBH -VFBL VIN = 6 to 19 V; VBO= 30 V; IBO = 100 mA
Figure 13
5.2.3
Voltage Load Regulation
∆VREF /∆IBO
–
–
5
%/A
VIN = 19 V; VBO = 30V; IBO = 100 to 500 mA
Figure 13
5.2.4
Switch Peak Over Current Threshold
VSWCS
130
150
170
mV
VIN = 6 V VFBH = VFBL = 5 V VCOMP = 3.5V
Fixed frequency mode Synchronization mode
5.2.5 5.2.6 5.2.7 5.2.8 5.2.9 5.2.10 5.2.11
Maximum Duty Cycle Maximum Duty Cycle Soft Start Ramp Feedback Input Current Switch Current Sense Input Current Input Undervoltage Shutdown Input Voltage Startup
DMAX,fixed 90 DMAX,sync 88 tSS 350 IFBx ISWCS VIN,off VIN,on
-10 10 3.75 –
93 – 1000 -50 50 – –
95 – 1500 -100 100 – 4.75
% % µs µA µA V V
VFB rising from 5% to 95% of VFB, typ. VFBH - VFBL = 0.3 V VSWCS = 150 mV VIN decreasing VIN increasing
Gate Driver for Boost Switch 5.2.12 5.2.13 5.2.14 5.2.15 5.2.16 Gate Driver Peak Sourcing Current1) Gate Driver Peak Sinking Current1) Gate Driver Output Rise Time Gate Driver Output Fall Time Gate Driver Output Voltage1)
ISWO,SRC ISWO,SNK tR,SWO tF,SWO VSWO
– – – – 4.5
380 550 30 20 –
– – 60 40 5.5
mA mA ns ns V
VSWO = 3.5V VSWO = 1.5V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF; VSWO = 1V to 4V CL,SWO = 3.3nF;
1) Not subject to production test, specified by design
Datasheet
10
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization
6
6.1
Oscillator and Synchronization
Description
R_OSC vs. switching frequency The internal oscillator is used to determine the switching frequency of the boost regulator. The switching frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching frequency with an external resistor the following formula can be applied.
R FREQ =
(141 × 10 [ ])× ( f
− 12 s Ω
1
FREQ
[1s ])
− 3 . 5 × 10 3 [Ω ]
(
) [Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a synchronized frequency from an external clock source. If an external clock source is provided on the pin FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
T LE8386
FREQ / SYN C
Oscillator Clock Frequency D etector
Multiplexer
PWM Logic
Gate Driver
SW O
VCLK
R FREQ
Oscillator_ BlkDiag.vsd
Figure 4
Oscillator and Synchronization Block Diagram and Simplified Application Circuit
Figure 5
Synchronization Timing Diagram
Datasheet
11
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization
6.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Oscillator: 6.2.1 6.2.2 Oscillator Frequency Oscillator Frequency Adjustment Range FREQ / SYNC Supply Current Frequency Voltage Limit Values Typ. Max. Unit Conditions
fFREQ fFREQ
250 100
300 –
350 500
kHz kHz
RFREQ = 20kΩ
17% internal tolerance + external resistor tolerance
6.2.3 6.2.4
IFREQ VFREQ
– 1.16
– 1.24
-700 1.32
µA V
VFREQ = 0 V fFREQ = 100 kHz
Synchronization 6.2.5 6.2.6 6.2.7 6.2.8 Synchronization Frequency Capture Range Synchronization Signal High Logic Level Valid Synchronization Signal Low Logic Level Valid Synchronization Signal Logic High Pulse Width
fSYNC VSYNC,H VSYNC,L
250 3.0 –
– – – –
500 – 0.8 –
kHz V V ns
–
1)
1)
tSYNC,PWH 200
1)
1) Synchronization of external PWM ON signal to falling edge
Datasheet
12
Rev. 1.0, 2009-11-30
TLE8386EL
Oscillator and Synchronization Typical Performance Characteristics of Oscillator Switching Frequency fSW versus Frequency Select Resistor to GND RFREQ/SYNC
600
500
400 fFREQ [kHz]
T j = 25 °C
300
200
100
0 0 10 20 30 40 50 60 70 80 RFREQ/SYNC [kohm]
Datasheet
13
Rev. 1.0, 2009-11-30
TLE8386EL
Enable Function
7
7.1
Enable Function
Description
The enable function powers on or off the device. A valid logic low signal on enable pin EN powers off the device and current consumption is less than 10 µA. A valid logic high enable signal on enable pin EN powers on the device. The voltage at pin IVCC (internal biasing) stays present for the Power Off Delay Time after the the device is switched off by the Enable signal.
