0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC888

XC888

  • 厂商:

    INFINEON

  • 封装:

  • 描述:

    XC888 - 8-Bit Single-Chip Microcontroller - Infineon Technologies AG

  • 数据手册
  • 价格&库存
XC888 数据手册
D ata Sheet, V0.9, Dec. 2006 XC886/888CLM 8-Bit Single-Chip Microcontroller Microcontrollers Edition 2006-12 Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D ata Sheet, V0.9, Dec. 2006 XC886/888CLM 8-Bit Single-Chip Microcontroller Microcontrollers XC886/888 Revision History: Previous Version: Page 31 53 77 108 126 128 2006-12 V0.1, V0.2 V0.9 Subjects (major changes since last revision) Register Overview table is added. Flash data retention and endurance table is updated. Figure 26 is updated. Note on validity of electrical parameters is added. PLL accumulated jitter value is corrected. Table 48 is reworked. Changes from V0.2 2006-10 to V0.9 2006-12 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com XC886/888CLM Table of Contents Table of Contents 1 2 2.1 2.2 2.3 2.4 3 3.1 3.2 3.2.1 3.2.1.1 3.2.2 3.2.2.1 3.2.2.2 3.2.3 3.2.3.1 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.4.5 3.2.4.6 3.2.4.7 3.2.4.8 3.2.4.9 3.2.4.10 3.2.4.11 3.2.4.12 3.2.4.13 3.2.4.14 3.3 3.3.1 3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.3 3.5 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Function Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address Extension by Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address Extension by Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bit Protection Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Password Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XC886/888 Register Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CORDIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WDT Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer 21 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CCU6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MultiCAN Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OCDS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Bank Sectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Read Access of P-Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Programming Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Source and Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 5 5 6 7 9 19 19 20 21 21 23 23 25 29 30 31 31 32 33 34 36 37 39 43 43 44 48 49 49 50 52 53 54 55 56 56 62 64 65 Data Sheet V0.9, 2006-12 XC886/888CLM Table of Contents 3.6 3.7 3.7.1 3.7.2 3.8 3.8.1 3.8.2 3.9 3.10 3.11 3.12 3.13 3.13.1 3.13.2 3.14 3.15 3.15.1 3.16 3.17 3.18 3.19 3.20 3.21 3.21.1 3.21.2 3.22 3.22.1 3.23 4 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.2.2 4.2.3 4.2.3.1 4.2.4 4.3 4.3.1 4.3.2 Data Sheet Power Supply System with Embedded Voltage Regulator . . . . . . . . . . . . 68 Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Module Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Booting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Recommended External Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . 75 Clock Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Power Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Multiplication/Division Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 CORDIC Coprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 UART and UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Baud-Rate Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Baud Rate Generation using Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Normal Divider Mode (8-bit Auto-reload Timer) . . . . . . . . . . . . . . . . . . . . . 88 LIN Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LIN Header Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . 91 Timer 0 and Timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Timer 2 and Timer 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Capture/Compare Unit 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Controller Area Network (MultiCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 ADC Clocking Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 ADC Conversion Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 On-Chip Debug Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 JTAG ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Chip Identification Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Conversion Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Rise/Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-2 108 108 108 109 110 111 111 115 116 119 120 124 124 125 V0.9, 2006-12 XC886/888CLM Table of Contents 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 5 5.1 5.2 5.3 Power-on Reset and PLL Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock Drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Master Mode Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package and Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 128 129 130 132 133 133 134 136 Data Sheet I-3 V0.9, 2006-12 8-Bit Single-Chip Microcontroller XC886/888CLM 1 Summary of Features The XC886/888 has the following features: • High-performance XC800 Core – compatible with standard 8051 processor – two clocks per machine cycle architecture (for memory access without wait state) – two data pointers • On-chip memory – 12 Kbytes of Boot ROM – 256 bytes of RAM – 1.5 Kbytes of XRAM – 24/32 Kbytes of Flash; or 24/32 Kbytes of ROM, with additional 4 Kbytes of Flash (includes memory protection strategy) • I/O port supply at 3.3 V or 5.0 V and core logic supply at 2.5 V (generated by embedded voltage regulator) (more features on next page) Flash or ROM1) 24K/32K x 8 On-Chip Debug Support UART SSC Port 0 8-bit Digital I/O Boot ROM 12K x 8 XC800 Core Capture/Compare Unit 16-bit Port 1 8-bit Digital I/O . XRAM 1.5K x 8 Compare Unit 16-bit ADC 10-bit 8-channel Port 2 8-bit Digital/ Analog Input RAM 256 x 8 Timer 0 16-bit Timer 1 16-bit Timer 2 16-bit Watchdog Timer Port 3 8-bit Digital I/O MDU CORDIC MultiCAN Timer 21 16-bit UART1 Port 5 Port 4 8-bit Digital I/O 1) All ROM devices come with an additional 4K x 8 Flash 8-bit Digital I/O Figure 1 Data Sheet XC886/888 Functional Units 1 V0.9, 2006-12 XC886/888CLM Summary of Features Features: (continued) • • • • Power-on reset generation Brownout detection for core logic supply On-chip OSC and PLL for clock generation – PLL loss-of-lock detection Power saving modes – slow-down mode – idle mode – power-down mode with wake-up capability via RXD or EXINT0 – clock gating control to each peripheral Programmable 16-bit Watchdog Timer (WDT) Six ports – Up to 48 pins as digital I/O – 8 pins as digital/analog input 8-channel, 10-bit ADC Four 16-bit timers – Timer 0 and Timer 1 (T0 and T1) – Timer 2 and Timer 21 (T2 and T21) Multiplication/Division Unit for arithmetic operations (MDU) Software libraries to support floating point and MDU calculations CORDIC Coprocessor for computation of trigonometric, hyperbolic and linear functions MultiCAN with 2 nodes, 32 message