XC822/824
8-Bit Single-Chip Microcontroller
D ata Sheet
V1.1 2010-10
Microcontrollers
Edition 2010-10 Published by Infineon Technologies AG 81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
XC822/824
8-Bit Single-Chip Microcontroller
D ata Sheet
V1.1 2010-10
Microcontrollers
XC822/824
XC822/824 Data Sheet Revision History: V1.1 2010-10 Previous Versions: V1.0 Page Page 3 Subjects (major changes since last revision) Automotive variants were added in Table 2.
We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com
Data Sheet
V1.1, 2010-10
XC822/824
Table of Contents
Table of Contents
1 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 3.1 3.1.1 3.1.2 3.1.3 3.2 3.2.1 3.2.2 3.2.3 3.2.3.1 3.2.3.2 3.2.4 3.2.5 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.5.1 3.3.5.2 3.3.6 4 4.1 4.2 4.3 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 JTAG ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Out of Range Comparator Characteristics . . . . . . . . . . . . . . . . . . . . . Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Timing and Wake-up Timing . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Slave Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 20 21 22 23 23 25 26 29 29 30 32 35 35 36 37 37 39 39 40 41 42 42 43 45
Data Sheet
1
V1.1, 2010-10
XC822/824
Table of Contents
Data Sheet
2
V1.1, 2010-10
XC822/824
Summary of Features
1
Summary of Features
The XC822/824 has the following features: • High-performance XC800 Core – compatible with standard 8051 processor – two clocks per machine cycle architecture (for memory access without wait state) – two data pointers • On-chip memory – 8 Kbytes of Boot ROM, Library ROM and User routines – 256 bytes of RAM – 256 bytes of XRAM – 2/4 Kbytes of Flash (includes memory protection strategy) • I/O port supply at 2.5 V - 5.5 V and core logic supply at 2.5 V (generated by embedded voltage regulator)
2/4K Bytes Flash
LED and Touch Sense Controller
IIC
UART
SSC
Port 0
7-bit Digital I/O
Boot ROM 8K Bytes XC800 Core XRAM 256 Bytes
Capture/Compare Unit 16-bit
On-Chip Debug Support ADC 10-bit 4-channel Watchdog Timer
Port 1
6-bit Digital I/O
Compare Unit 16-bit
Port 2
4-bit Digital/ Analog Input
RAM 256 Bytes
Timer 0 16-bit
Timer 1 16-bit
Timer 2 16-bit
Real-Time Clock
MDU
Figure 1 • • •
XC822/824 Functional Units
Power-on reset generation Brownout detection for IO supply and core logic supply 48 MHz on-chip OSC for clock generation – Loss-of-Clock detection
(more features on next page)
Data Sheet
1
V1.1, 2010-10
XC822/824
Summary of Features Features: (continued) • Power saving modes – idle mode – power-down mode with wake-up capability via real-time clock interrupt – clock gating control to each peripheral Programmable 16-bit Watchdog Timer (WDT) running on independent oscillator with programmable window feature for refresh operation and warning prior to overflow Three ports – Up to 17 pins as digital I/O – 4 pin as digital/analog input 4-channel, 10-bit ADC – support up to 3 differential input channel – results filtering by data reduction or digital low-pass filter, for up to 13-bit results Up to 4 channels, Out of range comparator Three 16-bit timers – Timer 0 and Timer 1 (T0 and T1) – Timer 2 (T2) Periodic wake-up timer Multiplication/Division Unit for arithmetic operations (MDU) Capture and Compare unit for PWM signal generation (CCU6) A full-duplex or half-duplex serial interface (UART) Synchronous serial channel (SSC) Inter-IC (IIC) serial interface LED and Touch-sense Controller (LEDTSCU) On-chip debug support via single pin DAP interface (SPD) Packages: – PG-DSO-20 – PG-TSSOP-16 Temperature range TA: – SAF (-40 to 85 °C) – SAX (-40 to 105 °C) – SAK (-40 to 125 °C)
• •
•
• •
• • • • • • • • •
•
Data Sheet
2
V1.1, 2010-10
XC822/824
Summary of Features XC822/824 Variant Devices The XC822/824 product family features devices with different configurations, program memory sizes, packages options and temperature profiles, to offer cost-effective solutions for different application requirements. The list of XC822/824 device configurations are summarized in Table 1. The type of packages available are TSSOP-16 for XC822 and DSO-20 for XC824. Table 1 Device Name XC822/824 XC822/824M XC822/824T XC822/824MT Device Configuration MDU Module No Yes No Yes LEDTSCU Module No No Yes Yes
Table 2 shows the device sales type available, based on above device. Table 2 Sales Type Device Profile Device Program TempType Memory erature (Kbytes) Profile (°C) Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash 2 4 4 4 4 4 4 4 4 4 4 4 4 -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 85 Package Type Quality Profile
SAF-XC822T-0FRI SAF-XC822-1FRI SAF-XC822T-1FRI SAF-XC822M-1FRI SAF-XC822MT-1FRI SAF-XC824M-1FGI SAF-XC824MT-1FGI SAX-XC824M-1FGI SAK-XC824M-1FGI SAF-XC822-1FRA SAF-XC822MT-1FRA SAK-XC822-1FRA SAK-XC822MT-1FRA
PG-TSSOP-16 PG-TSSOP-16 PG-TSSOP-16 PG-TSSOP-16 PG-TSSOP-16 PG-DSO-20 PG-DSO-20
Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Industrial Automotive Automotive Automotive Automotive
-40 to 105 PG-DSO-20 -40 to 125 PG-DSO-20 -40 to 85 -40 to 85 PG-TSSOP-16 PG-TSSOP-16
-40 to 125 PG-TSSOP-16 -40 to 125 PG-TSSOP-16
Data Sheet
3
V1.1, 2010-10
XC822/824
Summary of Features As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC822/824 throughout this document. Ordering Information The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery
For the available ordering codes for the XC822/824, please refer to your responsible sales representative or your local distributor.
