0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TUA6039-2

TUA6039-2

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    TUA6039-2 - 3 Band Digital / Hybrid Tuner IC with integrated IF AGC amplifier - Infineon Technologie...

  • 数据手册
  • 价格&库存
TUA6039-2 数据手册
D a ta Sh ee t , R ev is io n 2 . 6, A ug us t 20 0 7 TUA 6039-2, T UA 6039, TUA 6037 3 B and D i gita l / H yb r id T u ner I C wit h inte gr at ed IF A G C amp lifier O mni T un e™ T U A 6 03 9- 2, O mni T un e™ T U A 6 03 9, O mni T un e™ T U A 6 03 7 Co mmu nicat i on So lutio ns Edition 2007-08-20 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D a ta Sh ee t , R ev is io n 2 . 6, A ug us t 20 0 7 TUA 6039-2, T UA 6039, TUA 6037 3 B and D i gita l / H yb r id T u ner I C wit h inte gr at ed IF A G C amp lifier O mni T un e™ T U A 6 03 9- 2, O mni T un e™ T U A 6 03 9, O mni T un e™ T U A 6 03 7 Co mmu nicat i on So lutio ns TUA 6039-2, TUA 6039, TUA 6037 TUA 6039-2, TUA 6039, TUA 6037 Revision History: Previous Version: Page all 2007-08-20 2006-10-31 Data Sheet, Revision 2.6 Data Sheet, Revision 2.5 Subjects (major changes since last revision) Branding name changed to OmniTuneTM. OmniTuneTM TUA 6039-2 included in data sheet. Formatting of document cross-references updated. TUA 6039 Ordering Code corrected. New Ordering Code for TUA 6037. DMB-TH standard added. Average DC voltage corrected for X_TAL_CAP, OSCLOWOUT and OSCLOWIN. Functional Block Diagram updated. Functional Block Diagram for TUA 6037 added. Functional Description of PLL block updated. Functional Description added for ADC. Tuning voltage leakage current, maximum limit added. Phase Noise Parameter, maximum limit added. Footnotes of Table 7 updated 9 9 - 11 19 - 22 25 37 - 48 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: horst.klein@infineon.com Data Sheet 4 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 2.2.1 3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 4 4.1 4.2 4.3 4.4 4.5 5 5.1 5.1.1 5.1.2 5.1.3 5.2 5.3 Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer/Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAW Filter Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF AGC Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended band limits in MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer-Oscillator block with SAW filter driver . . . . . . . . . . . . . . . . . . . . . PLL block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF AGC amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loop thru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for hybrid application . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 10 10 11 11 11 11 11 13 13 16 23 26 26 26 27 27 28 28 29 30 30 31 32 33 34 35 35 35 37 37 48 54 Data Sheet 5 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6 5.5.7 5.5.8 6 Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input admittance (S11) of the LOW band mixer (30 to 200 MHz) . . . . . Input impedance (S11) of the MID band mixer (130 to 500 MHz) . . . . . Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz) . . . Output admittance (S22) of the of the mixers (30 to 60 MHz) . . . . . . . . Input admittance (S11) of the SAW filter driver (30 to 60 MHz) . . . . . . . Output impedance (S22) of the SAW filter driver (30 to 60 MHz) . . . . . Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz) . . . . . . Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz) . . . . . Measurement Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in MID and HIGH bands . . . . . . . . . . . . . . . . Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . . Noise figure (NF) measurement in LOW band . . . . . . . . . . . . . . . . . . . Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . . Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . . Cross modulation measurement in MID and HIGH bands . . . . . . . . . . . Ripple susceptibility (RSC) measurement . . . . . . . . . . . . . . . . . . . . . . . 55 55 55 56 56 57 57 58 58 59 59 59 60 60 61 61 62 62 Package VQFN-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Data Sheet 6 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 ATSC tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVB-T and analog tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISDB-T tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics, TA = 25°C, VCC = 3.3 V. . . . . . . . . . . . . . . . . . Bit Allocation Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF AGC take-over point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A to D converter levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charge pump current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal band selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Defaults at power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12 12 16 35 37 37 48 49 50 50 51 51 52 52 52 53 53 Data Sheet 7 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Pin Configuration of TUA 6039-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration of TUA 6039 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration of TUA 6037 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of TUA 6039-2 . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of TUA 6039 . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of TUA 6037 . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of Loop thru . . . . . . . . . . . . . . . . . . . . . . . . Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for hybrid application (DVB-T / PAL). . . . . . . . . . . . . . Circuit diagram for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in MID and HIGH bands. . . . . . . . . . . . . . . . Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . Noise figure (NF) measurement in LOW band. . . . . . . . . . . . . . . . . . . Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . Cross modulation measurement in MID and HIGH bands . . . . . . . . . . Ripple susceptibility measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-VQFN-48 Vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-VQFN-48 Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 14 15 23 24 25 29 30 31 32 33 34 54 59 59 60 60 61 61 62 62 63 63 Data Sheet 8 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Product Info 1 Product Info General Description The TUA 6039-2, TUA 6039, TUA 6037 device combines a mixer-oscillator function and an IF AGC amplifier with a digitally programmable phase locked loop (PLL) for use in analog and digital terrestrial applications. Features General • • Supply voltage 3 to 5.5 Volt Narrowband RF AGC detector for internal tuner with - 5 programmable take over points - 2 programmable time constants - RF AGC buffer output Low phase noise Full ESD protection Qualified according to JEDEC for consumer applications Three band tuner Unbalanced highohmic LOW input Balanced lowohmic MID input Balanced lowohmic HIGH input Two pin oscillators for LOW/MID band Four pin oscillator for HIGH band 4 IF pins to connect a 2 pole bandpass Symmetrical SAW filter driver Fully balanced IF AGC amplifier PLL • • • • • • • • • I2C bus 4 pin-programmable I2C addresses High voltage VCO tuning output 4 PNP ports, 1 NPN port/ADC input1) Internal LOW/MID/HIGH band switch X_TAL 4 MHz, X_TAL buffer output 6 reference divider ratios 4 charge pump currents Bus controlled power down mode • • • Power management Mixer/Oscillator • • • • • • • • • Application • The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DMB-TH, DAB, ISDB-T, Open Cable and ATSC tuners. SAW filter driver and IF-Amplifier 1) ADC function is only available in TUA 6039-2. Ordering Information Type TUA 6039-2 TUA 6039 TUA 6037 