objects Capture/compare unit for PWM signal generation (CCU6) Two full-duplex serial interfaces (UART and UART1) Synchronous serial channel (SSC) On-chip debug support – 1 Kbyte of monitor ROM (part of the 12-Kbyte Boot ROM) – 64 bytes of monitor RAM Packages: – PG-TQFP-48 – PG-TQFP-64 Temperature range TA: – SAF (-40 to 85 °C) – SAK (-40 to 125 °C) • • • • • • • • • • • • • • Data Sheet 2 V0.9, 2006-12 XC886/888CLM Summary of Features XC886/888 Variant Devices The XC886/888 product family features devices with different configurations, program memory sizes, package options, power supply voltage, temperature and quality profiles (Automotive or Industrial), to offer cost-effective solutions for different application requirements. The list of XC886/888 device configurations are summarized in Table 1. For each configuration, 2 types of packages are available: • • PG-TQFP-48, which is denoted by XC886 and; PG-TQFP-64, which is denoted by XC888. Device Configuration CAN Module No Yes Yes No Yes LIN BSL Support No No No Yes Yes MDU Module No No Yes Yes Yes Table 1 Device Name XC886/888 XC886/888C XC886/888CM XC886/888LM XC886/888CLM From these 10 different combinations of configuration and package type, each are further made available in many sales types, which are grouped according to device type, program memory sizes, power supply voltage, temperature and quality profiles (Automotive or Industrial), as shown in Table 2. Table 2 Sales Type Device Profile Device Program Type Memory (Kbytes) Flash Flash Flash Flash Flash Flash 32 24 32 24 32 24 32 24 Quality Power TempProfile Supply erature Profile (°C) (V) 5.0 5.0 5.0 5.0 5.0 5.0 3.3 3.3 -40 to 125 -40 to 125 -40 to 85 -40 to 85 -40 to 85 -40 to 85 -40 to 125 -40 to 125 Automotive Automotive Automotive Automotive Industrial Industrial Automotive Automotive SAK-XC886*/888*-8FFA 5V SAK-XC886*/888*-6FFA 5V SAF-XC886*/888*-8FFA 5V SAF-XC886*/888*-6FFA 5V SAF-XC886*/888*-8FFI 5V SAF-XC886*/888*-6FFI 5V SAK-XC886*/888*-8FFA 3V3 Flash SAK-XC886*/888*-6FFA 3V3 Flash Data Sheet 3 V0.9, 2006-12 XC886/888CLM Summary of Features Table 2 Sales Type Device Profile (cont’d) Device Program Type Memory (Kbytes) 32 24 32 24 Power TempQuality Supply erature Profile (V) Profile (°C) 3.3 3.3 3.3 3.3 -40 to 85 -40 to 85 -40 to 85 -40 to 85 Automotive Automotive Industrial Industrial SAF-XC886*/888*-8FFA 3V3 Flash SAF-XC886*/888*-6FFA 3V3 Flash SAF-XC886*/888*-8FFI 3V3 SAF-XC886*/888*-6FFI 3V3 Flash Flash Note: The asterisk (*) above denotes the device configuration letters from Table 1. Corresponding ROM derivatives will be available on request. As this document refers to all the derivatives, some description may not apply to a specific product. For simplicity, all versions are referred to by the term XC886/888 throughout this document. Ordering Information The ordering code for Infineon Technologies microcontrollers provides an exact reference to the required product. This ordering code identifies: • • The derivative itself, i.e. its function set, the temperature range, and the supply voltage The package and the type of delivery For the available ordering codes for the XC886/888, please refer to your responsible sales representative or your local distributor. Note: The ordering codes for the Mask-ROM versions are defined for each product after verification of the respective ROM code. Data Sheet 4 V0.9, 2006-12 XC886/888CLM General Device Information 2 General Device Information Chapter 2 contains the block diagram, pin configurations, definitions and functions of the XC886/888. 2.1 Block Diagram The block diagram of the XC886/888 is shown in Figure 2. XC886/888 Internal Bus 12-Kbyte Boot ROM1) XC800 Core 256-byte RAM + 64-byte monitor RAM Port 0 P0.0 - P0.7 T0 & T1 UART Port 1 TMS MBC RESET VDDP VSSP VDDC VSSC P1.0 - P1.7 CORDIC 1.5-Kbyte XRAM MDU 24/32-Kbyte Flash or ROM 2) Clock Generator 9.6 MHz On-chip OSC WDT OCDS UART1 Port 2 SSC Timer 2 ADC Timer 21 Port 3 CCU6 P3.0 - P3.7 P2.0 - P2.7 VAREF VAGND XTAL1 XTAL2 PLL MultiCAN Port 4 P4.0 - P4.7 Port 5 P5.0 - P5.7 1) Includes 1-Kbyte monitor ROM 2) The 24/32-Kbyte ROM has an additional 4-Kbyte Flash Figure 2 XC886/888 Block Diagram Data Sheet 5 V0.9, 2006-12 XC886/888CLM General Device Information 2.2 Logic Symbol The logic symbols of the XC886/888 are shown in Figure 3. VDDP VSSP VDDP VSSP Port 0 8-Bit VAREF Port 0 7-Bit VAGND Port 1 8-Bit RESET MBC TMS XTAL1 XTAL2 Port 4 3-Bit XC886 RESET Port 2 8-Bit MBC TMS XTAL1 XTAL2 Port 4 8-Bit XC888 Port 3 8-Bit VAGND VAREF Port 1 8-Bit Port 2 8-Bit Port 3 8-Bit Port 5 8-Bit VDDC VSSC VDDC VSSC Figure 3 XC886/888 Logic Symbol Data Sheet 6 V0.9, 2006-12 XC886/888CLM General Device Information 2.3 Pin Configuration The pin configuration of the XC886, which is based on the PG-TQFP-48 package, is shown in Figure 4, while that of the XC888, which is based on the PG-TQFP-64 package, is shown in Figure 5. P3.1 P3.0 P3.7 P3.6 P4.3 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 36 35 34 33 32 31 30 29 28 27 26 25 P3.2 P3.3 P3.4 P3.5 RESET V SSP V DDP MBC P4.0 P4.1 P0.7 P0.3 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 XC886 24 23 22 21 20 19 18 17 16 15 14 13 V AREF V AGND P2.6 P2.5 P2.4 P2.3 V SSP V DDP P2.2 P2.1 P2.7 P2.0 P0.1 P0.4 P0.5 XTAL2 XTAL1 VSSC VDDC VDDP P1.6 P1.7 TMS P0.0 P0.2 Figure 4 XC886 Pin Configuration, PG-TQFP-48 Package (top view) Data Sheet 7 V0.9, 2006-12 XC886/888CLM General Device Information P4.7 P4.6 P4.5 P4.4 P3.1 P3.0 P3.7 P3.6 P4.3 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0 P2.7 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P3.2 P3.3 P3.4 P3.5 RESET V SSP V DDP NC NC MBC P4.0 P4.1 P4.2 P0.7 P0.3 P0.4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 XC888 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 V AREF V AGND P2.6 P2.5 P2.4 P2.3 V SSP V DDP P2.2 P2.1 P2.0 P0.1 P5.7 P5.6 P0.2 P0.0 Note: The pins shaded in blue are not available in the PG-TQFP-48 package. P0.5 P0.6 XTAL2 XTAL1 VSSC VDDC VDDP P5.0 P5.1 P1.6 P1.7 P5.2 P5.3 P5.4 P5.5 TMS Figure 5 XC888 Pin Configuration, PG-TQFP-64 Package (top view) Data Sheet 8 V0.9, 2006-12 XC886/888CLM General Device Information 2.4 Pin Definitions and Functions The functions and default states of the XC886/888 external pins are provided in Table 3. Table 3 Pin Definitions and Functions Symbol Pin Number Type Reset Function (TQFP-48/64) State P0 I/O Port 0 Port 0 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, CCU6, UART, UART1, Timer 2, Timer 21, MultiCAN and SSC. Hi-Z TCK_0 T12HR_1 JTAG Clock Input CCU6 Timer 12 Hardware Run Input CC61_1 Input/Output of Capture/Compare channel 1 CLKOUT_0 Clock Output RXDO_1 UART Transmit Data Output TDI_0 T13HR_1 RXD_1 RXDC1_0 COUT61_1 EXF2_1 P0.2 12/18 PU CTRAP_2 TDO_0 TXD_1 TXDC1_0 P0.3 48/63 Hi-Z SCK_1 COUT63_1 RXDO1_0 JTAG Serial Data Input CCU6 Timer 13 Hardware Run Input UART Receive Data Input MultiCAN Node 1 Receiver Input Output of Capture/Compare channel 1 Timer 2 External Flag Output CCU6 Trap Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 