Figure 6
Timing Diagram Enable
Datasheet
14
Rev. 1.0, 2009-11-30
TLE8386EL
Enable Function
7.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Enable Input: 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Enable Turn On Threshold Enable Turn Off Threshold Enable Hysteresis Enable High Input Current Enable Low Input Current Enable Turn Off Delay Time Enable Startup Time Typ. – – 200 – 0.1 10 – 0.8 400 30 1 12 – Max. V V mV µA µA ms µs – – – Unit Conditions
VEN,ON VEN,OFF VEN,HYS IEN,H IEN,L tEN,OFF,DEL tEN,START
3.0 – 50 – – 8 100
VEN/PWMI = 16.0 V VEN/PWMI = 0.5 V
– –
Current Consumption 7.2.8 7.2.9 Current Consumption, Shutdown Mode Current Consumption, Active Mode1)
Iq_off Iq_on
– –
– –
10 7
µA mA
VEN/PWMI = 0.8 V; Tj ≤ 105C; VIN = 16V VEN/PWMI ≥ 4.75 V; IBO = 0 mA; VIN = 16V VSWO = 0% Duty
1) Dependency on switching frequency and gate charge of boost and dimming switch.
Datasheet
15
Rev. 1.0, 2009-11-30
TLE8386EL
Linear Regulator
8
8.1
Linear Regulator
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current up to 50 mA. An external output capacitor with low ESR is required on pin IVCC for stability and buffering transient load currents. During normal operation the external boost MOSFET switche will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET switch. Please refer to application section for recommendations on sizing the output capacitor. An integrated power-on reset circuit monitors the linear regulator output voltage and resets the device in case the output voltage falls below the power-on reset threshold. The power-on reset helps protect the external switches from excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external logic level n-channel MOSFET.
Figure 7
Voltage Regulator Block Diagram and Simplified Application Circuit
8.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified) Pos. 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8 Parameter Output Voltage Output Current Limitation Drop out Voltage Symbol Min. Limit Values Typ. 5 Max. 5.4 90 1400 – 0.5 – – – – – 4.5 V mA mV µF Ω mV V V 6 V ≤ VIN ≤ 45 V 0.1 mA ≤ IIVCC ≤ 50 mA 4.6 51 Unit Conditions
VIVCC ILIM
VDR Output Capacitor CIVCC 0.47 Output Capacitor ESR RIVCC,ESR Undervoltage Reset Headroom VIVCC,HDRM 100
Undervoltage Reset Threshold VIVCC,RTH,d Undervoltage Reset Threshold VIVCC,RTH,i 4.0 –
VIN = 13.5 V VIVCC = 4.5V IIVCC = 50mA 1)
2)
f = 10kHz VIVCC decreasing VIVCC - VIVCC,RTH,d VIVCC decreasing VIVCC increasing
1) Measured when the output voltage VCC has dropped 100 mV from its nominal value. 2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
Datasheet
16
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
9
9.1
Protection and Diagnostic Functions
Description
The TLE8386EL has integrated circuits to diagnose and protect against output overvoltage, open load, open feedback and overtemperature faults. In case any of the four fault conditions occur the Status output ST will output an active logic low signal to communicate that a fault has occurred. During an overvoltage or open load condition the gate driver outputs SWO will turn off. Figure 11 illustrates the various open load and open feedback conditions. In the event of an overtemperature condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage regulator. The typical junction shutdown temperature is 175°C. After cooling down the IC will automatically restart operation. Thermal shutdown is an integrated protection function designed to prevent immediate IC destruction and is not intended for continuous use in normal operation.