Ordering Code SP000279216 SP000259230 SP000274731 Package PG-VQFN-48 PG-VQFN-48 PG-VQFN-48 Data Sheet 9 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Product Description 2 Product Description The TUA 6039-2, TUA 6039, TUA 6037 ’OmniTune™ TUA 6039-2, OmniTune™ TUA 6039, OmniTune™ TUA 6037’ device combines a mixer-oscillator block with a digitally programmable phase locked loop (PLL) and a variable gain IF AGC amplifier for use in TV and VCR tuners, set-top-box and mobile applications. Integrated narrow band RF AGC functions with output buffer are provided. The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, a reference voltage and a band switch. The mixer output signal passes a SAW filter driver and an IF AGC amplifier to provide constant output level ready for A/D sampling. The PLL block with four pin programmable chip addresses forms a digitally programmable phase locked loop. With a 4 MHz quartz crystal, the PLL permits precise setting of the frequency of the tuner oscillator up to 1024 MHz in increments of 31.25, 50, 62.5, 125, 142.86 or 166.7 kHz. The tuning process is controlled by a microprocessor via an I2C bus. A flag is set when the loop is locked. The lock flag can be read by the processor via the I2C bus. The device has 5 output ports and a X_TAL output buffer. One of the ports (P4) can be also used as input for a 5-level A to D converter (only available in TUA 6039-2). 2.1 2.1.1 • • Features General • • • Supply voltage range 3 to 5.5 V Narrowband RF AGC detector for internal tuner with - 5 programmable take over points - 2 programmable time constants - RF AGC buffer output Low phase noise Full ESD protection Qualified according to JEDEC for consumer applications 2.1.2 • • • • • • Mixer/Oscillator High impedance mixer input (common emitter) for LOW band Low impedance mixer input (common base) for MID band Low impedance mixer input (common base) for HIGH band 2 pin oscillator for LOW band 2 pin oscillator for MID band 4 pin oscillator for HIGH band 10 Revision 2.6, 2007-08-20 Data Sheet TUA 6039-2, TUA 6039, TUA 6037 Product Description 2.1.3 • • SAW Filter Driver 4 IF pins to connect a 2 pole bandpass Symmetrical IF preamplifier with low output impedance able to drive a compensated SAW filter (500 Ω//40 pF) 2.1.4 • IF AGC Amplifier Symmetrical variable gain IF output amplifier with low noise, high linearity, high dynamic range. 2.1.5 • • • • • • • • • • PLL 4 pin-programmable I2C addresses I2C bus protocol compatible with 3.3 V and 5 V micro-controllers up to 400 kHz High voltage VCO tuning output 4 PNP ports 1 NPN port/ADC input1) Power down mode Internal LOW/MID/HIGH band switch Lock-in flag 6 programmable reference divider ratios (24, 28, 32, 64, 80, 128) 4 programmable charge pump currents 2.2 • • Application The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DMB-TH, DAB, ISDB-T, Open Cable and ATSC tuners. The focus is on digital terrestrial. The AGC stage makes the tuner AGC independent of the Video-IF AGC. 2.2.1 Table 1 Recommended band limits in MHz ATSC tuners RF input Oscillator max 157.25 451.25 861.25 min 101 209 503 max 203 497 907 Band LOW MID HIGH min 55.25 163.25 457.25 1) ADC function is only available in TUA 6039-2. Data Sheet 11 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Product Description Table 2 DVB-T and analog tuners RF input Oscillator max 154.25 439.25 863.25 min 87.15 200.15 486.15 max 193.15 478.15 902.15 Band LOW MID HIGH min 48.25 161.25 447.25 Table 3 ISDB-T tuners RF input Oscillator max 167 467 767 min 150 230 530 max 224 524 824 Band LOW MID HIGH min 93 173 473 Note: Tuning margin of 3 MHz not included. Data Sheet 12 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 3 3.1 Functional Description Pin Configuration 43 OSCLOWOUT 47 OSCMIDOUT 42 RFAGC_BUF 44 OSCLOWIN 46 OSCMIDIN 45 GNDOSC 41 HIGHIN 40 HIGHIN n.c. 1 P4/ADC 2 OSCHIGHIN 3 OSCHIGHOUT 4 OSCHIGHOUT 5 OSCHIGHIN 6 GNDA 7 n.c. 8 SAWOUT 9 SAWOUT 10 VT 11 CP 12 IFAMPAGC 15 IFAMPOUT 16 IFAMPOUT 17 X_TAL_BUF 18 AS 19 SCL 20 SDA 21 GNDACK 22 GNDD 23 IFAMPIN 13 IFAMPIN 14 49 X_TAL_CAP 24 37 LOWIN 36 GNDRF 35 MIXOUT 34 SAWIN 33 SAWIN 32 MIXOUT 31 VCC 30 RFAGC 29 P0 28 P1 27 P2 26 P3 25 X_TAL_IN 39 MIDIN TUA 6039-2 VQFN-48 package 38 MIDIN 48 n.c. GND package Figure 1 Pin Configuration of TUA 6039-2 Data Sheet 13 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 48 n.c. 1 P4 2 OSCHIGHIN 3 OSCHIGHOUT 4 OSCHIGHOUT 5 OSCHIGHIN 6 GNDA 7 n.c. 8 SAWOUT 9 SAWOUT 10 VT 11 CP 12 47 46 45 44 43 42 41 40 39 38 37 36 GNDRF 35 MIXOUT 34 SAWIN 33 SAWIN 32 MIXOUT TUA6039 VQFN-48 package 31 VCC 30 RFAGC 29 P0 28 P1 27 P2 26 P3 49 25 X_TAL_IN 13 14 15 16 17 18 19 20 21 22 23 24 GND package Figure 2 Pin Configuration of TUA 6039 Data Sheet 14 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 48 47 GNDRF 1 MIXOUT 2 SAWIN 3 SAWIN 4 MIXOUT 5 VCC 6 RFAGC 7 P0 8 P1 9 P2 10 P3 11 X_TAL_IN 12 13 14 46 45 44 43 42 41 40 39 38 37 36 n.c. 35 P4 34 OSCHIGHIN 33 OSCHIGHOUT 32 OSCHIGHOUT TUA6037 VQFN-48 package 31 OSCHIGHIN 30 GNDA 29 n.c. 28 SAWOUT 27 SAWOUT 26 VT 49 25 CP 15 16 17 18 19 20 21 22 23 24 GND package Figure 3 Pin Configuration of TUA 6037 Data Sheet 15 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 3.2 Table 4 Pin No.1) 1 (36) 22) Pin Definition and Functions Pin Definition and Functions Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW n.c. P4/ADC input2) P4/ADC input2) 2 MID HIGH P4 2 0V+ 0V+ 0V+ VCE or VCE or VCE or VCC VCC VCC 2 (35) P4 3 (34) 4 (33) 5 (32) 6 (31) OSCHIGHIN OSCHIGHOUT OSCHIGHOUT OSCHIGHIN 4 5 2.3 V 2.25 V 2.25 V 2.3 V 3 6 7 (30) 8 (29) 9 (28) GNDA n.c. SAWOUT Analog ground 0V 1.6 V 1.6 V 0V 1.6 V 1.6 V 0V 1.6 V 1.6 V 10 (27) SAWOUT 9 10 Data Sheet 16 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW 11 (26) VT 12 (25) CP VT 1.4 V MID VT 1.4 V HIGH VT 1.4 V 12 11 13 (24) IFAMPIN 14 (23) IFAMPIN 13 14 2.6 V 2.6 V 2.6 V 2.6 V 2.6 V 2.6 V 15 (22) IFAMPAGC n.a. n.a. n.a. 15 16 (21) IFAMPOUT 17 (20) IFAMPOUT 1.6 V 1.6 V 1.6 V 1.6 V 1.6 V 1.6 V 16 17 Data Sheet 17 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW 18 (19) X_TAL_BUF DC bias 18 MID 2.4 V HIGH 2.4 V 2.4 V XTAL 19 (18) AS n.a. n.a. n.a. 19 20 (17) SCL n.a. n.a. n.a. 20 Data Sheet 18 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW 21 (16) SDA n.a MID n.a HIGH n.a 21 22 (15) GNDACK 23 (14) GNDD 24 (13) X_TAL_CAP 25 (12) X_TAL_IN Acknowledge ground Digital ground 0 0 0.6 V 1.2 V 0 0 0.6 V 1.2 V 0 0 0.6 V 1.2 V 25 24 26 (11) P3 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 26, 27, 28, 29 27 (10) P2 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 28 (9) P1 29 (8) P0 Data Sheet 19 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) 30 (7) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW RFAGC MID HIGH VRFAGC VRFAGC VRFAGC 30 31 (6) 33 (4) 34 (3) VCC SAWIN SAWIN supply voltage VCC VCC VCC VCC VCC VCC VCC VCC VCC 33 34 32 (5) 35 (2) MIXOUT MIXOUT 32 35 VCC VCC VCC VCC VCC VCC Oscillator 36 (1) GNDRF RF ground 0.0 V 0.0 V 0.0 V Data Sheet 20 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW 37 (48) LOWIN 2V MID HIGH 37 38 (47) MIDIN 39 (46) MIDIN 1V 1V 38 39 40 (45) HIGHIN 41 (44) HIGHIN 1V 1V 40 41 42 (43) RFAGC_BUF VRFAGC VRFAGC VRFAGC 42 Data Sheet 21 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 3.3V LOW 43 (42) OSCLOWOUT 44 (41) OSCLOWIN 43 44 MID HIGH 1.8 V 2.3 V 45 (40) GNDOSC 46 (39) OSCMIDIN 47 (38) OSCMIDOUT Oscillator ground 0.0 V 0.0 V 2.3 V 1.8 V 0.0 V 47 46 48 (37) n.c. 49 (49) GND package Exposed pad ground 2) ADC function is only available in TUA 6039-2. 