1 Transmitter Output SSC Clock Input/Output Output of Capture/Compare channel 3 UART1 Transmit Data Output P0.0 11/17 P0.1 13/21 Hi-Z Data Sheet 9 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P0.4 1/64 Hi-Z MTSR_1 CC62_1 TXD1_0 P0.5 2/1 Hi-Z MRST_1 EXINT0_0 T2EX1_1 RXD1_0 COUT62_1 P0.6 P0.7 –/2 47/62 PU PU GPIO CLKOUT_1 Clock Output SSC Master Transmit Output/ Slave Receive Input Input/Output of Capture/Compare channel 2 UART1 Transmit Data Output/Clock Output SSC Master Receive Input/Slave Transmit Output External Interrupt Input 0 Timer 21 External Trigger Input UART1 Receive Data Input Output of Capture/Compare channel 2 Data Sheet 10 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P1 I/O Port 1 Port 1 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for the JTAG, CCU6, UART, Timer 0, Timer 1, Timer 2, Timer 21, MultiCAN and SSC. PU RXD_0 T2EX RXDC0_0 EXINT3 T0_1 TDO_1 TXD_0 TXDC0_0 P1.2 P1.3 28/36 29/37 PU PU SCK_0 MTSR_0 TXDC1_3 P1.4 30/38 PU MRST_0 EXINT0_1 RXDC1_3 P1.5 31/39 PU CCPOS0_1 EXINT5 T1_1 EXF2_0 RXDO_0 UART Receive Data Input Timer 2 External Trigger Input MultiCAN Node 0 Receiver Input External Interrupt Input 3 Timer 0 Input JTAG Serial Data Output UART Transmit Data Output/Clock Output MultiCAN Node 0 Transmitter Output SSC Clock Input/Output SSC Master Transmit Output/Slave Receive Input MultiCAN Node 1 Transmitter Output SSC Master Receive Input/ Slave Transmit Output External Interrupt Input 0 MultiCAN Node 1 Receiver Input CCU6 Hall Input 0 External Interrupt Input 5 Timer 1 Input Timer 2 External Flag Output UART Transmit Data Output P1.0 26/34 P1.1 27/35 PU Data Sheet 11 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P1.6 8/10 PU CCPOS1_1 CCU6 Hall Input 1 T12HR_0 CCU6 Timer 12 Hardware Run Input EXINT6_0 External Interrupt Input 6 RXDC0_2 MultiCAN Node 0 Receiver Input T21_1 Timer 21 Input CCPOS2_1 CCU6 Hall Input 2 T13HR_0 CCU6 Timer 13 Hardware Run Input T2_1 Timer 2 Input TXDC0_2 MultiCAN Node 0 Transmitter Output P1.5 and P1.6 can be used as a software chip select output for the SSC. P1.7 9/11 PU Data Sheet 12 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P2 I Port 2 Port 2 is an 8-bit general purpose input-only port. It can be used as alternate functions for the digital inputs of the JTAG and CCU6. It is also used as the analog inputs for the ADC. Hi-Z CCPOS0_0 CCU6 Hall Input 0 EXINT1_0 External Interrupt Input 1 T12HR_2 CCU6 Timer 12 Hardware Run Input TCK_1 JTAG Clock Input CC61_3 Input of Capture/Compare channel 1 AN0 Analog Input 0 CCPOS1_0 CCU6 Hall Input 1 EXINT2_0 External Interrupt Input 2 T13HR_2 CCU6 Timer 13 Hardware Run Input TDI_1 JTAG Serial Data Input CC62_3 Input of Capture/Compare channel 2 AN1 Analog Input 1 CCPOS2_0 CCU6 Hall Input 2 CTRAP_1 CCU6 Trap Input CC60_3 Input of Capture/Compare channel 0 AN2 Analog Input 2 AN3 AN4 AN5 AN6 AN7 Analog Input 3 Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7 P2.0 14/22 P2.1 15/23 Hi-Z P2.2 16/24 Hi-Z P2.3 P2.4 P2.5 P2.6 P2.7 19/27 20/28 21/29 22/30 25/33 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Data Sheet 13 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P3 I/O Port 3 Port 3 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, UART1, Timer 21 and MultiCAN. Hi-Z CCPOS1_2 CCU6 Hall Input 1 CC60_0 Input/Output of Capture/Compare channel 0 RXDO1_1 UART1 Transmit Data Output CCPOS0_2 CCU6 Hall Input 0 CC61_2 Input/Output of Capture/Compare channel 1 COUT60_0 Output of Capture/Compare channel 0 TXD1_1 UART1 Transmit Data Output/Clock Output CCPOS2_2 RXDC1_1 RXD1_1 CC61_0 COUT61_0 TXDC1_1 P3.4 39/51 Hi-Z CC62_0 RXDC0_1 T2EX1_0 P3.5 40/52 Hi-Z COUT62_0 EXF21_0 TXDC0_1 P3.6 33/41 PD CTRAP_0 CCU6 Hall Input 2 MultiCAN Node 0 Receiver Input UART1 Receive Data Input Input/Output of Capture/Compare channel 1 Output of Capture/Compare channel 1 MultiCAN Node 1 Transmitter Output Input/Output of Capture/Compare channel 2 MultiCAN Node 0 Receiver Input Timer 21 External Trigger Input Output of Capture/Compare channel 2 Timer 21 External Flag Output MultiCAN Node 0 Transmitter Output CCU6 Trap Input P3.0 35/43 P3.1 36/44 Hi-Z P3.2 37/49 Hi-Z P3.3 38/50 Hi-Z Data Sheet 14 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P3.7 34/42 Hi-Z EXINT4 COUT63_0 External Interrupt Input 4 Output of Capture/Compare channel 3 Data Sheet 15 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P4 I/O Port 4 Port 4 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for CCU6, Timer 0, Timer 1, Timer 21 and MultiCAN. Hi-Z RXDC0_3 CC60_1 TXDC0_3 COUT60_1 P4.2 P4.3 –/61 32/40 PU Hi-Z EXINT6_1 T21_0 EXF21_1 COUT63_2 MultiCAN Node 0 Receiver Input Output of Capture/Compare channel 0 MultiCAN Node 0 Transmitter Output Output of Capture/Compare channel 0 External Interrupt Input 6 Timer 21 Input Timer 21 External Flag Output Output of Capture/Compare channel 3 P4.0 45/59 P4.1 46/60 Hi-Z P4.4 –/45 Hi-Z CCPOS0_3 CCU6 Hall Input 0 T0_0 Timer 0 Input CC61_4 Output of Capture/Compare channel 1 CCPOS1_3 CCU6 Hall Input 1 T1_0 Timer 1 Input COUT61_2 Output of Capture/Compare channel 1 CCPOS2_3 CCU6 Hall Input 2 T2_0 Timer 2 Input CC62_2 Output of Capture/Compare channel 2 CTRAP_3 COUT62_2 CCU6 Trap Input Output of Capture/Compare channel 2 P4.5 –/46 Hi-Z P4.6 –/47 Hi-Z P4.7 –/48 Hi-Z Data Sheet 16 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State P5 I/O Port 5 Port 5 is an 8-bit bidirectional general purpose I/O port. It can be used as alternate functions for UART, UART1 and JTAG. PU PU PU PU PU PU EXINT1_1 EXINT2_1 RXD_2 TXD_2 RXDO_2 TDO_2 TXD1_2 TCK_2 RXDO1_2 TDI_2 RXD1_2 External Interrupt Input 1 External Interrupt Input 2 UART Receive Data Input UART Transmit Data Output/Clock Output UART Transmit Data Output JTAG Serial Data Output UART1 Transmit Data Output/ Clock Output JTAG Clock Input UART1 Transmit Data Output JTAG Serial Data Input UART1 Receive Data Input P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 –/8 –/9 –/12 –/13 –/14 –/15 P5.6 P5.7 –/19 –/20 PU PU Data Sheet 17 V0.9, 2006-12 XC886/888CLM General Device Information Table 3 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset Function (TQFP-48/64) State VDDP VSSP VDDC VSSC VAREF VAGND XTAL1 XTAL2 TMS MBC NC 7, 17, 43/ 7, 25, 55 6/6 5/5 24/32 23/31 4/4 3/3 10/16 44/58 –/21, 56, 57 – – – – – – – Hi-Z Hi-Z PD PU PU – I/O Port Supply (3.3 or 5.0 V) I/O Port Ground Core Supply Monitor (2.5 V) Core Supply Ground ADC Reference Voltage ADC Reference Ground External Oscillator Input (backup for on-chip OSC, normally NC) External Oscillator Output (backup for on-chip OSC, normally NC) Test Mode Select Reset Input Monitor & BootStrap Loader Control No Connection 18, 42/26, 54 – – – – – I O I I I – RESET 41/53 Data Sheet 18 V0.9, 2006-12 XC886/888CLM Functional Description 3 Functional Description Chapter 3 provides an overview of the XC886/888 functional description. 