Data Sheet
4
V1.1, 2010-10
XC822/824
General Device Information
2
General Device Information
Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC822/824.
2.1
Block Diagram
The block diagram of the XC822/824 is shown in Figure 2.
XC822/824 8-Kbyte Boot ROM 1) 256-byte RAM + 64-byte monitor RAM VDDP VSSP VSSC 2/4-Kbyte Flash Clock Generator 48 MHz On-chip OSC 75 KHz On-chip OSC 256-byte XRAM RTC WDT Timer 2 IIC CCU6 OCDS ADC
EVR
Internal Bus XC800 Core P ort 0 P0.0 - P0.6 T0 & T1 UART
P ort 1
MDU
SSC
P1.0 - P1.5
P ort 2
P2.0 – P2.3
SCU
LED and Touch Sense Controller
1) Includes 1-Kbyte monitor ROM
Figure 2
XC822/824 Block Diagram
Data Sheet
5
V1.1, 2010-10
XC822/824
General Device Information
2.2
Logic Symbol
The logic symbol of the XC822/824 is shown in Figure 3.
VDDP VDDC VSSP
VDDP VDDC VSSP
Port 0 7-Bit
Port 0 7-Bit
XC824
Port 1 6-Bit
XC822
Port 1 2-Bit
Port 2 4-Bit
Port 2 4-Bit
Figure 3
XC822/824 Logic Symbol
Data Sheet
6
V1.1, 2010-10
XC822/824
General Device Information
2.3
Pin Configuration
The pin configuration of the XC822 in Figure 4.
P0.5/RXD_0/RTCCLK/MTSR_0/MRST_1/ EXINT0_0/LINE5/TSIN5/COUT62_1/TXD_3/ COL1_1/EXF2_2 P0.6/SPD_0/RXD_1/SDA_0/MTSR_1/MRST_0/ EXINT0_1/T2EX_0/LINE6/TSIN6/TXD_0/ COL2_1/COLA_1 P2.3/CCPOS0_2/CTRAP_2/T2_2/EXINT3/AN3 P2.2/CCPOS2_1/T12HR_3/T13HR_3/ SCK_1/T1_1/EXINT2/AN2 P2.1/CCPOS1_1/RXD_3/MTSR_4/T0_1/ EXINT1_1/AN1 P2.0/CCPOS0_1/T12HR_2/T13HR_2/T2EX_3/ T2_1/EXINT0_3/AN0 P1.0/SPD_1/RXD_2/T2EX_2/EXINT0_2/ COL0_0/COUT60_0/TXD_1 P1.2/EXINT4/COL2_0/COUT61_0/ COUT63_0
1 2 3 4 XC822 5 6 7 8
16 15 14 13 12 11 10 9
P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/ CTRAP_1/LINE4/TSIN4/EXF2_0/COL0_1/ COL3_1/COLA_2 P0.3/CC60_1/SDA_1/CTRAP_0/ LINE3/TSIN3 P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/ LINE2/TSIN2 P0.1/T0_0/CC61_1/MTSR_3/MRST_2/ T13HR_0/CCPOS1_0/LINE1/TSIN1 P0.0/T2_0/T13HR_1/MTSR_2/ MRST_3/T12HR_0/CCPOS0_0/LINE0/ TSIN0/COUT61_1 VDDC VSSP VDDP
Figure 4
XC822 Pin Configuration, PG-TSSOP-16 Package (top view)
Data Sheet
7
V1.1, 2010-10
XC822/824
General Device Information The pin configuration of the XC824 in Figure 5.
P0.6/SPD_0/RXD_1/SDA_0/MTSR_1/ MRST_0/EXINT0_1/T2EX_0/LINE6/TSIN6/ TXD_0/COL2_1/COLA_1 P1.4/EXINT5/COL4/COUT62_0/ COUT63_1 P1.5/CC62_0/COL5/COLA_0 P2.3/CCPOS0_2/CTRAP_2/T2_2/ EXINT3/AN3 P2.2/CCPOS2_1/T12HR_3/T13HR_3/ SCK_1/T1_1/EXINT2/AN2 P2.1/CCPOS1_1/RXD_3/MTSR_4/T0_1/ EXINT1_1/AN1 P2.0/CCPOS0_1/T12HR_2/T13HR_2/ T2EX_3/T2_1/EXINT0_3/AN0 P1.0/SPD_1/RXD_2/T2EX_2/EXINT0_2/ COL0_0/COUT60_0/TXD_1 P1.1/CC60_0/COL1_0/TXD_2 P1.2/EXINT4/COL2_0/COUT61_0/ COUT63_0 P0.5/RXD_0/RTCCLK/MTSR_0/MRST_1/ EXINT0_0/LINE5/TSIN5/COUT62_1/TXD_3/ COL1_1/EXF2_2 P0.4/T2EX_1/SCL_0/SCK_0/EXINT1_0/ CTRAP_1/LINE4/TSIN4/EXF2_0/COL0_1/ COL3_1/COLA_2 P0.3/CC60_1/SDA_1/CTRAP_0/ LINE3/TSIN3 P0.2/T1_0/CC62_1/SCL_1/CCPOS2_0/ LINE2/TSIN2 P0.1/T0_0/CC61_1/MTSR_3/MRST_2/ T13HR_0/CCPOS1_0/LINE1/TSIN1 P0.0/T2_0/T13HR_1/MTSR_2/MRST_3/ T12HR_0/CCPOS0_0/LINE0/TSIN0/COUT61_1 VDDC VSSP VDDP P1.3/CC61_0/COL3_0/CC61_0/EXF2_1
1 2 3 4 5 XC824 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
Figure 5
XC824 Pin Configuration, PG-DSO-20 Package (top view)
Data Sheet
8
V1.1, 2010-10
XC822/824
General Device Information
2.4
Pin Definitions and Functions
The functions and default states of the XC822/824 external pins are provided in Table 3. Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P0
I/O