0.0 V 0.0 V 0.0 V 1) Pin numbering for TUA 6039-2 and TUA 6039 (Pin numbering for TUA 6037 in parentheses). Data Sheet 22 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 3.3 Functional Block Diagram 48 47 46 45 44 43 42 41 40 39 38 37 n.c. 1 36 GNDRF Oscillator LOW P4/ADC 2 P4 ADC Mixer HIGH 35 3 Oscillator MID Mixer MID 34 4 33 Oscillator HIGH 5 Mixer LOW RF AGC Buffer SAW Filter Driver 32 6 31 VCC 30 7 Prog. Divider Lock Detector fdiv AGC Detector AGC ADC 8 ADC P4 29 P0 1/N Divider 9 FL PORTS Charge Pump Phase/ Freq Comp fref 28 P1 10 Reference Divider 27 P2 11 IF AGC Amplifier 12 Crystal Oscillator Buffer Crystal Oscillator I C Bus 2 26 P3 25 X_TAL_IN 13 14 15 16 17 18 19 20 21 22 23 24 TUA6039-2 Figure 4 Functional Block Diagram of TUA 6039-2 Data Sheet 23 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description OSCLOWOUT OSCMIDOUT RFAGC_BUF OSCLOWIN OSCMIDIN GNDOSC HIGHIN HIGHIN 48 47 46 45 44 43 42 41 40 39 38 LOWIN 37 MIDIN MIDIN n.c. n.c. 1 36 GNDRF Oscillator LOW P4 2 Mixer HIGH 35 P4 MIXOUT OSCHIGHIN 3 Oscillator MID Mixer MID 34 SAWIN OSCHIGHOUT 4 33 SAWIN Oscillator HIGH OSCHIGHOUT 5 Mixer LOW RF AGC Buffer SAW Filter Driver 32 MIXOUT OSCHIGHIN 6 31 VCC VCC GNDA 7 Prog. Divider 30 Lock Detector fdiv AGC Detector AGC RFAGC n.c. 8 P4 FL 29 P0 1/N Divider SAWOUT 9 PORTS Charge Pump Phase/ Freq Comp fref 28 P1 SAWOUT 10 Reference Divider 27 P2 VT 11 IF AGC Amplifier CP 12 Crystal Oscillator Buffer Crystal Oscillator I C Bus 2 26 P3 25 X_TAL_IN 13 14 15 16 17 18 19 20 21 22 23 24 IFAMPOUT IFAMPOUT GNDACK SDA IFAMPIN IFAMPIN IFAMPAGC GNDD AS X_TAL_CAP X_TAL_BUF SCL TUA6039 Figure 5 Functional Block Diagram of TUA 6039 Data Sheet 24 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 48 47 46 45 44 43 42 41 40 39 38 37 GNDRF 1 36 n.c. Mixer HIGH 2 Oscillator LOW P4 35 P4 3 Mixer MID Oscillator MID 34 4 33 Mixer LOW 5 Oscillator HIGH 32 RF AGC Buffer SAW Filter Driver Prog. Divider 6 VCC 7 31 30 AGC Detector P0 8 AGC P4 FL Lock Detector fdiv 29 1/N Divider 28 fref P1 9 PORTS Reference Divider Phase/ Freq Comp Charge Pump P2 10 27 P3 11 Crystal Oscillator I2C Bus Crystal Oscillator Buffer 26 IF AGC Amplifier 25 X_TAL_IN 12 13 14 15 16 17 18 19 20 21 22 23 24 TUA6037 Figure 6 Functional Block Diagram of TUA 6037 Data Sheet 25 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 3.4 3.4.1 Circuit Description Mixer-Oscillator block with SAW filter driver The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, an SAW filter driver, a reference voltage and a band switch. Filters between tuner input and IC separate the TV frequency signals into three bands. The band switching in the tuner front-end is done by using three PNP port outputs. In the selected band the signal passes a tuner input stage with a MOSFET amplifier, a doubletuned bandpass filter and is then fed to the mixer input of the IC which has in case of LOW band a high-impedance input and in case of MID or HIGH band a low-impedance input. The input signal is mixed there with the signal from the activated on chip oscillator to the IF frequency. The IF is filtered by means of an IF filter in between the 2 mixer output pins and the 2 input pins of the following SAW filter driver. The SAW filter driver has a low output impedance to drive the SAW filter directly. 3.4.2 PLL block The oscillator signal is internally DC-coupled as a differential signal to the programmable divider inputs. The signal subsequently passes through a programmable divider with ratio N = 256 through 32767 and is then compared in a digital frequency/phase detector with a reference frequency fref = 31.25, 50, 62.5, 125, 142.86 or 166.67 kHz. This frequency is derived from a low-impedance 4 MHz crystal oscillator (pins XTALIN, XTALCAP) divided by 128, 80, 64, 32, 28 or 24. The reference frequencies will be different with a quartz other than 4 MHz. The phase detector has two outputs which drive four current sources of a charge pump. If the negative edge of the divided VCO signal appears prior to the negative edge of the reference signal, the positive current source pulses for the duration of the phase difference. In the reverse case the negative current source pulses. If the two signals are in phase, the charge pump output (CP) goes into the high-impedance state (PLL is locked). An active low-pass filter integrates the current pulses to generate the tuning voltage for the VCO (internal amplifier, external pull-up resistor at VT and external RC circuitry). The charge pump output is also switched into the high-impedance state if the control bits T2, T1, T0 = 0, 1, 0. Here it should be noted, however, that the tuning voltage can alter over a long period in the high impedance state as a result of self discharge in the peripheral circuity. VT may be switched off by the control bit OS to allow external adjustments. If the VCO is not oscillating the PLL locks to a tuning voltage of 33V (VTH). By means of control bits CP, T0, T1 and T2 the pump current can be switched between four values by software. This programmability permits alteration of the control response Data Sheet 26 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description of the PLL in the locked-in state. In this way different VCO gains can be compensated, for example. Furthermore, in order to obtain best results for phase noise, reference frequency rejection and PLL stability especially in a wideband system like a digital tuner, it is necessary to set the charge pump current to different values depending on the band and frequency used. This is to cope with the variations of the different parameters that set the bandwidth. The selection can be done in the application and requires for each frequency to program not only the divider ratios, but also the band and the best charge pump current. The software controlled ports P0 to P4 are general purpose open-collector outputs. The test bits T2, T1, T0, OS = 0, 1, 0, 1 switch the test signals fdiv / 2 (divided input signal) and fref (i.e. 4 MHz / 64) to P0 and P1 respectively. The lock detector resets the lock flag FL if the width of the charge pump current pulses is greater than the period of the crystal oscillator (i.e. 250 ns). Hence, if FL = 1, the maximum deviation of the input frequency from the programmed frequency is given by ∆f = ± IP ∗ (KVCO / fXTAL) ∗ (C1 + C2) / (C1 ∗ C2) where IP is the charge pump current, KVCO the VCO gain, fXtal the crystal oscillator frequency and C1, C2 the capacitances in the loop filter (see Section 4.2). As the charge pump pulses at i.e. 62.5 kHz (= fref), it takes a maximum of 16 µs for FL to be reset after the loop has lost lock state. Once FL has been reset, it is set only if the charge pump pulse width is less than 250 ns for eight consecutive fref periods. Therefore it takes between 128 and 144 µs for FL to be set after the loop regains lock. 3.4.3 RF AGC The RF AGC stage detects the level of the SAW filter driver output signal. If the detected level is below the RF AGC take-over point, a external capacity will be charged with the source current of 300 nA or 9 µA (release current). If the detected level is above the RF AGC take-over point, the external capacity will be discharged with the sink current of 100 µA (attack current). The integrated current generates the AGC voltage for gain control of the tuners input transistors. The RF AGC take-over and the time constant are selectable by the I2C bus (see Table 13). An integrated RF AGC buffer allows to monitor the AGC voltage without any influence on the tuner gain control. 