3.1 Processor Architecture The XC886/888 is based on a high-performance 8-bit Central Processing Unit (CPU) that is compatible with the standard 8051 processor. While the standard 8051 processor is designed around a 12-clock machine cycle, the XC886/888 CPU uses a 2-clock machine cycle. This allows fast access to ROM or RAM memories without wait state. Access to the Flash memory, however, requires an additional wait state (one machine cycle). The instruction set consists of 45% one-byte, 41% two-byte and 14% three-byte instructions. The XC886/888 CPU provides a range of debugging features, including basic stop/start, single-step execution, breakpoint support and read/write access to the data memory, program memory and Special Function Registers (SFRs). Figure 6 shows the CPU functional blocks. Internal Data Memory Core SFRs External Data Memory 16-bit Registers & Memory Interface Program Memory Opcode & Immediate Registers Multiplier / Divider ALU Register Interface External SFRs Opcode Decoder Timer 0 / Timer 1 fCCLK Memory Wait Reset State Machine & Power Saving UART Legacy External Interrupts (IEN0, IEN1) External Interrupts Non-Maskable Interrupt Interrupt Controller Figure 6 Data Sheet CPU Block Diagram 19 V0.9, 2006-12 XC886/888CLM Functional Description 3.2 • • • • • Memory Organization The XC886/888 CPU operates in the following five address spaces: 12 Kbytes of Boot ROM program memory 256 bytes of internal RAM data memory 1.5 Kbytes of XRAM memory (XRAM can be read/written as program memory or external data memory) A 128-byte Special Function Register area 24/32 Kbytes of Flash program memory (Flash devices); or 24/32 Kbytes of ROM program memory, with additional 4 Kbytes of Flash (ROM devices) Figure 7 illustrates the memory address spaces of the 32-Kbyte Flash devices. For the 24-Kbyte Flash devices, the shaded banks are not available. FFFFH F600H FFFF H 1) F600H In 24-Kbyte Flash devices, the upper 2Kbyte of Banks 4 and 5 are not available. XRAM 1.5 Kbytes F000H XRAM 1.5 Kbytes F000H Boot ROM 12 Kbytes C000H D-Flash Bank 1 4 Kbytes B000H D-Flash Bank 0 4 Kbytes A000H 8000H D-Flash Bank 0 4 Kbytes 7000H D-Flash Bank 1 4 Kbytes 6000H P-Flash Banks 4 and 5 2 x 4 Kbytes 1) 5000H 4000H Indirect Address Direct Address FF H P-Flash Banks 2 and 3 2 x 4 Kbytes 2000H Internal RAM Special Function Registers 80H P-Flash Banks 0 and 1 2 x 4 Kbytes 0000H 0000H 7FH Internal RAM 00H Program Space External Data Space Internal Data Space Figure 7 Memory Map of XC886/888 Flash Device For both 24-Kbyte and 32-Kbyte ROM devices, the last four bytes of the ROM from 7FFCH to 7FFFH are reserved for the ROM signature and cannot be used to store user Data Sheet 20 V0.9, 2006-12 XC886/888CLM Functional Description code or data. Therefore, even though the ROM device contains either a 24-Kbyte or 32Kbyte ROM, the maximum size of code that can be placed in the ROM is the given size less four bytes. 3.2.1 • Memory Protection Strategy The XC886/888 memory protection strategy includes: Read-out protection: The user is able to protect the contents in the Flash (for Flash devices) and ROM (for ROM devices) memory from being read – Flash protection is enabled by programming a valid password (8-bit non-zero value) via BSL mode 6. – ROM protection is fixed with the ROM mask and is always enabled. Flash program and erase protection: This feature is available only for Flash devices. • 3.2.1.1 Flash Memory Protection As long as a valid password is available, all external access to the device, including the Flash, will be blocked. For additional security, the Flash hardware protection can be enabled to implement a second layer of read-out protection, as well as to enable program and erase protection. Flash hardware protection is available only for Flash devices and comes in two modes: • • Mode 0: Only the P-Flash is protected; the D-Flash is unprotected Mode 1: Both the P-Flash and D-Flash are protected The selection of each protection mode and the restrictions imposed are summarized in Table 4. Table 4 Flash Protection Modes With hardware protection 0 1 Flash Protection Without hardware protection Hardware Protection Mode Activation Selection Program a valid password via BSL mode 6 Bit 4 of password = 0 Bit 4 of password = 1 Bit 4 of password = 1 MSB of password = 0 MSB of password = 1 Read instructions in the P-Flash or DFlash Not possible P-Flash Read instructions in Read instructions in contents can be any program memory the P-Flash read by External access to P-Flash Not possible Not possible Data Sheet 21 V0.9, 2006-12 XC886/888CLM Functional Description Table 4 Flash Protection Modes (cont’d) With hardware protection Not possible Not possible Flash Protection Without hardware protection P-Flash program Possible and erase D-Flash Read instructions in Read instructions in Read instructions in contents can be any program memory any program memory the P-Flash or Dread by Flash External access to D-Flash D-Flash program D-Flash erase Not possible Possible Possible Not possible Possible Not possible Not possible Possible, on Not possible condition that bit DFLASHEN in register MISC_CON is set to 1 prior to each erase operation BSL mode 6, which is used for enabling Flash protection, can also be used for disabling Flash protection. Here, the programmed password must be provided by the user. A password match triggers an automatic erase of the protected P-Flash and D-Flash contents, including the programmed password. The Flash protection is then disabled upon the next reset. For the ROM device, the ROM is protected at all times and BSL mode 6 is used only to block external access to the device. However, unlike the Flash device, it is not possible to disable the memory protection of the ROM device. Here, entering BSL mode 6 will result in a protection error. Note: If ROM read-out protection is enabled, only read instructions in the ROM memory can target the ROM contents. Although no protection scheme can be considered infallible, the XC886/888 memory protection strategy provides a very high level of protection for a general purpose microcontroller. Data Sheet 22 V0.9, 2006-12 XC886/888CLM Functional Description 3.2.2 Special Function Register The Special Function Registers (SFRs) occupy direct internal data memory space in the range 80H to FFH. All registers, except the program counter, reside in the SFR area. The SFRs include pointers and registers that provide an interface between the CPU and the on-chip peripherals. As the 128-SFR range is less than the total number of registers required, address extension mechanisms are required to increase the number of addressable SFRs. The address extension mechanisms include: • • Mapping Paging 3.2.2.1 Address Extension by Mapping Address extension is performed at the system level by mapping. The SFR area is extended into two portions: the standard (non-mapped) SFR area and the mapped SFR area. Each portion supports the same address range 80H to FFH, bringing the number of addressable SFRs to 256. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit RMAP in the system control register SYSCON0 at address 8FH. To access SFRs in the mapped area, bit RMAP in SFR SYSCON0 must be set. Alternatively, the SFRs in the standard area can be accessed by clearing bit RMAP. The SFR area can be selected as shown in Figure 8. As long as bit RMAP is set, the mapped SFR area can be accessed. This bit is not cleared automatically by hardware. Thus, before standard/mapped registers are accessed, bit RMAP must be cleared/set, respectively, by software. Data Sheet 23 V0.9, 2006-12 XC886/888CLM Functional Description Standard Area (RMAP = 0) FF H Module 1 SFRs SYSCON0.RMAP rw Module 2 SFRs Module n SFRs …... SFR Data (to/from CPU) 80 H Mapped Area (RMAP = 1) FF H Module (n+1) SFRs Module (n+2) SFRs Module m SFRs …... 80 H Direct Internal Data Memory Address Figure 8 Address Extension by Mapping Data Sheet 24 V0.9, 2006-12 XC886/888CLM Functional Description SYSCON0 System Control Register 0 7 6 0 r 5 4 IMODE rw 3 0 r 2 1 r Reset Value: 04H 1 0 r 0 RMAP rw Field RMAP Bits 0 Type Description rw Interrupt Node XINTR0 Enable 0 The access to the standard SFR area is enabled 1 The access to the mapped SFR area is enabled Reserved Returns 1 if read; should be written with 1. Reserved Returns 0 if read; should be written with 0. 1 0 2 [7:5], 3,1 r r Note: The RMAP bit should be cleared/set by ANL or ORL instructions. 3.2.2.2 Address Extension by Paging Address extension is further performed at the module level by paging. With the address extension by mapping, the XC886/888 has a 256-SFR address range. However, this is still less than the total number of SFRs needed by the on-chip peripherals. To meet this requirement, some peripherals have a built-in local address extension mechanism for increasing the number of addressable SFRs. The extended address range is not directly controlled by the CPU instruction itself, but is derived from bit field PAGE in the module page register MOD_PAGE. Hence, the bit field PAGE must be programmed before accessing the SFR of the target module. Each module may contain a different number of pages and a different number of SFRs per page, depending on the specific requirement. Besides setting the correct RMAP bit value to select the SFR area, the user must also ensure that a valid PAGE is selected to target the desired SFR. A page inside the extended address range can be selected as shown in Figure 9. Data Sheet 25 V0.9, 2006-12 XC886/888CLM Functional Description SFR Address (from CPU) MOD_PAGE.PAGE rw PAGE 0 SFR0 SFR1 …... SFRx PAGE 1 SFR0 SFR Data (to/from CPU) SFR1 …... SFRy …... PAGE q SFR0 SFR1 …... SFRz Module Figure 9 Address Extension by Paging In order to access a register located in a page different from the actual one, the current page must be exited. This is done by reprogramming the bit field PAGE in the page register. Only then can the desired access be performed. If an interrupt routine is initiated between the page register access and the module register access, and the interrupt needs to access a register located in another page, the current page setting can be saved, the new one programmed and the old page setting restored. This is possible with the storage fields STx (x = 0 - 3) for the save and restore action of the current page setting. By indicating which storage bit field should be used in parallel with the new page value, a single write operation can: • Save the contents of PAGE in STx before overwriting with the new value (this is done in the beginning of the interrupt routine to save the current page setting and program the new page number); or Data Sheet 26 V0.9, 2006-12 XC886/888CLM Functional Description • Overwrite the contents of PAGE with the contents of STx, ignoring the value written to the bit positions of PAGE (this is done at the end of the interrupt routine to restore the previous page setting before the interrupt occurred) ST3 ST2 ST1 ST0 STNR value update from CPU PAGE Figure 10 Storage Elements for Paging With this mechanism, a certain number of interrupt routines (or other routines) can perform page changes without reading and storing the previously used page information. The use of only write operations makes the system simpler and faster. Consequently, this mechanism significantly improves the performance of short interrupt routines. The XC886/888 supports local address extension for: • • • • Parallel Ports Analog-to-Digital Converter (ADC) Capture/Compare Unit 6 (CCU6) System Control Registers Data Sheet 27 V0.9, 2006-12 XC886/888CLM Functional Description The page register has the following definition: MOD_PAGE Page Register for module MOD 7 OP w 6 5 STNR w 4 3 0 r 2 Reset Value: 00H 1 PAGE rw 0 Field PAGE Bits [2:0] Type Description rw Page Bits When written, the value indicates the new page. When read, the value indicates the currently active page. Storage Number This number indicates which storage bit field is the target of the operation defined by bit field OP. If OP = 10B, the contents of PAGE are saved in STx before being overwritten with the new value. If OP = 11B, the contents of PAGE are overwritten by the contents of STx. The value written to the bit positions of PAGE is ignored. 00 01 10 11 ST0 is selected. ST1 is selected. ST2 is selected. ST3 is selected. STNR [5:4] w Data Sheet 28 V0.9, 2006-12 XC886/888CLM Functional Description Field OP Bits [7:6] Type Description w Operation 0X Manual page mode. The value of STNR is ignored and PAGE is directly written. 10 New page programming with automatic page saving. The value written to the bit positions of PAGE is stored. In parallel, the previous contents of PAGE are saved in the storage bit field STx indicated by STNR. 11 Automatic restore page action. The value written to the bit positions PAGE is ignored and instead, PAGE is overwritten by the contents of the storage bit field STx indicated by STNR. Reserved Returns 0 if read; should be written with 0. 0 3 r 3.2.3 Bit Protection Scheme The bit protection scheme prevents direct software writing of selected bits (i.e., protected bits) using the PASSWD register. When the bit field MODE is 11B, writing 10011B to the bit field PASS opens access to writing of all protected bits, and writing 10101B to the bit field PASS closes access to writing of all protected bits. Note that access is opened for maximum 32 CCLKs if the “close access” password is not written. If “open access” password is written again before the end of 32 CCLK cycles, there will be a recount of 32 CCLK cycles. The protected bits include the N- and K-Divider bits, NDIV and KDIV; the Watchdog Timer enable bit, WDTEN; and the power-down and slow-down enable bits, PD and SD. Data Sheet 29 V0.9, 2006-12 XC886/888CLM Functional Description 3.2.3.1 Password Register PASSWD Password Register 7 6 5 PASS wh 4 3 2 PROTECT _S rh Reset Value: 07H 1 MODE rw 0 Field MODE Bits [1:0] Type Description rw Bit Protection Scheme Control Bits 00 Scheme Disabled. 