Port 0 Port 0 is a bidirectional general purpose I/O port. It can be used as alternate functions for LEDTSCU, Timer 0, 1 and 2, SSC, CCU6, IIC, SPD and UART. Hi-Z T2_0 T13HR_1 MTSR_2 MRST_3 T12HR_0 CCPOS0_0 TSIN0 LINE0 COUT61_1 Timer 2 Input CCU6 Timer 13 Hardware Run Input SSC Master Transmit Output/ Slave Receive Input SSC Master Receive Input CCU6 Timer 12 Hardware Run Input CCU6 Hall Input 0 Touch-sense Input 0 LED Line 0 Output of Capture/Compare Channel 1
P0.0
15/12
Data Sheet
9
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P0.1 16/13
Hi-Z
T0_0 CC61_1 MTSR_3 MRST_2 T13HR_0 CCPOS1_0 TSIN1 LINE1
Timer 0 Input Input/Output of Capture/Compare channel 1 SSC Slave Receive Input SSC Master Receive Input/ Slave Transmit Output CCU6 Timer 13 Hardware Run Input CCU6 Hall Input 1 Touch-sense Input 1 LED Line 1 Timer 1 Input Input/Output of Capture/Compare channel 2 IIC Clock Line CCU6 Hall Input 2 Touch-sense Input 2 LED Line 2 Input/Output of Capture/Compare channel 0 IIC Data Line CCU6 Trap Input Touch-sense Input 3 LED Line 3
P0.2
17/14
Hi-Z
T1_0 CC62_1 SCL_1 CCPOS2_0 TSIN2 LINE2
P0.3
18/15
Hi-Z
CC60_1 SDA_1 CTRAP_0 TSIN3 LINE3
Data Sheet
10
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P0.4 19/16
PD
T2EX_1 SCK_0 SCL_0 CTRAP_1 EXINT1_0 TSIN4 LINE4 EXF2_0 COL0_1 COL3_1 COLA_2
Timer 2 External Trigger Input SSC Clock Input/Output IIC Clock Line CCU6 Trap Input External Interrupt Input 1 Touch-sense Input 4 LED Line 4 Timer 2 Overflow Flag LED Column 0 LED Column 3 LED Column A UART Receive Input RTC External Clock Input SSC Master Transmit Output/ Slave Receive Input SSC Master Receive Input External Interrupt Input 0 Touch-sense Input 5 LED Line 5 Output of Capture/Compare Channel 2 UART Transmit Output/ 2-wire UART BSL Transmit Output LED Column 1 Timer 2 Overflow Flag
P0.5
20/1
Hi-Z
RXD_0 RTCCLK MTSR_0 MRST_1 EXINT0_0 TSIN5 LINE5 COUT62_1 TXD_3 COL1_1 EXF2_2
Data Sheet
11
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P0.6 1/2
PU
SPD_0 RXD_1 SDA_0 MTSR_1 MRST_0 EXINT0_1 T2EX_0 TSIN6 LINE6 TXD_0 COL2_1 COLA_1
SPD Input/Output UART Receive Input/ UART BSL Receive Input IIC Data Line SSC Slave Receive Input SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 Timer 2 External Trigger Input Touch-sense Input 6 LED Line 6 UART Transmit Output/ 1-wire UART BSL Transmit Output LED Column 2 LED Column A
P1
I/O
Port 1 Port 1 is a bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, LEDTSCU, SPD, UART and Timer 2. Hi-Z SPD_1 RXD_2 T2EX_2 EXINT0_2 COL0_0 COUT60_0 TXD_1 SPD Input/Output UART Receive Input Timer 2 External Trigger Input External Interrupt Input 0 LED Column 0 Output of Capture/Compare Channel 0 UART Transmit Output
P1.0
8/7
Data Sheet
12
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P1.1 9/-
Hi-Z
CC60_0 COL1_0 TXD_2
Input/Output of Capture/Compare channel 0 LED Column 1 UART Transmit Output External Interrupt Input 4 LED Column 2 Output of Capture/Compare channel 1 Output of Capture/Compare channel 3 Input/Output of Capture/Compare channel 1 LED Column 3 Timer 2 Overflow Flag External Interrupt Input 5 LED Column 4 Output of Capture/Compare channel 2 Output of Capture/Compare channel 3 Input/Output of Capture/Compare channel 2 LED Column 5 LED Column A
P1.2
10/8
Hi-Z
EXINT4 COL2_0 COUT61_0 COUT63_0
P1.3
11/-
Hi-Z
CC61_0 COL3_0 EXF2_1
P1.4
2/-
Hi-Z
EXINT5 COL4 COUT62_0 COUT63_1
P1.5
3/-
Hi-Z
CC62_0 COL5 COLA_0
P2
I
Port 2 Port 2 is a general purpose input-only port. It can be used as inputs for A/D Converter and out of range comparator, CCU6, Timer 2, SSC and UART.