3.4.4 IF AGC amplifier Coming out of the SAW filter the IF signal is sent through a VGA (Variable Gain Amplifier) which will set the differential IF output signal to the desired level (preferably 1 Vpp). The gain of the VGA is determined by the DC-voltage at pin IFAMPAGC Data Sheet 27 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description 3.4.5 I2C-Bus Interface Data is exchanged between the processor and the PLL via the I2C bus. The clock is generated by the processor (input SCL). Pin SDA functions as an input or output depending on the direction of the data (open collector, external pull-up resistor). Both inputs have a hysteresis and a low-pass characteristic, which enhance the noise immunity of the I2C bus. The data from the processor pass through an I2C bus controller. Depending on their function the data are subsequently stored in registers. If the bus is free, both lines will be in the marking state (SDA, SCL are high). Each telegram begins with the start condition and ends with the stop condition. Start condition: SDA goes low, while SCL remains high. Stop condition: SDA goes high while SCL remains high. All further information transfer takes place during SCL = low, and the data is forwarded to the control logic on the positive clock edge. The table ’Bit Allocation’ (see Table 8) should be referred to for the following description. All telegrams are transmitted byte-by-byte, followed by a ninth clock pulse, during which the control logic returns the SDA line to low (acknowledge condition). The first byte is comprised of seven address bits. These are used by the processor to select the PLL from several peripheral components (address select). The LSB bit (R/W) determines whether data are written into (R/W = 0) or read from (R/W = 1) the PLL. In the data portion of the telegram during a WRITE operation, the MSB bit of the first or third data byte determines whether a divider ratio or control information is to follow. In each case the second byte of the same data type has to follow the first byte. Appropriate setting of the test bits will decide whether the band-switch byte or the auxiliary byte will be transmitted (see Table 11). If the address byte indicates a READ operation, the PLL generates an acknowledge and then shifts out the status byte onto the SDA line. If the processor generates an acknowledge, a further status byte is output; otherwise the data line is released to allow the processor to generate a stop condition. The status word consists of three bits from the A/D converter, the lock flag and the power-on flag. Four different chip addresses can be set by an appropriate DC level at pin AS (see Table 10). While the supply voltage is applied, a power-on reset circuit prevents the PLL from setting the SDA line to low, which would block the bus. The power-on reset flag POR is set at power-on and if VCC falls below 2 V. It will be reset at the end of a READ operation. 3.4.6 Loop thru For the tuner prestage alignment a programmable switch is integrated to bypass the bandpass, the SAW filter driver and the SAW filter. If "Loop thru" is active the mixer output signal in front of the external bandpass is fed into the IF AGC amplifier as shown in Figure 7. Data Sheet 28 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Functional Description Bandpass Loop thru control = bit 0 of Auxiliary byte MIXER input MIXER Loop thru IF AGC IF AGC output SAW Filter SAWDRV Figure 7 Functional Block Diagram of Loop thru This results in a flat frequency response from the mixer input to the IF amplifier output and allows tuner alignment without the need of an external resistor. 3.4.7 ADC1) A built-in 5 level Analog to Digital converter is available on P4/ADC pin. This converter can be used to read out an external AFC information via the I2C-BUS interface. The relationship between the external voltage at P4/ADC pin and the bits A2, A1 and A0 is given in Table 14. P4 output port cannot be used and the corresponding bit needs to be programmed to logic 0 when the ADC is in use. 1) ADC function is only available in TUA 6039-2. Data Sheet 29 Revision 2.6, 2007-08-20 4 4.1 Figure 8 Data Sheet VCC IF Bandfilter Application HIGH AGC SAW 30...60 MHz SAWDriver external AGC to Channel Decoder IF Amplifier Antenna input AGC MID AGC Detector small AGC Buffer AGC Tuner application block diagram Tuner application block diagram P N Ports 30 CP PD R P0 P1 P2 P3 P4 SCL I2C SDA AS LOW ~~~ ~~~ ~~~ ~ ~ ~ X_Tal Buffer Power Supply VCC Buffered 4 MHz 4 MHz LOW MID HIGH TUA6039 Tuner Application + 33 V TUA 6039-2, TUA 6039, TUA 6037 Application Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Application 4.2 Application circuit for hybrid application +,&+ *1' ; 0$&20  (7& 0$&20  (7&  0,' ; *1' *1' 5 5 & S %% & / WXUQV 5 N *1' 5 5 & S 5 N /2: ; *1' *1'  *1'   5 5    *1' 75  75  & Q    %% & / WXUQV ' ' *1' & S 9&& & S *1'        $*&B%8) & S & S   & S  & Q & Q & S & & S Q & S    *1' 0,',1< /2:,1 *1'5) 0,;287; 6$:,1; 6$:,1< 0,;287< 9&& 5)$*& 3 3 3 3 ;B7$/B&$3 *1' SDF NDJH  26 &0,',1 +,*+,1; 26&/2:,1 +,*+,1< 26&0,'287 *1'  *1' 3 5 N & QS 5 N QF 3/ADC 26&/2:287 5)$*&B%8) *1'26& 0,',1; & QS QF  *1' 5 / QS 5 5 & 5S6 5 & S / *1' 9&&   & S & & S S  26&+,*+,1; 26&+,*+287<  Q+ 5 QS / Q+ & S *1' 5 5 & QS *1' 9&& 5)$*& 3 3 3 3 %%  ' WXUQV /   & S & S 26&+,*+287;    *1' 5 5 5 N 26&+,*+,1< *1'$ QF 6$:287; ,& 78$-2 94)1  &  Q *1' / *1' *1' *1' *1' *1' QS *1'  & Q    & Q & & & Q Q Q  6$:287<  & Q 5 N   ,)$03287; ,)$03287< ,)$03,1; ,)$03,1< ;B7$/B%8) 97 ,)$03$*& &3  & S 5 N Q *1' *1' & S 5 N $6 & *1'' & Q *1'$& . 5 N ;B7$/B,1 6'$ 6& /               & S & S *1' 0+] 4 5 N & 5 N Q *1' *1' 5 5 5 5 & Q *1'  5 N *1' &   & Q S & Q & Q ; *1' 6& / $6 & S *1' 6'$ & S *1' & Q *1' 5  5  5  97 03  ,1 *1'  ,1 287 287 6$: 6,3 ' ;' ,)$03$*& ; WDOB%XI    *1'  *1' ,) *1' *1'  *1' QF *1' 6&/ 6'$ ,) 287 ,)287     - QF ,ð& %86 75 72.2 $ 75$16)250(5  *1' ; ,) Figure 9 Circuit diagram for hybrid application (DVB-T / PAL) Note: TUA 6039 and TUA 6037 have no ADC function. TUA 6037 has different pinning. Data Sheet  *1' 31 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Application 4.3 Application circuit for ATSC +,&+ *1' ; 0$&20 (7& 0$&20 (7& 0,' ; *1' *1' 5 5 & S %%& / WXUQV 5 N *1' 5 5 & S 5 N /2: ; *1' *1'  *1'   5 5    *1' 75 %%& 75 & Q    / WXUQV ' ' *1' & S 9&&  26&0,',1 & S *1'  QF *1'  QF  26&0,'287  *1'26&  26&/2:,1  26&/2:287  & S & & S Q $*&B%8) & S & S  +,*+,1;  & S  & Q & Q & S  0,',1;  0,',1<  /2:,1 *1'5) 0,;287; 6$:,1; 6$:,1< 0,;287< 9&& 5)$*& 3 3 3 3 ;B7$/B,1 +,*+,1< *1' *1' SDFNDJH             & Q & Q & Q & Q & & Q Q *1' *1' *1' *1' *1' *1' / QS / QS 5 5 *1' 5 5 & S 5 QS / Q+ & S *1' 5)$*&B%8) & QS *1' 3 5 N & %% WXUQV / ' & S & QS 5 N & S / *1' 9&&  3/ADC & S S  26&+,*+,1;  26&+,*+287<  26&+,*+287;  26&+,*+,1<    *1'$ QF 6$:287; Q+ 5 5 & QS *1' 9&& 5)$*& 3 3 3 3 & S & S *1' 5 5 5 N ,& 78$-2 94)1 $76& *1'  6$:287< & Q 5 N  5 N & Q *1' *1' & S 5 N 5 N & Q 5 N *1' 5 & S N & Q ,)$03287; ,)$03287< 97 ,)$03,1; ,)$03,1< ,)$03$*& ;B7$/B%8) *1'' 6'$ 6&/  &3 *1'$&. $6 ;B7$/B&$3           *1'   & S & S *1' 0+] 4 5 5 5 5 & Q *1'  5 N *1' &   & Q S & Q & Q *1' 5  & Q ; *1' 6&/ $6 & S *1' 6'$ & S *1' 5  5  97 03  ,1 6$: 6,3' ;' *1'  ,1 287 287 ,)$03$*& ;WDOB%XI    *1'  *1' ,) *1'  *1' QF *1' 6&/ 6'$ ,)287 ,)287     - QF ,ð&%86 *1' 75  *1' ; ,) Figure 10 Circuit diagram for ATSC Note: TUA 6039 and TUA 6037 have no ADC function. TUA 6037 has different pinning. Data Sheet  72.2 $ 75$16)250(5 *1' 32 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Application 4.4 Application circuit for DVB-T +,&+ *1' ; 0$&20  (7&  0$&20  (7& 0,' ; *1' *1' 5 5 & S %% & / WXUQV 5 N *1' 5 5 & S 5 N /2: ; *1' *1'  *1'   5 5    *1' 75  75  & Q    / WXUQV %% & ' ' *1' & S 9&& & S *1'        $*&B%8) & S & S   & S  & Q & Q & S & & S Q & S    *1' 0, ',1< /2:,1 *1'5) 0,;287; 6$:,1; 6$:,1< 0,;287< 9&& 5)$*& 3 3 3 3 ;B7$/B&$3 *1' SDF NDJH  26&0,',1 +,*+,1; +,*+,1< 26 &/2:,1 26 &0,'287 *1'  *1' 3 5 N & QS 5 N QF 3/ADC 26 &/2:287 5) $*&B%8) *1'26& 0, ',1; & QS QF  *1' 5 / QS 5 5 & S 5 & S / *1' 9&&   & S & & S S  26&+,*+,1; 26&+,*+287< 26&+,*+287; 26&+,*+,1< *1'$ QF 6$:287;  Q+ 5 QS / Q+ & S *1' 5 5 & QS *1' 9&& 5)$*& 3 3 3 3 %%  ' WXUQV /   & S   *1' 5 5 5 N & S  ,& 78$-2 94)1 DVB-T  &  Q *1' / *1' *1' *1' *1' *1' QS *1'  & Q    & Q & & & Q Q Q  6$:287<  & Q 5 N   ,)$03287; ,)$03287< ,)$03, 1; ,)$03, 1< ;B7$/B%8) 97 ,)$03$*& &3  & S 5 N Q *1' *1' & S 5 N $6 & *1'' & Q *1'$& . 