01 Scheme Enabled (default). Others:Scheme Enabled. These two bits cannot be written directly. To change the value between 11B and 00B, the bit field PASS must be written with 11000B; only then, will the MODE[1:0] be registered. PROTECT_S 2 rh Bit Protection Signal Status Bit This bit shows the status of the protection. 0 Software is able to write to all protected bits. 1 Software is unable to write to any protected bits. Password Bits The Bit Protection Scheme only recognizes three patterns. 11000B Enables writing of the bit field MODE. 10011B Opens access to writing of all protected bits. 10101B Closes access to writing of all protected bits PASS [7:3] wh Data Sheet 30 V0.9, 2006-12 XC886/888CLM Functional Description 3.2.4 XC886/888 Register Overview The SFRs of the XC886/888 are organized into groups according to their functional units. The contents (bits) of the SFRs are summarized in Chapter 3.2.4.1 to Chapter 3.2.4.14. Note: The addresses of the bitaddressable SFRs appear in bold typeface. 3.2.4.1 CPU Registers The CPU SFRs can be accessed in both the standard and mapped memory areas (RMAP = 0 or 1). Table 5 RMAP = 0 or 1 81H SP Reset: 07H Stack Pointer Register DPL Reset: 00H Data Pointer Register Low DPH Reset: 00H Data Pointer Register High PCON Reset: 00H Power Control Register TCON Reset: 00H Timer Control Register TMOD Reset: 00H Timer Mode Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type 8AH TL0 Reset: 00H Timer 0 Register Low TL1 Reset: 00H Timer 1 Register Low TH0 Reset: 00H Timer 0 Register High TH1 Reset: 00H Timer 1 Register High SCON Reset: 00H Serial Channel Control Register SBUF Reset: 00H Serial Data Buffer Register EO Reset: 00H Extended Operation Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type 0 r SM0 rw SM1 rw SM2 rw REN rw VAL rwh TRAP_ EN rw 0 r DPSE L0 rw DPL7 rw DPH7 rw SMOD rw TF1 rwh GATE 1 rw TR1 rw T1S rw DPL6 rw DPH6 rw DPL5 rw DPH5 rw 0 r TF0 rwh T1M rw VAL rwh VAL rwh VAL rwh VAL rwh TB8 rw RB8 rwh TI rwh RI rwh TR0 rw DPL4 rw DPH4 rw SP rw DPL3 rw DPH3 rw GF1 rw IE1 rwh GATE 0 rw DPL2 rw DPH2 rw GF0 rw IT1 rw T0S rw DPL1 rw DPH1 rw 0 r IE0 rwh T0M rw DPL0 rw DPH0 rw IDLE rw IT0 rw CPU Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name 82H 83H 87H 88H 89H 8BH 8CH 8DH 98H 99H A2H Data Sheet 31 V0.9, 2006-12 XC886/888CLM Functional Description Table 5 A8H CPU Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type CY rwh ACC7 rw ECCIP 3 rw B7 rw PCCIP 3 rw PCCIP 3H rw Addr Register Name IEN0 Reset: 00H Interrupt Enable Register 0 IP Reset: 00H Interrupt Priority Register IPH Reset: 00H Interrupt Priority High Register PSW Reset: 00H Program Status Word Register ACC Reset: 00H Accumulator Register IEN1 Reset: 00H Interrupt Enable Register 1 7 EA rw 0 r 0 r 6 0 r 5 ET2 rw PT2 rw PT2H rw 4 ES rw PS rw PSH rw RS1 rw ACC4 rw ECCIP 0 rw B4 rw PCCIP 0 rw PCCIP 0H rw 3 ET1 rw PT1 rw PT1H rw RS0 rw ACC3 rw EXM rw B3 rw PXM rw PXMH rw 2 EX1 rw PX1 rw PX1H rw OV rwh ACC2 rw EX2 rw B2 rw PX2 rw PX2H rw 1 ET0 rw PT0 rw PT0H rw F1 rw ACC1 rw ESSC rw B1 rw PSSC rw PSSC H rw 0 EX0 rw PX0 rw PX0H rw P rh ACC0 rw EADC rw B0 rw PADC rw PADC H rw B8H B9H D0H AC rwh ACC6 rw ECCIP 2 rw B6 rw PCCIP 2 rw PCCIP 2H rw F0 rw ACC5 rw ECCIP 1 rw B5 rw PCCIP 1 rw PCCIP 1H rw E0H E8H F0H B B Register Reset: 00H Bit Field Type Bit Field Type F8H IP1 Reset: 00H Interrupt Priority 1 Register F9H IPH1 Reset: 00H Bit Field Interrupt Priority 1 High Register Type 3.2.4.2 MDU Registers The MDU SFRs can be accessed in the mapped memory area (RMAP = 1). Table 6 RMAP = 1 B0H MDUSTAT Reset: 00H MDU Status Register MDUCON Reset: 00H MDU Control Register Bit Field Type Bit Field Type B2H MD0 Reset: 00H MDU Operand Register 0 MR0 Reset: 00H MDU Result Register 0 MD1 Reset: 00H MDU Operand Register 1 Bit Field Type Bit Field Type Bit Field Type IE rw IR rw 0 r RSEL rw STAR T rwh DATA rw DATA rh DATA rw BSY rh IERR rwh IRDY rwh MDU Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name B1H OPCODE rw B2H B3H Data Sheet 32 V0.9, 2006-12 XC886/888CLM Functional Description Table 6 B3H MDU Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Addr Register Name MR1 Reset: 00H MDU Result Register 1 MD2 Reset: 00H MDU Operand Register 2 MR2 Reset: 00H MDU Result Register 2 MD3 Reset: 00H MDU Operand Register 3 MR3 Reset: 00H MDU Result Register 3 MD4 Reset: 00H MDU Operand Register 4 MR4 Reset: 00H MDU Result Register 4 MD5 Reset: 00H MDU Operand Register 5 MR5 Reset: 00H MDU Result Register 5 7 6 5 4 DATA rh DATA rw DATA rh DATA rw DATA rh DATA rw DATA rh DATA rw DATA rh 3 2 1 0 B4H B4H B5H B5H B6H B6H B7H B7H 3.2.4.3 CORDIC Registers The CORDIC SFRs can be accessed in the mapped memory area (RMAP = 1). Table 7 RMAP = 1 9AH CD_CORDXL Reset: 00H CORDIC X Data Low Byte CD_CORDXH Reset: 00H CORDIC X Data High Byte CD_CORDYL Reset: 00H CORDIC Y Data Low Byte CD_CORDYH Reset: 00H CORDIC Y Data High Byte CD_CORDZL Reset: 00H CORDIC Z Data Low Byte CD_CORDZH Reset: 00H CORDIC Z Data High Byte Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type DATAL rw DATAH rw DATAL rw DATAH rw DATAL rw DATAH rw CORDIC Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name 9BH 9CH 9DH 9EH 9FH Data Sheet 33 V0.9, 2006-12 XC886/888CLM Functional Description Table 7 A0H CORDIC Register Overview (cont’d) Bit Bit Field Type Bit Field Type Addr Register Name CD_STATC Reset: 00H CORDIC Status and Data Control Register CD_CON Reset: 00H CORDIC Control Register 7 KEEP Z rw MPS rw 6 KEEP Y rw 5 KEEP X rw X_USI GN rw 4 DMAP rw ST_M ODE rw 3 INT_E N rw ROTV EC rw 2 EOC rwh MODE rw 1 ERRO R rh 0 BSY rh ST rwh A1H 3.2.4.4 System Control Registers The system control SFRs can be accessed in the mapped memory area (RMAP = 0). Table 8 RMAP = 0 or 1 8FH SYSCON0 Reset: 04H System Control Register 0 Bit Field Type RMAP = 0 BFH SCU_PAGE Page Register Reset: 00H Bit Field Type OP w STNR w 0 r PAGE rw 0 r IMOD E rw 0 r 1 r 0 r RMAP rw SCU Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name RMAP = 0, PAGE 0 B3H MODPISEL Reset: 00H Peripheral Input Select Register Bit Field Type B4H IRCON0 Reset: 00H Interrupt Request Register 0 Bit Field Type B5H IRCON1 Reset: 00H Interrupt Request Register 1 Bit Field Type B6H IRCON2 Reset: 00H Interrupt Request Register 2 Bit Field Type B7H EXICON0 Reset: F0H External Interrupt Control Register 0 EXICON1 Reset: 3FH External Interrupt Control Register 1 NMICON Reset: 00H NMI Control Register Bit Field Type Bit Field Type Bit Field Type 0 r EXINT3 rw 0 r NMI ECC rw NMI VDDP rw 0 r 0 r 0 r URRIS H rw EXINT 6 rwh CANS RC2 rwh 0 r JTAGT DIS rw EXINT 5 rwh CANS RC1 rwh JTAGT CKS rw EXINT 4 rwh ADCS R1 rwh CANS RC3 rwh EXINT2 rw EXINT6 rw NMI VDD rw NMI OCDS rw EXINT1 rw EXINT5 rw NMI FLASH rw NMI PLL rw EXINT 2IS rw EXINT 3 rwh ADCS R0 rwh EXINT 1IS rw EXINT 2 rwh RIR rwh 0 r EXINT 0IS rw EXINT 1 rwh TIR rwh URRIS rw EXINT 0 rwh EIR rwh CANS RC0 rwh EXINT0 rw EXINT4 rw NMI WDT rw BAH BBH Data Sheet 34 V0.9, 2006-12 XC886/888CLM Functional Description Table 8 BCH SCU Register Overview (cont’d) Bit Bit Field Type Addr Register Name NMISR Reset: 00H NMI Status Register 7 0 r 6 FNMI ECC rwh BGSEL rw 5 FNMI VDDP rwh 0 r 4 