Input
Output Overvoltage Open Load
Protection and Diagnostic Circuit
Output
OR
Open Feedback
SWO Gate Driver Off
Overtemperature
OR
Input Undervoltage
P ro_Diag_B lc kDiag.v sd
Linear Regulator Off
Figure 8
Protection and Diagnostic Function Block Diagram
Input Condition Overvoltage Open Load Open Feedback Overtemperature
Level* False True False True False True False True
ST H L H L H L H L
Output SWO Sw* L Sw* L Sw* L Sw* L
IVCC Active Active Active Active Active Active Active Shutdown
P ro_Diag_TT .vs d
*Note: Sw = Switching False = Condition does not exist True = Condition does exist
Figure 9
Status Output Truth Table
Datasheet
17
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
Figure 10
Open Load and Open Feedback Conditions
Datasheet
18
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
Figure 11
Status Output Timing Diagram
Datasheet
19
Rev. 1.0, 2009-11-30
TLE8386EL
Protection and Diagnostic Functions
9.2
Electrical Characteristics
VIN = 6V to 40V; 4.5V ≤ VFBH ≤ 40V, 4.5V ≤ VFBL ≤ 40V, Tj = -40 °C to +150 °C, all voltages with respect to ground,
positive current flowing into pin; (unless otherwise specified) Pos. Parameter Symbol Min. Status Output: 9.2.1 9.2.2 9.2.3 9.2.4 Status Output Voltage Low Status Sink Current Limit Status Output Current Status Delay Time Limit Values Typ. Max. Unit Conditions
VST,LOW IST,MAX IST,HIGH tSD
– 2 – 8
– – – 10
0.4 – 1 12
V mA µA ms
IST = 1mA VST = 1V VST = 5V
–
Temperature Protection: 9.2.5 9.2.6 Over Temperature Shutdown Over Temperature Shutdown Hystereses
Tj,SD 160 Tj,SD,HYST –
175 15
190 –
°C °C
– –
Overvoltage Protection: 9.2.7 9.2.8 9.2.9 9.2.10 Output Over Voltage Feedback Threshold Increasing Output Over Voltage Feedback Hysteresis Over Voltage Reaction Time Over Voltage Feedback Input Current
VOVFB,TH
1.21
1.25 – – 0.1
1.29 150 10 1
V mV µs µA
– Output Voltage decreasing Output Voltage decreasing
VOVFB,HYS 50 tOVPRR IOVFB
2 -1
VOVFB = 1.25 V
Open Load and Open Feedback Diagnostics 9.2.11 9.2.12 Open Load/Feedback Threshold Open Feedback Threshold
VREF,1,3 VREF,2
-100 0.5
– –
-20 1
mV V
VREF = VFBH - VFBL
Open Circuit 1 or 3
VREF = VFBH - VFBL
Open Circuit 2
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.
Datasheet
20
Rev. 1.0, 2009-11-30
TLE8386EL
Package Outlines
10
Package Outlines
0.35 x 45°
Stand Off (1.45)
1.7 MAX.
3.9 ±0.11)
0.1 D 2x
0 ... 0.1
0.19 +0.06
0.08 C 6 ±0.2
0.65 0.25 ±0.05 2)
C
0.64 ±0.25
D 0.2
8° MAX.