Data Sheet
13
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P2.0 7/6
Hi-Z
CCPOS0_1 T12HR_2 T13HR_2 T2EX_3 T2_1 EXINT0_3 AN0
CCU6 Hall Input 0 CCU6 Timer 12 Hardware Run Input CCU6 Timer 13 Hardware Run Input Timer 2 External Trigger Input Timer 2 Input External Interrupt Input 0 Analog Input 0 / Out of range comparator channel 0 CCU6 Hall Input 1 UART Receive Input Slave Receive Input Timer 0 Input External Interrupt Input 1 Analog Input 1 / Out of range comparator channel 1 CCU6 Hall Input 2 CCU6 Timer 12 Hardware Run Input CCU6 Timer 13 Hardware Run Input SSC Clock Input/Output Timer 1 Input External Interrupt Input 2 Analog Input 2 / Out of range comparator channel 2
P2.1
6/5
Hi-Z
CCPOS1_1 RXD_3 MTSR_4 T0_1 EXINT1_1 AN1
P2.2
5/4
Hi-Z
CCPOS2_1 T12HR_3 T13HR_3 SCK_1 T1_1 EXINT2 AN2
Data Sheet
14
V1.1, 2010-10
XC822/824
General Device Information Table 3 Pin Definitions and Functions for XC822/824 Type Reset Function State
Symbol Pin Number DSO20/ TSSOP16 P2.3 4/3
Hi-Z
CCPOS0_2 CTRAP_2 T2_2 EXINT3 AN3
CCU6 Hall Input 0 CCU6 Trap Input Timer 2 Input External Interrupt Input 3 Analog Input 3 / Out of range comparator channel 3
VDDP VDDC VSSP/ VSSC
12/9 14/11 13/10
– – –
I/O Port Supply (2.5 V - 5.5 V) Core Supply Output (2.5 V) I/O Port Ground/ Core Supply Ground
2.5
• • • • •
Memory Organization
The XC822/824 CPU operates in the following five address spaces: 8 Kbytes of Boot ROM, Library ROM and User routines 256 bytes of internal RAM 256 bytes of XRAM (XRAM can be read/written as program memory or external data memory) A 128-byte Special Function Register area 2/4 Kbytes of Flash
Figure 6 illustrates the memory address spaces of the 2 Kbyte Flash devices. There are two 1-Kbyte sectors in this device. Figure 7 illustrates the memory address spaces of the 4 Kbyte Flash devices. This device has two 1-Kbyte sectors, two 512-byte sectors, two 256-byte sectors and four 128-byte sectors. Figure 8 shows the Flash sectorization for 2 Kbyte and 4 Kbyte Flash devices.
Data Sheet
15
V1.1, 2010-10
XC822/824
General Device Information
FFFF H FFFF H
XRAM 256 Bytes
F100 H F000 H
XRAM 256 Bytes
F100H F000H
E000H
Boot ROM 8 KBytes
C000H
A800H
Flash Bank 0 2 KBytes 1)
A000H
Indirect Address
Direct Address
FFH
Internal RAM
Special Function Registers
80H
0800H
7FH 40 H
Flash Bank 0 2 KBytes
0000H 0000H
Internal RAM
In Debug Mode, this 64-byte address area is replaced by a 64-byte Monitor RAM.
00 H
Code Space
1)
External Data Space
Internal Data Space
Physically one 2-Kbyte Flash bank , mapped to both address range .
Memory Map User Mode
Figure 6
Memory Map of XC822/824 with 2 Kbytes of Flash memory
Data Sheet
16
V1.1, 2010-10
XC822/824
General Device Information
FFFF H
FFFF H
XRAM 256 Bytes
F100 H F000 H
XRAM 256 Bytes
F100 H F000 H
E000H
Boot ROM 8 KBytes
C000H
B000H
Flash Bank 0 4 KBytes 1)
A000H
Indirect Address
Direct Address
FFH
Internal RAM
Special Function Registers
80H
1000H
7FH 40H
Flash Bank 0 4 KBytes
0000H 0000H
Internal RAM
In Debug Mode, this 64-byte address area is replaced by a 64-byte Monitor RAM.
00H
Code Space
1)
External Data Space
Internal Data Space
Physically one 4-Kbyte Flash bank , mapped to both address range .
Memory Map User Mode
Figure 7
Memory Map of XC822/824 with 4 Kbytes of Flash memory
Data Sheet
17
V1.1, 2010-10
XC822/824
General Device Information
Sector 9: Sector 8: Sector 7: Sector 6:
128-byte 128-byte 128-byte 128-byte
Sector 5: 256-byte Sector 4: 256-byte Sector 3: 512-byte Sector 2: 512-byte Sector 1: 1-Kbyte
1)
Sector 0: 1-Kbyte 1x Flash Bank
1)
1) 2 Kbyte Flash devices only has sector 0 and sector 1.
Figure 8
Flash Bank Sectorization
2.6
JTAG ID
JTAG ID register is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is also true immediately after reset. The JTAG ID register contents for the XC822/824 Flash devices are given in Table 4. Table 4 Device Type Flash JTAG ID Summary Device Name XC822/824* JTAG ID 101B C083H
Note: The asterisk (*) above denotes all possible device configurations.
Data Sheet
18
V1.1, 2010-10
XC822/824
General Device Information
2.7
Chip Identification Number
The XC822/824 identity (ID) register is located at Page 1 of address B3H. The value of ID register is 51H. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product and variant type information. Two methods are provided to read a device’s Chip Identification number: • • In-application subroutine, GET_CHIP_INFO Boot-loader (BSL) mode A
Table 5 lists the Chip Identification numbers of XC822/824 device variants. Table 5 XC822T-0FRI XC822-1FRI XC822T-1FRI XC822M-1FRI XC822MT-1FRI XC824M-1FGI XC824MT-1FGI Chip Identification Number Chip Identification Number 51080343H 51080163H 51080143H 51080123H 51080103H 51080122H 51080102H
Product Variant
Data Sheet
19
V1.1, 2010-10
XC822/824
Electrical Parameters
3
Electrical Parameters
Chapter 3 provides the characteristics of the electrical parameters which are implementation-specific for the XC822/824.
3.1
General Parameters
The general parameters are described here to aid the users in interpreting the parameters mainly in Section 3.2 and Section 3.3.
3.1.1
Parameter Interpretation
The parameters listed in this section represent partly the characteristics of the XC822/824 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • CC – These parameters indicate Controller Characteristics, which are distinctive features of the XC822/824 and must be regarded for a system design. SR – These parameters indicate System Requirements, which must be provided by the microcontroller system in which the XC822/824 is designed in.
•
Data Sheet
20
V1.1, 2010-10
XC822/824
Electrical Parameters
3.1.2
Absolute Maximum Rating
Maximum ratings are the extreme limits to which the XC822/824 can be subjected to without permanent damage. Table 6 Parameter Ambient temperature Absolute Maximum Rating Parameters Symbol -40 -65 -40 -0.5 -10 – Limit Values Min. Max. 125 150 150 6 10 50 °C °C °C V mA mA under bias – under bias Unit Notes
TA Storage temperature TST Junction temperature TJ Voltage on power supply pin with VDDP respect to VSS Input current on any pin during IIN
overload condition Absolute sum of all input currents Σ|IIN| during overload condition
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the voltage on VDDP pin with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings.