FNMI VDD rwh BRDIS rw 3 FNMI OCDS rwh 2 FNMI FLASH rwh BRPRE rw 1 FNMI PLL rwh 0 FNMI WDT rwh R rw BDH BCON Reset: 00H Baud Rate Control Register BG Reset: 00H Baud Rate Timer/Reload Register FDCON Reset: 00H Fractional Divider Control Register FDSTEP Reset: 00H Fractional Divider Reload Register FDRES Reset: 00H Fractional Divider Result Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type BEH BR_VALUE rwh BGS rw SYNE N rw ERRS YN rwh EOFS YN rwh STEP rw RESULT rh BRK rwh NDOV rwh FDM rw FDEN rw E9H EAH EBH RMAP = 0, PAGE 1 B3H ID Identity Register Reset: UUH Bit Field Type Bit Field Type B5H PMCON1 Reset: 00H Power Mode Control Register 1 Bit Field Type B6H OSC_CON Reset: 08H OSC Control Register Bit Field Type B7H PLL_CON Reset: 90H PLL Control Register Bit Field Type BAH CMCON Reset: 10H Clock Control Register Bit Field Type BBH PASSWD Reset: 07H Password Register Bit Field Type BCH FEAL Reset: 00H Flash Error Address Register Low FEAH Reset: 00H Flash Error Address Register High Bit Field Type Bit Field Type VCO SEL rw KDIV rw 0 r 0 r WDT RST rwh CDC_ DIS rw 0 r NDIV rw 0 r PASS wh ECCERRADDR rh ECCERRADDR rh FCCF G rw PRODID r WKRS rwh CAN_ DIS rw WK SEL rw MDU_ DIS rw OSC PD rw SD rw T2_ DIS rw XPD rw VCO BYP rw PD rwh CCU_ DIS rw OSC SS rw OSC DISC rw SSC_ DIS rw ORD RES rwh RESL D rwh VERID r WS rw ADC_ DIS rw OSCR rh LOCK rh B4H PMCON0 Reset: 00H Power Mode Control Register 0 CLKREL rw PROT ECT_S rh MODE rw BDH Data Sheet 35 V0.9, 2006-12 XC886/888CLM Functional Description Table 8 BEH SCU Register Overview (cont’d) Bit Bit Field Type Addr Register Name COCON Reset: 00H Clock Output Control Register 7 0 r 6 5 TLEN rw 4 COUT S rw 0 r 3 2 COREL rw 1 0 E9H MISC_CON Reset: 00H Miscellaneous Control Register Bit Field Type DFLAS HEN rwh RMAP = 0, PAGE 3 B3H XADDRH Reset: F0H On-chip XRAM Address Higher Order IRCON3 Reset: 00H Interrupt Request Register 3 Bit Field Type Bit Field Type B5H IRCON4 Reset: 00H Interrupt Request Register 4 Bit Field Type B7H MODPISEL1 Reset: 00H Peripheral Input Select Register 1 MODPISEL2 Reset: 00H Peripheral Input Select Register 2 PMCON2 Reset: 00H Power Mode Control Register 2 Bit Field Type Bit Field Type Bit Field Type BDH MODSUSP Reset: 01H Module Suspend Control Register Bit Field Type 0 r EXINT 6IS rw 0 r 0 r 0 r 0 r 0 r T21SU SP rw T2SUS P rw T13SU SP rw CANS RC5 rwh CANS RC7 rwh CCU6 SR1 rwh CCU6 SR3 rwh UR1RIS rw T21IS rw ADDRH rw 0 r 0 r T21EX IS rw T2IS rw CANS RC4 rwh CANS RC6 rwh JTAGT DIS1 rw T1IS rw UART 1_DIS rw T12SU SP rw CCU6 SR0 rwh CCU6 SR2 rwh JTAGT CKS1 rw T0IS rw T21_D IS rw WDTS USP rw B4H BAH BBH 3.2.4.5 WDT Registers The WDT SFRs can be accessed in the mapped memory area (RMAP = 1). Table 9 RMAP = 1 BBH WDTCON Reset: 00H Watchdog Timer Control Register WDTREL Reset: 00H Watchdog Timer Reload Register WDTWINB Reset: 00H Watchdog Window-Boundary Count Register Bit Field Type Bit Field Type Bit Field Type 0 r WINB EN rw WDTP R rh 0 r WDTE N rw WDTR S rwh WDTI N rw WDT Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name BCH WDTREL rw WDTWINB rw BDH Data Sheet 36 V0.9, 2006-12 XC886/888CLM Functional Description Table 9 BEH WDT Register Overview (cont’d) Bit Bit Field Type Bit Field Type Addr Register Name WDTL Reset: 00H Watchdog Timer Register Low WDTH Reset: 00H Watchdog Timer Register High 7 6 5 4 WDT rh WDT rh 3 2 1 0 BFH 3.2.4.6 Port Registers The Port SFRs can be accessed in the standard memory area (RMAP = 0). Table 10 RMAP = 0 B2H PORT_PAGE Page Register Reset: 00H Bit Field Type OP w STNR w 0 r PAGE rw Port Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name RMAP = 0, PAGE 0 80H P0_DATA Reset: 00H P0 Data Register P0_DIR Reset: 00H P0 Direction Register P1_DATA Reset: 00H P1 Data Register P1_DIR Reset: 00H P1 Direction Register P5_DATA Reset: 00H P5 Data Register P5_DIR Reset: 00H P5 Direction Register P2_DATA Reset: 00H P2 Data Register P2_DIR Reset: 00H P2 Direction Register P3_DATA Reset: 00H P3 Data Register P3_DIR Reset: 00H P3 Direction Register P4_DATA Reset: 00H P4 Data Register P4_DIR Reset: 00H P4 Direction Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw 86H 90H 91H 92H 93H A0H A1H B0H B1H C8H C9H Data Sheet 37 V0.9, 2006-12 XC886/888CLM Functional Description Table 10 RMAP = 0, PAGE 1 80H P0_PUDSEL Reset: FFH P0 Pull-Up/Pull-Down Select Register P0_PUDEN Reset: C4H P0 Pull-Up/Pull-Down Enable Register P1_PUDSEL Reset: FFH P1 Pull-Up/Pull-Down Select Register P1_PUDEN Reset: FFH P1 Pull-Up/Pull-Down Enable Register P5_PUDSEL Reset: FFH P5 Pull-Up/Pull-Down Select Register P5_PUDEN Reset: FFH P5 Pull-Up/Pull-Down Enable Register P2_PUDSEL Reset: FFH P2 Pull-Up/Pull-Down Select Register P2_PUDEN Reset: 00H P2 Pull-Up/Pull-Down Enable Register P3_PUDSEL Reset: BFH P3 Pull-Up/Pull-Down Select Register P3_PUDEN Reset: 40H P3 Pull-Up/Pull-Down Enable Register P4_PUDSEL Reset: FFH P4 Pull-Up/Pull-Down Select Register P4_PUDEN Reset: 04H P4 Pull-Up/Pull-Down Enable Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P7 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P6 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P5 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P4 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P3 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P2 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P1 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw P0 rw Port Register Overview (cont’d) Bit 7 6 5 4 3 2 1 0 Addr Register Name 86H 90H 91H 92H 93H A0H A1H B0H B1H C8H C9H RMAP = 0, PAGE 2 80H P0_ALTSEL0 Reset: 00H P0 Alternate Select 0 Register P0_ALTSEL1 Reset: 00H P0 Alternate Select 1 Register P1_ALTSEL0 Reset: 00H P1 Alternate Select 0 Register P1_ALTSEL1 Reset: 00H P1 Alternate Select 1 Register P5_ALTSEL0 Reset: 00H P5 Alternate Select 0 Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type P7 rw P7 rw P7 rw P7 rw P7 rw P6 rw P6 rw P6 rw P6 rw P6 rw P5 rw P5 rw P5 rw P5 rw P5 rw P4 rw P4 rw P4 rw P4 rw P4 rw P3 rw P3 rw P3 rw P3 rw P3 rw P2 rw P2 rw P2 rw P2 rw P2 rw P1 rw P1 rw P1 rw P1 rw P1 rw P0 rw P0 rw P0 rw P0 rw P0 rw 86H 90H 91H 92H Data Sheet 38 V0.9, 2006-12 XC886/888CLM Functional Description Table 10 93H Port Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Addr Register Name P5_ALTSEL1 Reset: 00H P5 Alternate Select 1 Register P3_ALTSEL0 Reset: 00H P3 Alternate Select 0 Register P3_ALTSEL1 Reset: 00H P3 Alternate Select 1 Register P4_ALTSEL0 Reset: 00H P4 Alternate Select 0 Register P4_ALTSEL1 Reset: 00H P4 Alternate Select 1 Register 7 P7 rw P7 rw P7 rw P7 rw P7 rw 6 P6 rw P6 rw P6 rw P6 rw P6 rw 5 P5 rw P5 rw P5 rw P5 rw P5 rw 4 P4 rw P4 rw P4 rw P4 rw P4 rw 3 P3 rw P3 rw P3 rw P3 rw P3 rw 2 P2 rw P2 rw P2 rw P2 rw P2 rw 1 P1 rw P1 rw P1 rw P1 rw P1 rw 0 P0 rw P0 rw P0 rw P0 rw P0 rw B0H B1H C8H C9H RMAP = 0, PAGE 3 80H P0_OD Reset: 00H P0 Open Drain Control Register P1_OD Reset: 00H P1 Open Drain Control Register P5_OD Reset: 00H P5 Open Drain Control Register P3_OD Reset: 00H P3 Open Drain Control Register P4_OD Reset: 00H