5 N ;B7$/B,1 6'$ 6& /               & S & S *1' 0+] 4 5 N & 5 N Q *1' *1' 5 5 5 5 & Q *1'  5 N *1' &   & Q S & Q & Q ; *1' 6& / $6 & S *1' 6'$ & S *1' & Q *1' 5  5  5  97 03  ,1 *1'  ,1 287 287 6$: 6,3 ' ;' ,)$03$*& ; WDOB%XI    *1'  *1' ,) *1' *1'  *1' QF *1' 6&/ 6'$ ,) 287 ,)287     - QF ,ð& %86 75 72.2 $ 75$16)250(5  *1' ; ,) Figure 11 Circuit diagram for DVB-T Note: TUA 6039 and TUA 6037 have no ADC function. TUA 6037 has different pinning. Data Sheet  *1' 33 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Application 4.5 Application circuit for ISDB-T +,&+ *1' ; 0$&20 (7& 0$&20 (7& 0,' ; *1' *1' 5 5 & S %%& / WXUQV 5 N *1' 5 5 & S 5 N /2: ; *1' *1'  *1'   5 5    *1' 75 %%& 75 & Q    / WXUQV ' ' *1' & S 9&&  26&0,',1 & S *1'  QF *1'  QF  26&0,'287  *1'26&  26&/2:,1  26&/2:287  & S & & S Q $*&B%8) & S & S  +,*+,1;  & S  & Q & Q & S  0,',1;  0,',1<  /2:,1 *1'5) 0,;287; 6$:,1; 6$:,1< 0,;287< 9&& 5)$*& 3 3 3 3 ;B7$/B,1 +,*+,1< *1' *1' SDFNDJH             & Q & Q & Q & Q & & Q Q *1' *1' *1' *1' *1' *1' / QS / QS 5 5 *1' 5 5 & S 5 QS / Q+ & S *1' 5)$*&B%8) & QS *1' 3 5 N & %% WXUQV / ' & S & QS 5 N & S / *1' 9&&  3/ADC & S S  26&+,*+,1;  26&+,*+287<  26&+,*+287;  26&+,*+,1<    *1'$ QF 6$:287; Q+ 5 5 & QS *1' 9&& 5)$*& 3 3 3 3 & S & S *1' 5 5 5 N ,& 78$-2 94)1 ,6'%7 *1'  6$:287< & Q 5 N  5 N & Q *1' *1' & S 5 N 5 N & Q 5 N *1' 5 & S N & Q ,)$03287; ,)$03287< 97 ,)$03,1; ,)$03,1< ,)$03$*& ;B7$/B%8) *1'' 6'$ 6&/  &3 *1'$&. $6 ;B7$/B&$3           *1'   & S & S *1' 0+] 4 5 5 5 5 & Q *1'  5 N *1' &   & Q S & Q & Q *1' 5  & Q ; *1' 6&/ $6 & S *1' 6'$ & S *1' 5  5  97 03  ,1 6$: 6,3' ;' *1'  ,1 287 287 ,)$03$*& ;WDOB%XI    *1'  *1' ,) *1'  *1' QF *1' 6&/ 6'$ ,)287 ,)287     - QF ,ð&%86 *1' 75  *1' ; ,) Figure 12 Circuit diagram for ISDB-T Note: TUA 6039 and TUA 6037 have no ADC function. TUA 6037 has different pinning. Data Sheet  72.2 $ 75$16)250(5 *1' 34 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5 5.1 5.1.1 Reference Electrical Data Absolute Maximum Ratings Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Table 5 # 1. 2. 3. 4. 5. 6. PLL 7. 8. 9. Bus input/output SDA CP VCP ICP VSDA -0.3 -0.3 3 1 6 10 -0.3 -0.3 -0.3 -5 -20 6 6 35 0 0 V mA V mA V V V mA mA open collector tmax = 0.1 s at 5.5 V open collector Absolute Maximum Ratings Symbol VCC TA TJ TStg RTHJA -40 Limit Values min. Supply voltage Ambient temperature Junction temperature Storage temperature Thermal resistance junction to ambient2) -0.3 -40 max. 6 +85 +125 +125 39 3 V °C °C °C K/W K exposed GND pad soldered exposed GND pad soldered exposed GND pad soldered Unit Remarks Parameter1) Temperature difference TJC junction to case3) 10. Bus output current SDA ISDA(L) during acknowledge 11. Bus input SCL VSCL 12. Chip address switch AS VAS 13. VCO tuning output (loop VVT filter) 14. PNP port output current IPP of P0,P1,P2,P3 15. Total port output current ΣIPP of PNP ports Data Sheet 35 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol Limit Values min. 16. NPN port output current IPN of P4 Mixer-Oscillator 17. Mix inputs LOW band 18. Mix inputs MID/HIGH 19. band 20. VCO base voltage VLOW VMID/HIGH IMID/HIGH VB -0.3 -0.3 -5 -0.3 3 2 6 3 V V mA V LOW, MID and HIGH band oscillators LOW, MID and HIGH band oscillators VCC < 4 V VCC > 4 V 0 max. 5 mA open collector Unit Remarks 21. VCO collector voltage VC 6 V 22. RF AGC output 23. 24. 25. Voltage on all other input and output pins except GNDs ESD-Protection4) 26. all pins VRFAGC IRFAGC Vmax -0.3 -0.3 -0.3 VCC 4 1 VCC V V mA V VESD 2 kV 1) All values are referred to ground (pin), unless stated otherwise. Currents with a positive sign flow into the pin and currents with a negative sign flow out of pin. 2) Measured in a multi layer board as defined by JEDEC standard. The thermal resistance depends on the PCB board design. 3) Referred to top center of package in free air condition. 4) According to EIA/JESD22-A114-B (HBM incircuit test), as a single device incircuit contact discharge test. Data Sheet 36 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.1.2 Table 6 # 1. 2. 3. 4. 5. Operating Range Operating Range Symbol VCC TA N fMIXV fMIXU Limit Values min. max. 5.5 +85 32767 200 1000 MHz MHz V °C nominal 3.3 V exposed GND pad soldered 3.0 -20 256 30 130 Unit Remarks Parameter Supply voltage Ambient temperature Programmable divider factor LOW mixer input frequency range MID and HIGH band mixer input frequency range LOW oscillator frequency range MID band oscillator frequency range HIGH band oscillator frequency range 6. 7. 8. fOH fOU fOU 65 165 400 250 530 950 MHz MHz MHz 5.1.3 Table 7 # AC/DC Characteristics AC/DC Characteristics, TA = 25°C, VCC = 3.3 V Symbol min. Limit Values typ. 3.3 100 100 100 max. 5.5 120 120 120 V mA mA mA LOW band MID band HIGH band Unit Test Conditions ■ Parameter1) Supply 1. 2. 3. 4. Supply voltage Current consumption in active mode VCC IVCC IVCC IVCC 3.0 80 80 80 Data Sheet 37 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # 5. Parameter1) Symbol min. Current Ipd consumption in power down mode Limit Values typ. 12 max. mA Unit Test Conditions ■ Digital Part PLL Crystal oscillator connections XTAL 6. 7. 8. 9. Crystal frequency Crystal resistance Crystal oscillator startup capability fXTAL RXTAL ZXTAL 3.2 4.0 30 -1000 4.0 400 4.8 300 MHz Ω fXTAL = 4 MHz -650 Ω XTAL Buffer output fXTALIO frequency MHz fXTAL = 4 MHz mVpp 10. XTAL Buffer Signal VAC voltage Charge pump output CP 11. Output current, 12. 13. 14. 15. Tristate current 16. Output voltage 17. Leakage current see Table 15 ICPDH ICPH ICPDL ICPL ICPZ VCP ITH ± 455 ± 650 ± 845 µA ± 175 ± 250 ± 325 µA ± 87 ± 35 ± 125 ± 163 µA ± 50 ± 65 µA ± 10 nA 0.9 1.4 1.9 10 0.4 V µA VCP = 1.4 V VCP = 1.4 V VCP = 1.4 V VCP = 1.4 V VCP = 1.4 V, T2,T1,OS = 1,0,1 loop locked VTH = 33 V, T2,T1,OS = 0,0,1 OS = 0, RLoad = 33 kΩ, tuning supply = 33 V Tuning voltage output VT (open collector) 18. Output voltage VTL when the loop is closed, (test mode in normal operation) I2C-Bus Bus inputs SCL, SDA 32.7 V Data Sheet 38 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 19. High-level input voltage 20. Low-level input voltage 21. High-level input current 22. 23. Low-level input current 24. VIH VIL IIH IIH IIL IIL -10 2.5 0 Limit Values typ. max. 5.5 1 10 10 10 V V µA µA µA µA VCC = 3.0 to 5.5 V VCC = 3.0 to 5.5 V Vbus = 5.5 V, VCC = 0 V Vbus = 5.5 V, VCC = 5.5 V Vbus = 1.5 V, VCC = 0 V Vbus = 0 V, VCC = 5.5 V VOH = 5.5 V IOL = 3 mA Unit Test Conditions ■ Bus output SDA (open collector) 25. Leakage current 26. Low-level output voltage Edge speed SCL,SDA 27. Rise time 28. Fall time Clock timing SCL 29. Frequency 30. High pulse width 31. Low pulse width Start condition 32. Set-up time 33. Hold time Stop condition 34. Set up time 35. Bus free time between a STOP and START condition Data transfer Data Sheet 39 Revision 2.6, 2007-08-20 IOH VOL 10 0.4 µA V tr tf fSCL tH tL tsusta thsta tsusto tbuf 0 0.6 1.3 0.6 0.6 0.6 1.3 100 300 300 400 ns ns kHz µs µs µs µs µs µs TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 36. Set-up time 37. Hold time 38. Input hysteresis SCL, SDA 39. Pulse width of spikes which are suppressed tsudat thdat Vhys tsp 0 0.1 0 200 50 Limit Values typ. max. µs µs mV ns Unit Test Conditions ■ 40. Capacitive load for CL each bus line Ports 41. PNP Output saturation voltage 42. NPN Output saturation voltage 43. Port Output leakage current VPP,sat = VCC VCE,sat VPN,sat 0.25 400 pF 0.4 V IPP = 5 mA 0.25 0.4 V IPN = 5 mA ILEAK,Port 10 µA ADC input (only available in TUA 6039-2) 44. ADC input voltage VADC 45. High-level input current 46. Low-level input current Analog Part LOW band mixer and SAW filter driver 47. RF frequency 48. Voltage gain fRF GV 44.25 21 24 170.25 MHz picture carrier2) 27 dB fRF = 48.25 MHz to 154.25 MHz see Section 5.5.1 fRF = 48.25 MHz to 154.25 MHz see Section 5.5.4 Revision 2.6, 2007-08-20 0 VCC 10 V µA µA IADCH IADCL -10 49. Noise figure NF 8 10 dB Data Sheet 40 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 50. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel 51. Input IP3 IIP3 Limit Values typ. 120 max. dBµV fRF = 48.25 MHz to 154.25 MHz see Section 5.5.6 Unit Test Conditions ■ 117 dBµV fRF1 = 48.25 MHz, fRF2 = 49.25 MHz, PRF1 = PRF2 dBµV fRF1 = 154.25 MHz, fRF2 = 155.25 MHz, PRF1 = PRF2 2.12 kHz fRF = 154.25 MHz3) 52. IIP3 117 53. Local oscillator FM FMI2C caused by I2C communication 54. (N+5) - 1 MHz pulling 55. Input impedance 56. Zi = (Rp || 1/jωCp) N+5 - 1 MHz Rp Cp 77 80 dBµV fRFw = 69.25 MHz, fOSC = 108.15 MHz, fRFu = 108.25 MHz4) kΩ pF parallel equivalent circuit at 100 MHz5) see Section 5.4.1 1 2 Mid band mixer and SAW filter driver 57. RF frequency 58. Voltage gain fRF GV 154.25 31 34 454.25 MHz picture carrier2) 37 dB fRF = 161.25 MHz to 439.25 MHz see Section 5.5.2 fRF = 161.25 MHz to 439.25 MHz see Section 5.5.5 59. Noise figure (not corrected for image) NF 6 8 dB 60. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel 120 dBµV fRF = 161.25 MHz to 439.25 MHz see Section 5.5.7 Data Sheet 41 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 61. Input IP3 IIP3 Limit Values typ. 106 max. dBµV fRF1 = 161.25 MHz fRF2 = 162.25 MHz, PRF1 = PRF2 dBµV fRF1 = 439.25 MHz fRF2 = 440.25 MHz, PRF1 = PRF2 2.12 kHz fRF = 439.25 MHz3) Unit Test Conditions ■ 62. IIP3 105 63. Local oscillator FM FMI2C caused by I2C communication 64. (N+5) - 1 MHz pulling 65. Input impedance 66. Zi = (Rs + jωLs) N+5 - 1 MHz Rs Ls 77 80 dBµV fRFw = 359.25 MHz, fOSC = 398.15 MHz, fRFu = 398.25 MHz4) Ω nH series equivalent circuit at 300 MHz5) see Section 5.4.2 22 2.7 HIGH band mixer and SAW filter driver 67. RF frequency 68. Voltage gain fRF GV 399.25 31 34 863.25 MHz picture carrier2) 37 dB fRF = 447.25 MHz to 863.25 MHz see Section 5.5.2 fRF = 447.25 MHz to 863.25 MHz see Section 5.5.5 69. Noise figure (not corrected for image) NF 6 8 dB 70. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel 71. Input IP3 IIP3 120 dBµV fRF = 447.25 MHz to 863.25 MHz see Section 5.5.7 105 dBµV fRF1 = 447.25 MHz fRF2 = 448.25 MHz PRF1 = PRF2 dBµV fRF1 = 863.25 MHz fRF2 = 864.25 MHz PRF1 = PRF2 72. IIP3 105 Data Sheet 42 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 73. Local oscillator FM FMI2C caused by I2C communication 74. (N+5) - 1 MHz pulling 75. Input impedance 76. Zi = (Rs + jωLs) LOW band oscillator 77. Oscillator frequency 78. Phase noise, carrier to noise sideband 79. fOSC ΦOSC 80 -85 210 -77 MHz 6) Limit Values typ. max. Unit Test Conditions fRF = 863.25 MHz3) ■ 2.12 kHz N+5 - 1 MHz Rs Ls 77 80 dBµV fRFw = 823.25 MHz, fOSC = 862.15 MHz, fRFu = 862.25 MHz4) Ω nH series equivalent circuit at 650 MHz5) see Section 5.4.3 25 2.5 dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) -92 -88 80. -112 -108 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range dBc VRipple = 20 mVpp, fRipple = 100 kHz9) 6) RSC 81. Ripple susceptibility of VP MID band oscillator 82. Oscillator frequency fOSC 201 -50 493 MHz Data Sheet 43 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 83. Phase noise, carrier to noise sideband 84. ΦOSC Limit Values typ. -80 max. -73 dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) Unit Test Conditions ■ -92 -88 85. -112 -108 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range dBc VRipple = 20 mVpp, fRipple = 100 kHz9) 6) 86. Ripple RSC susceptibility of VP HIGH band oscillator 87. Oscillator frequency 88. Phase noise, carrier to noise sideband 89. fOSC ΦOSC 435 -60 905 -77 -70 MHz dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) -90 -86 90. -110 -106 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range dBc VRipple = 20 mVpp, fRipple = 100 kHz9) fIF = 36 MHz to 54 MHz 91. Ripple RSC susceptibility of VP SAW filter driver 92. Voltage gain GV -60 20 dB Data Sheet 44 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 93. Output voltage Vo causing 1 dB compression 94. Input impedance 95. Zi = (Rp || 1/jωCp) Rp Cp Limit Values typ. 126 max. dBµV Unit Test Conditions ■ 470 6 25 50 Ω pF Ω nH parallel equivalent circuit at 36 MHz5) see Section 5.4.5 series equivalent circuit at 36 MHz5) see Section 5.4.6 VOUT = 100 dBµV10) 96. Output impedance RS 97. Zo = (Rs + jωLs) LS Rejection at the SAW driver outputs 98. Level of divider INTDIV interferences in the IF signal 99. Crystal oscillator interferences rejection INTXTAL -66 -60 dBc -66 -60 dBc VOUT = 100 dBµV11) 100. Reference INTREF frequency rejection 101. Channel S02 beat INTS02 -66 -66 -60 -60 dBc dBc VOUT = 100 dBµV12) fRFpix = 76.25 MHz, VRFpix = 80 dBµV, fIF = 38.9 MHz13) RF AGC output 102. RF AGC output 103. Source current 1 104. Source current 2 106. RF AGC output voltage 107. AGCTOP narrow 103 9.0 300 100 3 0 115 dBµV µA nA µA V maximum level, IAGC = 9 µA minimum level IAGCfast IAGCslow VAGCmax VAGCmin 105. Peak sink to ground IAGCpeak 0.25 V 0.5 dB 108. RF voltage range to AGCSLIP switch the AGC from active to inactive mode Data Sheet 45 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 109. RF AGC leakage current 110. RF AGC output voltage RF AGC buffer 111. RF AGC buffer output current 112. RF AGC buffer output saturation voltage low 113. RF AGC buffer output saturation voltage high IFAGC amplifier 114. Voltage gain 115. 116. Maximum IF input level Gmax Gmin VIF/IF 65 9 102 dB dB VIFAGC ≥ 2.0 V VIFAGC ≤ 0.2 V Imax Vlow 120 1 200 mA mV Iload = 1 mA AGCLEAK -50 Limit Values typ. max. 50 nA 0 < VAGC < VCC, AL2, AL1, AL0 = 1, 1, 0 AGC is disabled, IAGC = 9 µA Unit Test Conditions ■ AGCOFF 3 V VCC Vhigh 170 300 mV Iload = 1 mA dBµV min. gain, fIF/IF = 36 MHz (sine), VIFAGC = 0.2 V, VOUT/OUT = 1 Vpp max. gain, fIF/IF = 36 MHz (sine), VIFAGC = 2 V, VOUT/OUT = 1 Vpp kΩ pF 25 parallel equivalent circuit at 36 MHz5) see Section 5.4.7 117. Minimum IF input level VIF/IF 46 118. Input impedance 119. Zi = (RIF/IF || 1/jωCIF/IF) 120. Low end cutoff frequency (-1 dB) 121. High end cutoff frequency (-1 dB) RIF/IF CIF/IF fL fH 65 2 1.5 MHz VIF/IF = 60 dBµV, RLOAD ≥ 5 kΩ, CLOAD ≤ 1.5 pF, MHz VOUT/OUT = 1 Vpp at fIF/IF = 36 MHz (sine) Revision 2.6, 2007-08-20 Data Sheet 46 TUA 6039-2, TUA 6039, TUA 6037 Reference # Parameter1) Symbol min. 122. Intermodulation C/IM3 Limit Values typ. -56 max. dBc fIF/IF1 = 37 MHz, fIF/IF2 = 38 MHz, VIF/IF1 = 90 dBµV, VIF/IF2 = 90 dBµV RLOAD ≥ 5 kΩ, CLOAD ≤ 10 pF, VOUT/OUT = 1 Vpp Unit Test Conditions ■ 123. Third order output intercept point OIP3 138 dBµV fIF/IF1 = 37 MHz, fIF/IF2 = 38 MHz, VIF/IF1 = 90 dBµV, VIF/IF2 = 90 dBµV RLOAD ≥ 5 kΩ, CLOAD ≤ 10 pF, VOUT/OUT = 1 Vpp dB fIF/IF = 36 MHz (sine), VIF/IF = 60 dBµV, VOUT/OUT = 1 Vpp, BW = 8 MHz max. gain series equivalent circuit at 36 MHz5) see Section 5.4.8 124. Signal to noise ratio SNR 43 125. Noise figure 126. Output impedance RIF/IF 127. Zo = (RIF/IF + jωLIF/IF) LIF/IF 9 90 120 150 dB Ω nH 1) Values are referred to the application given in Figure 9 and fIF = 36 MHz, unless stated otherwise. 