Data Sheet
21
V1.1, 2010-10
XC822/824
Electrical Parameters
3.1.3
Operating Condition
The following operating conditions must not be exceeded in order to ensure correct operation of the XC822/824. All parameters mentioned in the following tables refer to these operating conditions, unless otherwise noted. Table 7 Parameter Operating Condition Parameters Symbol 3.0 2.5 CPU Clock Frequency Ambient temperature 22.5 7.5 -40 -40 -40 Limit Values Min. Digital power supply voltage VDDP Max. 5.5 3.0 25.6 8.5 85 105 125 Unit Notes/ Conditions V V
1)
fCCLK TA
MHz typ. 24 MHz MHz typ. 8 MHz °C °C °C SAF-XC822/824... SAX-XC824... SAK-XC824...
1) In this voltage range, limited operations are available in active mode. Operations in power save modes are fully supported.
Data Sheet
22
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2
DC Parameters
The electrical characteristics of the DC Parameters are detailed in this section.
3.2.1
Input/Output Characteristics
Table 8 provides the characteristics of the input/output pins of the XC822/XC824. Table 8 Parameter Input/Output Characteristics of XC822/XC824 (Operating Conditions apply) Symbol Limit Values Min. Output low voltage on VOLP port pins CC – – Output high voltage on port pins Max. 1.0 0.4 – V V V V V Unit Test Conditions
VOHP
CC VDDP 1.0 0.4
VDDP - –
– 0.3 ×
IOL = 25 mA (5 V) IOL = 13 mA (3.3 V) IOL = 10 mA (5 V) IOL = 5 mA (3.3 V) IOH = -15 mA (5 V) IOH = -8 mA (3.3 V ) IOH = -5 mA (5 V) IOH = -2.5 mA (3.3 V)
CMOS Mode
Input low voltage on port pins
VILP
SR
VDDP
SR 0.7 × – V CMOS Mode
Input high voltage on VIHP port pins Input Hysteresis1)
VDDP
CC 0.08 × – V V V µA µA µA µA CMOS Mode (5 V) CMOS Mode (3.3 V) CMOS Mode (2.5 V)
HYS
VDDP
0.03 × –
VDDP
0.01 × –
VDDP
Pull-up current on port pins
IPUP
CC – -150 – -100
-20 – -5 –
VIH,min (5 V) VIL,max (5 V) VIH,min (3.3 V) VIL,max (3.3 V)
Data Sheet
23
V1.1, 2010-10
XC822/824
Electrical Parameters Table 8 Parameter Input/Output Characteristics of XC822/XC824 (Operating Conditions apply) (cont’d) Symbol Limit Values Min. Pull-down current on IPDP port pins CC – 150 – 100 Input leakage current IOZP on port pins2) Overload current on any pin Absolute sum of overload currents CC -1 SR SR SR SR -5 – – -15 Max. 20 – 5 – 1 5 25 0.3 25 µA µA µA µA µA mA mA V mA Unit Test Conditions
VIL,max (5 V) VIH,min (5 V) VIL,max (3.3 V) VIH,min (3.3 V) 0 < VIN < VDDP, TA ≤ 125 °C
3)
IOVP
Σ|IOV|
3)
Voltage on any pin VPO during VDDP power off Maximum current per IM pin (excluding VDDP and VSS) Maximum current into VDDP
4)
–
IMVDDP SR –
SR –
80 80
mA mA
3)
Maximum current out IMVSS of VSS
3)
1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise. 2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. 3) Not subjected to production test, verified by design/characterization. 4) Not subjected to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when VDDP is powered off.
Data Sheet
24
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2.2
Supply Threshold Characteristics
Table 9 provides the characteristics of the supply threshold in the XC822/824.
5.0V VDDPSRR VDDPPW/VDDPBOPD VDDPBOA
VDDP
2.5V VDDC VDDCSRR
VDDCPW VDDCBOA VDDCBOPD VDDCRDR
Figure 9 Table 9 Parameters
Supply Threshold Parameters Supply Threshold Parameters (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. Unit
mode2)3)
VDDP prewarning voltage1)2) VDDP brownout voltage in active mode3)2) VDDP brownout voltage in power down VDDP system reset release voltage2)4) VDDC prewarning voltage2)5) VDDC brownout voltage in active mode2) VDDC brownout voltage in power down mode2) VDDC system reset release voltage2)4)
VDDPPW CC 3.0 3.6 4.5 V VDDPBOA CC 2.65 2.75 2.87 V VDDPBOPD CC 3.0 3.6 4.5 V VDDPSRR VDDCPW VDDCBOA VDDCBOPD VDDCSRR VDDCRDR
CC 2.7 CC 2.3 2.8 2.4 2.92 2.48 2.42 1.95 2.47 – V V V V V V
CC 2.25 2.3 CC 1.35 1.5 CC 2.28 2.3 CC 1.1 –
RAM data retention voltage
1) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode. Detection should be disabled for VDDP less than maximum of VDDPPW. 2) This parameter has a hysteresis of 50 mV. 3) Detection is enabled via SDCON register. Detection must be disabled for application with VDDP less than the specified values. 4) VDDPSRR and VDDCSRR must be met before the system reset is released. 5) Detection is enabled via SDCON register in active mode. It is automatically disabled in power down mode.
Data Sheet
25
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2.3
ADC Characteristics
The values in Table 10 are given for an analog power supply of 5.0 V. The ADC can be used with an analog power supply down to 3 V. But in this case, analog parameters may show a reduced performances. In the reduced voltage mode (2.5 V < VDDP < 3 V), the ADC is not recommended to be used. Table 10 Parameter Analog reference voltage Analog reference ground Alternate analog reference ground Internal voltage reference Analog input voltage range ADC clock Sample time Conversion time Total unadjusted error ADC Characteristics (Operating Conditions apply; VDDP = 5 V) Symbol Min. Limit Values Typ. Max. V V V – – Unit Test Conditions / Remarks Connect internally to VDDP Connect internally to VSSP Connect to AN0 in differential mode, See Figure 10.