M
0.15 M C A-B D 14x
D 8x
A
14 8
Bottom View 3 ±0.1
1 7
1
7
B 0.1 A-B 2x
Exposed Diepad
14
8
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion
PG-SSOP-14-1-PO V01
Figure 12
PG-SSOP-14
Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further package information, please visit our website: http://www.infineon.com/packages. Datasheet 21
Rev. 1.0, 2009-11-30
2.65 ±0.1
Dimensions in mm
TLE8386EL
Application Information
11
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.
Figure 13
Boost Voltage Application Circuit (Voltage Source)
Reference Designator DBO CBO CIN CCOMP CIVCC IC1 IC2 LBO RCOMP RFB1,RFB3 RFB2 RFREQ, RST ROVH ROVL RCS TSW Value Schottky, 3 A, 100 VR 100 uF, 80V 100 uF, 50V 10 nF 1 uF, 6.3V --100 uH 10 kΩ 51 kΩ, 1% 1 kΩ, 1% 20 kΩ, 1% 51 kΩ, 1% 1 kΩ, 1% 50 mΩ, 1% N-ch, 75 V, 65 mΩ Manufacturer Vishay Panasonic Panasonic -EPCOS Infineon Infineon Coilcraft -Panasonic Panasonic Panasonic Panasonic Panasonic Panasonic Infineon Part Number SS3H10 EEVFK1K101Q EEEFK1H101GP -MLCC CCNPZC105KBW X76
Type Diode Capacitor Capacitor Capacitor Capacitor IC IC Inductor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Transistor
Quantity 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
A ppDiagB oos tB OM sd .v
TLE8386EL XC886 MSS1278T-104ML_ -ERJ3EKF5102V ERJ3EKF1001V ERJ3EKF2002V ERJP06F5102V ERJ3EKF1001V ERJB1CFR05U IPD22N08S2L-50
Figure 14
Bill of Materials for Boost Voltage Application Circuit
Note: This is a simplified example of an application circuit. The function must be verified in the real application. Datasheet 22 Rev. 1.0, 2009-11-30
TLE8386EL
Application Information
IBO DRV VBATT C1 C2 SWO
14 2
L1 CIN
VIN
LBO
DBO I SW
VBO CBO
TSW RL
IN SWCS
3
TLE 8386
SGND
4
RCS ROVH
Microcontroller (e.g . XC 2000)
RST
VCC
OVFB
9
ROVL
Input Output Output
10 13 11 8
ST EN FREQ / SYNC COMP IVCC RFB_L FBH FBL
6 7
RFB
C COMP
1
R FREQ
R COMP
CIVCC
GND
12
V isioDoc ument
Provisional Parts
Figure 15
Boost Voltage Application Circuit (Current Source)
Datasheet
23
Rev. 1.0, 2009-11-30
TLE8386EL
Application Information
11.1
Further Application Information
In fixed frequency mode where an external resistor configures the switching frequency the minimum boost inductor is given by the formula inFigure 16. • • • • LMIN = Minimum Inductacne Required During Fixed Frequency Operation VBO = Boost Output Voltage RCS = Current Sense Resistor fFREQ = Switching Frequency
V BO [ V ] × R CS [ Ω ] L MIN ≥ ----------------------------------------------------------------–3 106 ×10 [ V ] × f FREQ [ Hz ]
Figure 16 Minimum Inductance Required During Fixed Frequency Operation
In synchronization mode where an external clock source configures the switching frequency the minimum boost inductor is given by the formula in Figure 17. • • • LSYNC = Minimum Inductacne Required During Synchronization Operation VBO = Boost Output Voltage RCS = Current Sense Resistor
V BO [ V ] × R CS [ Ω ] L SYNC ≥ ---------------------------------------------------------–3 106 ×10 [ V ] × 250kHz
Figure 17 •
Minimum Inductance Required During Synchronization Operation
Datasheet
24
Rev. 1.0, 2009-11-30
TLE8386EL
Revision History
12
Revision 1.0
Revision History
Date 2009-11-30 Changes Initial datasheet
Datasheet
25
Rev. 1.0, 2009-11-30
Edition 2009-11-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.