2) The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF). 3) Local oscillator FM modulation resulting from I2C communication is measured at the IF output using a modulation analyzer with a peak to peak detector ((P+ + P-) / 2) and a post detection filter 20 Hz - 100 kHz. The I2C messages are sent to the tuner in such a way that the tuner is addressed but the content of the PLL registers are not altered. The refresh interval between each data set shall be 20 ms to 1 s. 4) (N+5) -1 MHz is defined as the input level of channel N+5, at frequency 1 MHz lower, causing 100 kHz FM sidebands 30 dB below the wanted carrier. 5) Impedance measured with differential 2-port measurement at input or output. Input and output pins directly connected to measurement equipment with 50 Ω strip lines. 6) Limits are related to the tank circuit used in the application board (see Figure 9). Frequency bands may be adjusted by the choice of external components. 7) For wide loop filter application (see Figure 11). 8) For narrow loop filter application (see Figure 10). Data Sheet 47 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 9) The supply ripple susceptibility is a sideband measurement using a spectrum analyzer connected to the IF output. An unmodulated RF signal with a level of 80 dBµV is applied to the test board RF input. A sinewave signal with a defined frequency is superposed onto the supply voltage (see Figure 21). The specified value is the worst case in the frequency range. 10) This is the level of divider interferences close to the IF frequency. For example channel S3: fOSC = 158.15 MHz, 1/4 fOSC = 39.5375 MHz. The rejection has to be greater than 60 dB for an SAW driver output of 100 dBµV. 11) Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be greater than 60 dB for an SAW driver output of 100 dBµV. 12) The reference frequency rejection is the level of reference frequency sidebands according to the application circuit (166.67 kHz for DVB-T standard, 142.86 kHz for ISDB-T standard or 62.5 kHz for ATSC standard) related to the carrier. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV. In hybrid application the rejection is valid for the digital reference frequency (166.67 kHz for DVB-T/PAL standard, or 142.86 kHz for ISDB-T/NTSC standard), but any lower analog reference frequency may reduce this rejection. 13) Channel S02 beat is the interfering product of fRFpix, fIF and fOSC of channel S02, fBEAT = 37.35 MHz. The possible mechanisms are fOSC - 2 x fIF or 2 x fRFpix - fOSC. 5.2 Table 8 Name Bus Interface Bit Allocation Read/Write Byte MSB bit6 bit5 0 N13 N5 T2 AL1 0 1 0 1 bit4 0 N12 N4 T1 P4 AL2 1 FL 1 FL AL0 0 Bits bit3 0 N11 N3 T0 P3 0 0 bit2 bit1 LSB A A A A A A A A A A Ack Write Data (for TUA 6039-2, TUA 6039, TUA 6037) Address Byte Divider Byte 1 Divider Byte 2 Control byte Auxiliary byte Address byte Status byte Address byte Status byte 1) ADB DB1 DB2 CB AB ADB SB ADB SB 1 0 N7 1 XTB ATC 1 POR 1 POR 1 N14 N6 CP MA1 MA0 R/W=0 N10 N2 P2 0 N9 N1 P1 0 N8 N0 OS P0 LP RSA RSB Bandswitch byte BB Read data (for TUA 6039-2) MA1 MA0 R/W=1 A2 A1 A0 NBD AGC 0 1 0 Read data (for TUA 6039, TUA 6037) MA1 MA0 R/W=1 1 1 AGC NBD 1) AB replaces BB when T2, T1, T0 = 0, 1, 1, see Table 11. Data Sheet 48 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference Table 9 Symbol A MA0, MA1 N14 to N0 CP Description of Symbols Description Acknowledge Address selection bits, see Table 10 programmable divider bits: N = 214 x N14 + 213 x N13 + ... + 23 x N3 + 22 x N2 + 21 xN1 + N0 charge pump current bit: bit = 0: charge pump current = 50 µA or 125 µA bit = 1: charge pump current = 250 µA (default) or 650 µA, see Table 15 test bits, Table 11 reference divider bits, see Table 12 tuning amplifier control bit: bit = 0: enable VT; bit = 1: disable VT (default) disable XTAL buffer control bit: bit = 0: enable XTAL buffer (default); bit = 1: disable XTAL buffer T0, T1, T2 RSA, RSB OS XTB P0, P1, P2, PNP ports control bits: P3 bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT = VCC-VCE,sat P4 NPN port control bit: bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT = VCE,sat RF AGC time constant bit: bit = 0: IAGC = 300 nA; ∆t = 2s with C = 160 nF (default) bit = 1: IAGC = 9 µA; ∆t = 50ms with C = 160 nF RF AGC take-over point bits, see Table 13 Loop through: bit = 0: disable loop through (default); bit = 1: enable loop through Power-on reset flag, bit = 1 at power-on PLL lock flag, bit = 1: loop is locked Narrow Band detector flag, bit =1 when SAWOUT level is above RF AGC take-over point internal AGC flag, bit = 1 when internal AGC is active (level below 3V) ATC AL0, AL1, AL2 LP POR FL NBD AGC A0, A1, A2 digital output of the 5-level ADC (only available in TUA 6039-2) Data Sheet 49 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference Table 10 Address selection MA1 0 0 1 1 MA0 0 1 0 1 Voltage at AS (0 to 0.1) x VCC open circuit or (0.2 to 0.3) x VCC (0.4 to 0.6) x VCC (0.9 to 1) x VCC Table 11 Mode Test modes T2 1) T1 0 0 0 1 1 1 1 0 0 0 1 1 1 T0 0 1 x 0 0 1 1 0 1 x 0 1 x OS 0 0 1 0 1 0 1 0 0 1 0 0 1 Normal mode (XMODE = 0 ), charge pump currents 50 µA and 250 µA selectable Normal mode (XMODE = 0), charge pump currents 50 µA and 250 µA selectable (default) Normal mode (XMODE = 0), CP test tristate, CP currents off, VT disabled Port test output: P0 = NB Port test output: P0 = fdiv / 2, P1 = fref byte AB will follow (otherwise byte BB will follow) byte AB will follow (otherwise byte BB will follow), CP test tristate, CP currents off, VT disabled CP test sink CP test source CP test tristate, CP currents off, VT active Extended mode (XMODE = 1), charge pump currents 50 µA and 250 µA selectable Extended mode (XMODE = 1), charge pump currents 125 µA and 650 µA selectable Extended mode (XMODE = 1), CP test tristate, CP currents off, VT disabled 1) XMODE = internal flag for extended mode 0 0 0 0 0 0 0 1 1 1 1 1 1 Data Sheet 50 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference Table 12 Reference divider ratios fref1) 50 kHz 31.25 kHz 166.67 kHz 62.5 kHz 125 kHz 142.86 kHz Mode normal normal x x extended extended T2 0 0 x x 1 1 T1 0 0 x x 1 1 RSA 0 0 1 1 0 0 RSB 0 1 0 1 0 1 Reference divider ratio 80 128 24 64 32 28 1) With a 4 MHz quartz. Table 13 RF AGC take-over point AL2 AL1 AL0 SAW driver output Remark level, symmetrical mode 115 dBµV 115 dBµV 112 dBµV 109 dBµV 106 dBµV 103 dBµV IRFAGC = 0 VRFAGC = high External RF AGC Disable RF AGC buffer Disabled 2) 1) 0 0 default mode at POR 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 1) The RF AGC detector is disabled. Both the sinking and sourcing current from the IC is disabled. The RF AGC output goes into a high impedance state and an external RF AGC source can be connected in parallel and will not be influenced. The RF AGC buffer is disabled. 2) The RF AGC detector is disabled, VRFAGC is set to high voltage VCC - VCE,sat, for VCC < 4 V or VRFAGC = 3.7 V for VCC > 4 V. Data Sheet 51 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference Table 14 A to D converter levels1) A2 0 0 0 0 1 A1 0 0 1 1 0 A0 0 1 0 1 0 Voltage at ADC1) (0 to 0.15) * VCC (0.15 to 0.3) * VCC (0.3 to 0.45) * VCC (0.45 to 0.6) * VCC (0.6 to 1) * VCC 1) No erratic codes in the transition. Table 15 Charge pump current Mode normal CP 0 1 0 extended 0 1 1 1 1 0 0 T2 T1 T0 x1) x 0 1 0 1 Charge pump current 50 µA 250 µA (default) 50 µA 125 µA 250 µA 650 µA 1) x = don‘t care. Table 16 Band LOW MID Internal band selection Mixer P0, P1 1) Oscillator P0, P1 P1, P0 P0, P1 P0, P1 P1, P0 P0, P1 P0, P1 HIGH (default) Power down mode 1) Means: (P0 AND NOT P1); that is: LOW mixer is switched on if (P0 = 1 and P1 = 0). 