3)
VAREF VAGND
VDDP – VSSP
– 2.51)
VAGNDALT SR VSSP - –
0.1
VINTREF VAIN fADCI tS tC
TUE2)
SR 1.19
1.23
1.28
V V MHz µs µs LSB8
SR VAGND – 8 –
VAREF
16
– internal analog clock – – 8-bit conversion with internal reference3)
CC (2 + INPCR0.STC) ×
tADCI
CC See Section 3.2.3.1 CC – – ±1
–
–
+4/-1
LSB10 10-bit conversion with internal reference3)4) LSB12 12-bit conversion using the Low Pass Filter 3) 10-bit conversion3)
–
–
+14/-2
Differential Nonlinearity
EADNL
CC –
–
+1.5/ -1 LSB
Data Sheet
26
V1.1, 2010-10
XC822/824
Electrical Parameters Table 10 Parameter Integral Nonlinearity Offset Gain Switched capacitance at an analog input ADC Characteristics (Operating Conditions apply; VDDP = 5 V) Symbol Min. Limit Values Typ. – +4 -4 2 Max. ±1.5 – – 3 LSB LSB LSB pF CC – CC – CC – CC – Unit Test Conditions / Remarks 10-bit conversion3) 10-bit conversion3) 10-bit conversion3)
3)5)
EAINL EAOFF EAGAIN CAINSW
Total capacitance CAINT at an analog input Input resistance RAIN of an analog input
1) 1.2 V at VDDP = 3.0 V.
CC – CC –
– 1.5
12 2
pF kΩ
3)5)
3)
2) TUE is tested at VAREF = VDDP = 5.0 V and CPU clock (fSCLK, CCLK ) = 8 MHz. 3) Not subject to production test, verified by design/characterization. 4) If a reduced positive reference voltage is used, TUE will increase. If the positive reference is reduced by a factor of K, the TUE will increased by 1/K. Example:K = 0.8, 1/K = 1.25; 1.25 X TUE = 2.5 LSB10. 5) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2.
Data Sheet
27
V1.1, 2010-10
XC822/824
Electrical Parameters
V1.2VREF
va_altref va_altgnd
ADC kernel
V1.2VGND result handling AD converter conversion control
AIN CH0 AIN CH1
request control Interrupt generation
Figure 10
Differential like measurement with internal 1.2V voltage reference, and CH0 gnd.
Analog Input Circuitry
R EXT
ANx
R AIN, On
VAIN
C EXT
C AINSW C AINT - C AINSW VSSP
Figure 11
ADC Input Circuits
Data Sheet
28
...
AIN CH3
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2.3.1
• • • • •
ADC Conversion Timing
Conversion time, tC = tADC × (1 + r × (3 + n + STC)), where r = CTC + 3, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), tADC = 1 / fADC
3.2.3.2
Out of Range Comparator Characteristics
Table 11 below shows the Out of Range Comparator characteristics. Table 11 Parameter DC Switching Level DC Hysteresis Pulse Width Switching Delay Pulse Switching Level Out of Range Comparator Characteristics (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. SR 60 CC 30 SR 300 CC – SR – SR – 125 – – – 250 60 270 – – 400 – – Unit Remarks mV mV ns ns mV mV Above VDDP
1)
VSenseDC VSenseHys tSensePW tSenseSD tSensePSL
ANx > VDDP1) ANx >= VDDP + 350 mV1) @ 300 nsec1) @ 800 usec1)
1) Not subject to production test, verified by design/characterization.
Data Sheet
29
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2.4
Flash Memory Parameters
The XC822/824 is delivered with all Flash sectors erased (read all zeros). The data retention time of the XC822/824’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Note: Flash memory parameters are not subject to production test but verified by design and/or characterization. Table 12 Parameter Read access time (per byte) Programming time (per wordline) Flash Timing Parameters (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. CC – CC – CC – 125 2.2 120 0 1 Table 13 Retention 20 years 5 years 2 years 2 years – – – Unit Remarks ns ms ms CPU clock = 8 MHz CPU clock = 24 MHz
tACC tPR
Erase time tER (one or more sectors) Flash wait states
NWSFLASH CC
Flash Data Retention and Endurance (Operating Conditions apply) Endurance1) 1,000 cycles 10,000 cycles 70,000 cycles 100,000 cycles Size up to 8 Kbytes 1 Kbyte 512 bytes 128 bytes Remarks
1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in Table 13 is valid only if the following conditions are fulfilled: - the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles. - the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles. - the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles.
Data Sheet
30
V1.1, 2010-10
XC822/824
Electrical Parameters Table 14 Retention 2 years 2 years 2 years 2 years Emulated Flash Data Retention and Endurance based on EEPROM Emulation ROM Library (Operating Conditions apply)1) Endurance2) 1,600,000 cycles 1,400,000 cycles 1,200,000 cycles 1,000,000 cycles Emulation Size 31 bytes 62 bytes 93 bytes 124 bytes Remarks
1) EEPROM Emulation ROM Library can only be used in the 4 Kbyte Flash variant. 2) These values show the maximum endurance. Maximum endurance is the maximum possible unique data write if each data update is only 31 bytes. Minimum endurance cycle is the maximum possible unique data write if each data update is the same as the emulation size. The minimum endurance cycle can be calculated using the formulae [(max. endurance)*(31)/(emulation size)].
Data Sheet
31
V1.1, 2010-10
XC822/824
Electrical Parameters
3.2.5
Power Supply Current
Table 15 provides the characteristics of the power supply current in the XC822/824. Table 15 Parameter Active Mode Power Consumption Parameters1) 2)(Operating Conditions apply) Symbol Limit Values Typ. Max. 25 18 5 20 5 5 28 7 30 mA mA mA mA mA µA µA µA µA 5 V / 3.3 V 3) 5 V / 3.3 V 4) 2.5 V5) 5 V / 3.3 V 6) 2.5 V 5) TA = 25° C7) TA = 85° C7)8)9) TA = 25° C7) TA = 85° C7)8) 21 14 – Idle Mode Power Down Mode 1 Power Down Mode 2 Unit Test Condition
IDDPA
IDDPI IPDP1 IPDP2
16 – 3 – 5 –
1) The typical values are measured at TA = + 25 °C and VDDP = 5 V and 3.3 V. 2) The maximum values are measured under worst case conditions (TA = + 125 °C and VDDC = 5 V). 3) IDDPA (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz (CLKMODE=0). 4) IDDPA (active mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz (CLKMODE=1). 5) This value is based on the maximum load capacity of EVR during VDDP = 2.5 V. Not subject to production test, verified by design/characterisation. 6) IDDPI (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz (CLKMODE=0). 7) IPDP1 and IPDP2 is measured at 5 V and 3.3 V with: wake-up port is programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs. 8) Not subject to production test, verified by design/characterisation. 9) IPDP1 and IPDP2 has a maximum values of 100 uA at TA = + 125 °C.
Data Sheet
32
V1.1, 2010-10
XC822/824
Electrical Parameters Table 16 shows the maximum active current within the device in the reduced voltage condition of 2.5 V < VDDP < 3.0 V. The active current consumption needs to be below the specified values as according to the VDDP voltage. If the conditions are not met, a brownout reset may be triggered. Table 16 VDDP Active Current Consumption in Reduced Voltage Condition 2.5 V 2.6 V 13 mA 2.7 V 20 mA 2.8 V 25 mA
Maximum active current 7 mA
Table 17 provides the active current consumption of some modules operating at 8 MHz active mode, 3 V power supply at 25° C. The typical values shown are used as a reference guide for device operating in reduced voltage conditions. Table 17 Typical Active Current Consumption1) 2) Symbol Limit Values Unit Typ. 5850 µA Test Condition Modules including Core, memories, UART, T0, T1 and EVR. Disable ADC analog (GLOBCTR.ANON = 0). Set PMCON1.ADC_DIS to 0 and GLOBECTR. ANON to 1 Set PMCON1.SSC_DIS to 0 Set PMCON1.CCU_DIS to 0 Set PMCON1.T2_DIS to 0 Set PMCON1.MDU_DIS to 0 Set PMCON1.LTS_DIS to 0 Set PMCON1.IIC_DIS to 0
Active Current Consumption Baseload current3)
ICPUDDC
ADC4) SSC5) CCU66) Timer 27) MDU8) LEDTSCU9) IIC10)
IADCDDC ISSCDDC ICCU6DDC IT2DDC IMDUDDC ILEDDDC IIICDDC
3390 460 3320 200 1260 520 580
µA µA µA µA µA µA µA
1) Modules that are controllable by programming the register PMCON1. 2) Not subject to production test, verified by design/characterisation. 3) Baseload current is measured when the device is running in user mode with an endless loop in the flash memory. All modules in register PMCON1 are disabled. 4) ADC active current is measured with: module enable, ADC analog clock at 8MHz, running in parallel conversion request in autoscan mode for 4 channels 5) SSC active curremt is measured with: module enabled, running in loop back mode at a baud rate of 1 MBaud 6) CCU6 active current is measured with: module enabled, all timers running in 8 MHz, 6 PWM outputs are generated. 7) Timer 2 active current is measured with: module enabled, timer running in 8 MHz 8) MDU active current is measured with: module enabled, division operation was performed.
Data Sheet
33
V1.1, 2010-10
XC822/824
Electrical Parameters
9) LEDTSCU active curent is measured with: module enabled, counter running in 8 MHz. 10) IIC active current is measured with: module enabled, performing a master transmit with the master clock running at 400 KHz.
Data Sheet
34
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3
AC Parameters
The electrical characteristics of the AC Parameters are detailed in this section.
3.3.1
Testing Waveforms
The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 12, Figure 13 and Figure 14.
VDDP 90% 90%
VSS
10% tR tF
10%
Figure 12
Rise/Fall Time Parameters
VDDP VDDE / 2 VSS Test Points VDDE / 2
Figure 13
Testing Waveform, Output Delay
VLoad + 0 .1 V VLoad - 0 .1 V
Timing Reference Points
VOH - 0 .1 V VOL - 0 .1 V
Figure 14
Testing Waveform, Output High Impedance
Data Sheet
35
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3.2
Output Rise/Fall Times
Table 18 provides the characteristics of the output rise/fall times in the XC822/824. Table 18 Parameter Rise/fall times on Standard Pad1)2) Output Rise/Fall Times Parameters (Operating Conditions apply) Symbol Limit Values Min. Max. 10 ns 20 pF3)4) (5 V & 3.3 V). – Unit Test Conditions
tR, tF
1) Rise/Fall time parameters are taken with 10% - 90% of supply. 2) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation. 3) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF @ 0.125 ns/pF at 5 V supply voltage. 4) Additional rise/fall time valid for CL = 20 pF - CL = 100 pF.@ 0.225 ns/pF at 3.3 V supply voltage.
VDDC 90% 90%
VSS
10%
10%
tR
tF
Figure 15
Rise/Fall Times Parameters
Data Sheet
36
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3.3
Oscillator Timing and Wake-up Timing
Table 19 provides the characteristics of the power-on reset, PLL and Wake-up timings in the XC822/824. Table 19 Parameter 48 MHz Oscillator start-up time Power-On Reset Wake-up Timing1) (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. – – 160 13 800 – Unit Test Conditions µs µs µs
t48MOSCST CC –
75 KHz Oscillator start- t75KOSCST CC – up time Flash initialization time tFINT CC –
1) Not subject to production test, verified by design/characterisation.