1) ADC function is only available in TUA 6039-2. Data Sheet 52 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference Table 17 Name Write Data Address Byte Divider byte 1 Divider byte 2 Control byte Bandswitch byte Auxiliary byte 1) x = don‘t care. Defaults at power-on reset Byte MSB ADB DB1 DB2 CB BB AB 1 0 x 1 0 0 bit6 1 x 1) Bits bit5 0 x x 0 0 1 bit4 0 x x 0 0 0 bit3 0 x x 1 0 0 bit2 MA1 x x 0 0 0 bit1 MA0 x x 0 0 0 LSB R/W=0 x x 1 0 0 x 1 0 0 Table 18 Mode normal Description of modes Description Reference divider ratios 24, 64, 80, 128 selectable. Charge pump currents 50, 250 µA selectable. Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1), otherwise Bandswitch byte to follow Control byte. Reference divider ratios 24, 28, 32, 64 selectable. Charge pump currents 50, 125, 250, 650 µA selectable. Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1), otherwise Bandswitch byte to follow Control byte. extended Data Sheet 53 Revision 2.6, 2007-08-20 5.3 Figure 13 Data Sheet Start Stop Addressing 1 1 MA MA R/W Ack. 1st Ack. 2nd Ack. 3rd Ack. 4th Ack. I2C Bus Timing Diagram I2C Bus Timing Diagram Note: SDA: SCL: Telegram examples: Abbreviations: Start= start condition ADB= address byte 54 Start-ADB-DB1-DB2-CB-BB-Stop Start-ADB-DB1-DB2-CB-AB-Stop Start-ADB-CB-BB-DB1-DB2-Stop DB1= programmable divider byte 1 DB2= pardonable divider byte 2 CB= Control byte BB= Bandswitch byte AB= Auxiliary byte Reference Stop= stop condition Start-ADB-CB-AB-DB1-DB2-Stop Start-ADB-DB1-DB2-Stop Start-ADB-CB-BB-Stop Start-ADB-CB-AB-Stop TUA 6039-2, TUA 6039, TUA 6037 Revision 2.6, 2007-08-20 Start-ADB-DB1-DB2-CB-BB-CB-AB-Stop TUA 6039-2, TUA 6039, TUA 6037 Reference 5.4 5.4.1 Electrical Diagrams Input admittance (S11) of the LOW band mixer (30 to 200 MHz) 1 0.9 Y0 = 20 mA/V 0.8 1.5 0.7 0.6 0.5 0.4 2 3 1.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.1 20 10 5 4 3 2 30 MHz 20 0.1 10 200 MHz 0.2 5 4 3 0.4 1.5 5.4.2 Z0 = 5 0 Ω Input impedance (S11) of the MID band mixer (130 to 500 MHz) 0.8 0.9 0.7 1 1 0.9 0.8 0.6 1.5 0.7 0.6 0.5 2 0.5 2 3 4 5 10 500 MHz 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 10 20 0 130 MHz 2 3 4 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Sheet 55 1 1.5 2 5 0.2 4 10 0.1 Revision 2.6, 2007-08-20 0 20 0.3 3 0.4 0.3 4 0.2 0.2 5 0.1 0.1 10 20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.4.3 Z0 = 5 0 Ω Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz) 0.8 0.9 0.7 1 0.6 1.5 0.5 2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 10 0 20 0.2 2 3 4 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 5.4.4 Output admittance (S22) of the of the mixers (30 to 60 MHz) 1 0.9 Y0 = 20 mA/V 0.8 1 1.5 0.7 1.5 0.6 0.5 2 2 0.4 0.3 1.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20 10 5 4 3 2 20 10 36 MHz 4 3 0.4 1.5 Data Sheet 56 1 0.9 0.8 0.7 0.6 0.5 2 0.2 5 Revision 2.6, 2007-08-20 0 0.1 5 0.2 4 0.1 10 0.1 20 0.3 3 0.4 3 3 0.3 4 4 5 0.2 1000 MHz 0.1 5 10 400 MHz 20 10 20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.4.5 Input admittance (S11) of the SAW filter driver (30 to 60 MHz) 1 0.9 Y0 = 20 mA/V 0.8 1.5 0.7 0.6 0.5 0.4 2 3 1.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.1 20 10 5 4 3 2 20 10 36 MHz 4 3 0.4 1.5 5.4.6 Z0 = 5 0 Ω Output impedance (S22) of the SAW filter driver (30 to 60 MHz) 0.8 0.9 0.7 1 1 0.9 0.8 0.6 1.5 0.7 0.6 0.5 2 0.5 2 3 4 36 MHz 10 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 10 0 20 2 3 4 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Sheet 57 1 1.5 2 5 0.2 4 10 0.1 Revision 2.6, 2007-08-20 20 0.2 5 5 20 0 0.1 0.3 3 0.4 0.3 4 0.2 0.2 5 0.1 10 20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.4.7 Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz) 1 0.9 Y0 = 20 mA/V 0.8 1.5 0.7 0.6 0.5 0.4 2 3 1.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.1 20 10 5 4 3 2 20 10 36 MHz 0.1 4 3 0.4 1.5 5.4.8 Z0 = 5 0 Ω Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz) 0.8 0.9 0.7 1 1 0.9 0.8 0.6 1.5 0.7 0.6 0.5 2 0.5 2 3 4 36 MHz 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 10 0 20 2 3 4 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Data Sheet 58 1 1.5 2 5 0.2 4 10 0.1 Revision 2.6, 2007-08-20 20 0.2 5 5 10 20 0 0.3 3 0.4 0.3 4 0.2 0.2 5 0.1 0.1 10 20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.5 5.5.1 Measurement Circuits Gain (GV) measurement in LOW band LOWIN SAWOUT 50 Ω Vmeas RMS Voltmeter Transformer N1 V0 C N2 V'meas 50 Ω spectrum analyser V 50 Ω Vi Device under Test SAWOUT N1 : N2 = 10 : 2 turns Figure 14 • • • • Gain (GV) measurement in LOW band Zi >> 50 Ω => Vi = 2 x Vmeas = 80 dBµV Vi = Vmeas + 6dB = 80 dBµV V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss) Gv = 20 log(V0 / Vi) 5.5.2 Gain (GV) measurement in MID and HIGH bands 50 Ω Vmeas RMS Voltmeter MIDIN SAWOUT HIGHIN Transformer N1 V0 C V'meas N2 50 Ω spectrum analyser V 50 Ω Vi Balun 1:1 Device under Test MIDIN SAWOUT HIGHIN N1 : N2 = 10 : 2 turns Figure 15 • • • Gain (GV) measurement in MID and HIGH bands Vi = Vmeas = 70 dBµV V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss Gv = 20 log(V0 / Vi) + 1 dB (1 dB = insertion loss of balun) Data Sheet 59 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.5.3 Matching circuit for optimum noise figure in LOW band 15p 22p In 1n In Out 7 turns wire Ε 0.5 mm coil Ε 5.5 mm 1n Out 22p 50 Ω semi rigid cable 300 mm long 96 pF/m 33dB/100m 22p For fRF = 50 MHz loss = 0 dB image suppression = 16 dB Figure 16 For fRF = 150 MHz loss = 1.3 dB image suppression = 13 dB Matching circuit for optimum noise figure in LOW band 5.5.4 Noise figure (NF) measurement in LOW band Noise Source IN OUT LOWIN SAWOUT Transformer N1 C N2 Matching Circuit Device under Test SAWOUT Noise Figure Meter N1 : N2 = 10 : 2 turns NF = NFmeas - loss of matching circuit (dB) Figure 17 Noise figure (NF) measurement in LOW band Data Sheet 60 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.5.5 Noise figure (NF) measurement in MID and HIGH bands Noise Source MIDIN SAWOUT HIGHIN Transformer N1 C N2 Balun 1:1 Device under Test MIDIN SAWOUT HIGHIN Noise Figure Meter N1 : N2 = 10 : 2 turns loss of balun = 1 dB NF = NFmeas - loss of balun (dB) Figure 18 Noise figure (NF) measurement in MID and HIGH bands 5.5.6 Cross modulation measurement in LOW band V' meas RMS Voltmeter V 50 Ω unwanted signal source AM = 80%, 1 kHz 50 Ω A C LOWIN SAWOUT Transformer Vo N1 C N2 IF filter 50 Ω modulation analyser Hybrid 50 Ω wanted signal source B D 50 Ω Device under Test SAWOUT N1 : N2 = 10 : 2 turns Figure 19 • • • Cross modulation measurement in LOW band V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd Data Sheet 61 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Reference 5.5.7 Cross modulation measurement in MID and HIGH bands V' meas RMS Voltmeter V 50 Ω unwanted signal source AM = 80%, 1 kHz 50 Ω A C MIDIN SAWOUT HIGHIN Transformer N1 Vo C N2 IF filter 50 Ω modulation analyser Hybrid 50 Ω wanted signal source B D 50 Ω Balun 1:1 Device under Test MIDIN SAWOUT HIGHIN N1 : N2 = 10 : 2 turns Figure 20 • • • Cross modulation measurement in MID and HIGH bands V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd 5.5.8 Ripple susceptibility (RSC) measurement Stabilizer DC Supply 5k 1u 240 IC supply 1u Ripple 50 2* 22uF Figure 21 Ripple susceptibility measurement Data Sheet 62 Revision 2.6, 2007-08-20 TUA 6039-2, TUA 6039, TUA 6037 Package VQFN-48 6 Package VQFN-48 Figure 22 PG-VQFN-48 Vignette Figure 23 PG-VQFN-48 Outline Drawing You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. SMD = Surface Mounted Device Data Sheet 63 Dimensions in mm Revision 2.6, 2007-08-20 www.infineon.com Published by Infineon Technologies AG
TUA6039-2 价格&库存

很抱歉,暂时无法提供与“TUA6039-2”相匹配的价格&库存,您可以联系我们找货

免费人工找货