3.3.4
On-Chip Oscillator Characteristics
Table 20 provides the characteristics of the 48 MHz oscillator in the XC822/824. Table 20 Parameter Nominal frequency 48 MHz Oscillator Characteristics (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. +0.5% MHz under nominal conditions1) after trimming 3.0 % with respect to fNOM, over lifetime and temperature (0 °C to 85 °C) with respect to fNOM, over lifetime and temperature (-40 °C to 125 °C) with respect to fNOM, within one LIN message (< 10 ms … 100 ms) Unit Test Conditions
fNOM CC -0.5 % 48
Long term ∆fLT CC -2.0 frequency deviation -4.5
–
–
4.5
%
Short term ∆fST CC -1 frequency deviation (over core supply voltage2))
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C. 2) Core voltage supply, VDDC = 2.5 V ± 7.5%.
–
1
%
Data Sheet
37
V1.1, 2010-10
XC822/824
Electrical Parameters Table 21 provides the characteristics of the 75 kHz oscillator in the XC822/824. Table 21 Parameter Nominal frequency 75 kHz Oscillator Characteristics (Operating Conditions apply) Symbol Limit Values Min. Typ. Max. Unit Test Conditions
fNOM CC -1% 75
CC -4.5 –
+1% KHz under nominal conditions1) after trimming 4.5 % with respect to fNOM, over lifetime and temperature (-40 °C to 125 °C) with respect to fNOM, over core supply voltage of 2.5 V ± 7.5%
Long term frequency ∆fLT deviation Short term frequency deviation
∆fST CC -1.5
–
1.5
%
1) Nominal condition: VDDC = 2.5 V, TA = + 25°C.
Data Sheet
38
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3.5
SSC Timing
3.3.5.1
SSC Master Mode Timing
Table 22 provides the SSC master mode timing in the XC822/824. Table 22 Parameter SCLK clock period MTSR delay from SCLK MRST setup to SCLK MRST hold from SCLK SSC Master Mode Timing1) (Operating Conditions apply; CL = 50 pF) Symbol Min. Limit Values Max. – 6 – – ns ns ns ns 2 * TSSC2) 0 20 0 Unit
t0 t1 t2 t3
CC CC SR SR
1) Not subject to production test, verified by design/characterisation. 2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 83.3 ns. TCPU is the CPU clock period.
t0
SCLK1)
t1
MTSR1)
t1 t2
t3
Data valid
MRST1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0. SSC_Tmg1
Figure 16
SSC Master Mode Timing
Data Sheet
39
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3.5.2
SSC Slave Mode Timing
Table 23 provides the SSC slave mode timing in the XC822/824. Table 23 Parameter SCLK clock period MRST delay from SCLK MTSR setup to SCLK MTSR hold from SCLK SSC Slave Mode Timing1) (Operating Conditions apply; CL = 50 pF) Symbol Min. Limit Values Max.
2)
Unit ns ns ns ns
t0 t1 t2 t3
SR CC SR SR
4 * TSSC 0 46 0
– 20 – –
1) Not subject to production test, verified by design/characterisation. 2) TSSCmin = TCPU = 1/fCPU. When fCPU = 24 MHz, t0 = 166.7 ns. TCPU is the CPU clock period.
t0 SCLK1) t2 MTSR1)
t3
Data Valid
t1 MRST1)
1)
This timing is based on the following setup : CON.PH = CON.PO = 0.
Figure 17
SSC Slave Mode Timing
Data Sheet
40
V1.1, 2010-10
XC822/824
Electrical Parameters
3.3.6
SPD Timing
The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5% or less. For further details please refer to application note AP24004 in section SPD Timing Requirements. Note: These parameters are no subject to product test but verified by design and/or characterization. Note: Operating Conditions apply.
Data Sheet
41
V1.1, 2010-10
XC822/824
Package and Quality Declaration
4
Package and Quality Declaration
Chapter 4 provides the information of the XC822/824 package and reliability section.
4.1
Package Parameters
Table 24 provides the thermal characteristics of the packages used in XC822 and XC824 respectively. Table 24 Parameter Thermal Characteristics of the Packages Symbol CC CC Limit Values Min. Thermal resistance junction RTJC case1) Thermal resistance junction RTJL lead1) Max. 36.2 34.3 356.6 36.2 K/W K/W K/W K/W PG-TSSOP-16-1 PG-DSO-20-45 PG-TSSOP-16-1 PG-DSO-20-45 Unit Package Types
1) The thermal resistances between the case and the ambient (RTCA) , the lead and the ambient (RTLA) are to be combined with the thermal resistances between the junction and the case (RTJC), the junction and the lead (RTJL) given above, in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCA), the lead and the ambient (RTLA) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ=TA+RTJA × PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from the upper four partial thermal resistances, by a) simply adding only the two thermal resistances (junction lead and lead ambient), or b) by taking all four resistances into account, depending on the precision needed.
Data Sheet
42
V1.1, 2010-10
XC822/824
Package and Quality Declaration
4.2
Package Outline
Figure 18 and Figure 19 shows the package outlines of the XC822 (TSSOP-16) and XC824 (DSO-20) devices respectively.
Figure 18
PG-TSSOP-16-1 Package Outline
Data Sheet
43
V1.1, 2010-10
XC822/824
Package and Quality Declaration
Figure 19
PG-DSO-20-45 Package Outline
Data Sheet
44
V1.1, 2010-10
XC822/824
Package and Quality Declaration
4.3
Quality Declaration
Table 25 shows the characteristics of the quality parameters in the XC822/824. Table 25 Parameter Operation Lifetime when the device is used at the three stated TJ1) Operation Lifetime when the device is used at the stated TJ1) Quality Parameters Symbol Limit Values Min. Max. 1500 15000 1500 131400 hours hours hours hours TJ = 150°C TJ = 110°C TJ = -40°C TJ = 27°C Unit Notes
tOP1
-
tOP2
-
ESD susceptibility VHBM according to Human Body Model (HBM) ESD susceptibility according to Charged Device Model (CDM) pins
-
2000
V
Conforming to EIA/JESD22A114-B Conforming to JESD22-C101-C
VCDM
-
500
V
1) This lifetime refers only to the time when device is powered-on.
Data Sheet
45
V1.1, 2010-10
www.infineon.com
Published by Infineon Technologies AG