P4 Open Drain Control Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type P7 rw P7 rw P7 rw P7 rw P7 rw P6 rw P6 rw P6 rw P6 rw P6 rw P5 rw P5 rw P5 rw P5 rw P5 rw P4 rw P4 rw P4 rw P4 rw P4 rw P3 rw P3 rw P3 rw P3 rw P3 rw P2 rw P2 rw P2 rw P2 rw P2 rw P1 rw P1 rw P1 rw P1 rw P1 rw P0 rw P0 rw P0 rw P0 rw P0 rw 90H 92H B0H C8H 3.2.4.7 ADC Registers The ADC SFRs can be accessed in the standard memory area (RMAP = 0). Table 11 RMAP = 0 D1H ADC_PAGE Page Register Reset: 00H Bit Field Type OP w STNR w 0 r PAGE rw ADC Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name RMAP = 0, PAGE 0 CAH ADC_GLOBCTR Reset: 30H Global Control Register ADC_GLOBSTR Reset: 00H Global Status Register Bit Field Type Bit Field Type CCH ADC_PRAR Reset: 00H Priority and Arbitration Register Bit Field Type ASEN 1 rw ANON rw 0 r ASEN 0 rw 0 r DW rw CTC rw CHNR rh ARBM rw CSM1 rw 0 r PRIO1 rw 0 r SAMP LE rh CSM0 rw BUSY rh PRIO0 rw CBH Data Sheet 39 V0.9, 2006-12 XC886/888CLM Functional Description Table 11 CDH ADC Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type SYNE N1 rw SYNE N0 rw Addr Register Name ADC_LCBR Reset: B7H Limit Check Boundary Register ADC_INPCR0 Reset: 00H Input Class 0 Register ADC_ETRCR Reset: 00H External Trigger Control Register 7 6 rw 5 4 3 2 rw 1 0 BOUND1 BOUND0 CEH STC rw ETRSEL1 rw ETRSEL0 rw CFH RMAP = 0, PAGE 1 CAH ADC_CHCTR0 Reset: 00H Channel Control Register 0 ADC_CHCTR1 Reset: 00H Channel Control Register 1 ADC_CHCTR2 Reset: 00H Channel Control Register 2 ADC_CHCTR3 Reset: 00H Channel Control Register 3 ADC_CHCTR4 Reset: 00H Channel Control Register 4 ADC_CHCTR5 Reset: 00H Channel Control Register 5 ADC_CHCTR6 Reset: 00H Channel Control Register 6 ADC_CHCTR7 Reset: 00H Channel Control Register 7 Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type 0 r 0 r 0 r 0 r 0 r 0 r 0 r 0 r LCC rw LCC rw LCC rw LCC rw LCC rw LCC rw LCC rw LCC rw 0 r 0 r 0 r 0 r 0 r 0 r 0 r 0 r RESRSEL rw RESRSEL rw RESRSEL rw RESRSEL rw RESRSEL rw RESRSEL rw RESRSEL rw RESRSEL rw CBH CCH CDH CEH CFH D2H D3H RMAP = 0, PAGE 2 CAH ADC_RESR0L Reset: 00H Result Register 0 Low ADC_RESR0H Reset: 00H Result Register 0 High ADC_RESR1L Reset: 00H Result Register 1 Low ADC_RESR1H Reset: 00H Result Register 1 High ADC_RESR2L Reset: 00H Result Register 2 Low ADC_RESR2H Reset: 00H Result Register 2 High ADC_RESR3L Reset: 00H Result Register 3 Low Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type RESULT rh 0 r VF rh RESULT rh 0 r VF rh RESULT rh 0 r VF rh RESULT rh 0 r VF rh DRC rh CHNR rh CBH RESULT rh DRC rh CHNR rh CCH CDH RESULT rh DRC rh CHNR rh CEH CFH RESULT rh DRC rh CHNR rh D2H Data Sheet 40 V0.9, 2006-12 XC886/888CLM Functional Description Table 11 D3H ADC Register Overview (cont’d) Bit Bit Field Type Addr Register Name ADC_RESR3H Reset: 00H Result Register 3 High 7 6 5 4 rh 3 2 1 0 RESULT RMAP = 0, PAGE 3 CAH ADC_RESRA0L Reset: 00H Result Register 0, View A Low ADC_RESRA0H Reset: 00H Result Register 0, View A High ADC_RESRA1L Reset: 00H Result Register 1, View A Low ADC_RESRA1H Reset: 00H Result Register 1, View A High ADC_RESRA2L Reset: 00H Result Register 2, View A Low ADC_RESRA2H Reset: 00H Result Register 2, View A High ADC_RESRA3L Reset: 00H Result Register 3, View A Low ADC_RESRA3H Reset: 00H Result Register 3, View A High Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type RESULT rh VF rh RESULT rh VF rh RESULT rh VF rh RESULT rh VF rh DRC rh CHNR rh CBH RESULT rh DRC rh CHNR rh CCH CDH RESULT rh DRC rh CHNR rh CEH CFH RESULT rh DRC rh CHNR rh D2H D3H RESULT rh RMAP = 0, PAGE 4 CAH ADC_RCR0 Reset: 00H Result Control Register 0 Bit Field Type CBH ADC_RCR1 Reset: 00H Result Control Register 1 Bit Field Type CCH ADC_RCR2 Reset: 00H Result Control Register 2 Bit Field Type CDH ADC_RCR3 Reset: 00H Result Control Register 3 Bit Field Type CEH ADC_VFCR Reset: 00H Valid Flag Clear Register Bit Field Type VFCT R rw VFCT R rw VFCT R rw VFCT R rw WFR rw WFR rw WFR rw WFR rw 0 r 0 r 0 r 0 r 0 r IEN rw IEN rw IEN rw IEN rw VFC3 w 0 r 0 r 0 r 0 r VFC2 w VFC1 w DRCT R rw DRCT R rw DRCT R rw DRCT R rw VFC0 w RMAP = 0, PAGE 5 CAH ADC_CHINFR Reset: 00H Channel Interrupt Flag Register Bit Field Type CBH ADC_CHINCR Reset: 00H Channel Interrupt Clear Register Bit Field Type CHINF 7 rh CHINC 7 w CHINF 6 rh CHINC 6 w CHINF 5 rh CHINC 5 w CHINF 4 rh CHINC 4 w CHINF 3 rh CHINC 3 w CHINF 2 rh CHINC 2 w CHINF 1 rh CHINC 1 w CHINF 0 rh CHINC 0 w Data Sheet 41 V0.9, 2006-12 XC886/888CLM Functional Description Table 11 CCH ADC Register Overview (cont’d) Bit Bit Field Type Addr Register Name ADC_CHINSR Reset: 00H Channel Interrupt Set Register 7 CHINS 7 w CHINP 7 rw EVINF 7 rh EVINC 7 w EVINS 7 w EVINP 7 rw 6 CHINS 6 w CHINP 6 rw EVINF 6 rh EVINC 6 w EVINS 6 w EVINP 6 rw 5 CHINS 5 w CHINP 5 rw EVINF 5 rh EVINC 5 w EVINS 5 w EVINP 5 rw 4 CHINS 4 w CHINP 4 rw EVINF 4 rh EVINC 4 w EVINS 4 w EVINP 4 rw 3 CHINS 3 w CHINP 3 rw 0 r 0 r 0 r 0 r 2 CHINS 2 w CHINP 2 rw 1 CHINS 1 w CHINP 1 rw EVINF 1 rh EVINC 1 w EVINS 1 w EVINP 1 rw 0 CHINS 0 w CHINP 0 rw EVINF 0 rh EVINC 0 w EVINS 0 w EVINP 0 rw CDH ADC_CHINPR Reset: 00H Channel Interrupt Node Pointer Register ADC_EVINFR Reset: 00H Event Interrupt Flag Register Bit Field Type Bit Field Type CEH CFH ADC_EVINCR Reset: 00H Event Interrupt Clear Flag Register Bit Field Type D2H Bit Field ADC_EVINSR Reset: 00H Event Interrupt Set Flag Register Type D3H ADC_EVINPR Reset: 00H Event Interrupt Node Pointer Register Bit Field Type RMAP = 0, PAGE 6 CAH ADC_CRCR1 Reset: 00H Conversion Request Control Register 1 ADC_CRPR1 Reset: 00H Conversion Request Pending Register 1 ADC_CRMR1 Reset: 00H Conversion Request Mode Register 1 ADC_QMR0 Reset: 00H Queue Mode Register 0 Bit Field Type Bit Field Type Bit Field Type Bit Field Type CEH ADC_QSR0 Reset: 20H Queue Status Register 0 Bit Field Type CFH ADC_Q0R0 Reset: 00H Queue 0 Register 0 ADC_QBUR0 Reset: 00H Queue Backup Register 0 ADC_QINR0 Reset: 00H Queue Input Register 0 Bit Field Type Bit Field Type Bit Field Type CH7 rwh CHP7 rwh Rsv r CEV w Rsv r EXTR rh EXTR rh EXTR w CH6 rwh CHP6 rwh LDEV w TREV w 0 r ENSI rh ENSI rh ENSI w CH5 rwh CHP5 rwh CLRP ND w FLUS H w EMPT Y rh RF rh RF rh RF w CH4 rwh CHP4 rwh SCAN rw CLRV w EV rh V rh V rh 0 r 0 r 0 r ENSI rw 0 r 0 r ENTR rw ENTR rw 0 r 0 r 0 r 0 r FILL rh REQCHNR rh REQCHNR rh REQCHNR w ENGT rw ENGT rw CBH CCH CDH D2H D3H Data Sheet 42 V0.9, 2006-12 XC886/888CLM Functional Description 3.2.4.8 Timer 2 Registers The Timer 2 SFRs can be accessed in the standard memory area (RMAP = 0). Table 12 RMAP = 0 C0H T2_T2CON Reset: 00H Timer 2 Control Register Bit Field Type C1H T2_T2MOD Reset: 00H Timer 2 Mode Register Bit Field Type C2H T2_RC2L Reset: 00H Timer 2 Reload/Capture Register Low T2_RC2H Reset: 00H Timer 2 Reload/Capture Register High T2_T2L Reset: 00H Timer 2 Register Low T2_T2H Reset: 00H Timer 2 Register High Bit Field Type Bit Field Type Bit Field Type Bit Field Type TF2 rwh T2RE GS rw EXF2 rwh T2RH EN rw EDGE SEL rw 0 r PREN rw RC2 rwh RC2 rwh THL2 rwh THL2 rwh rw EXEN 2 rw TR2 rwh T2PRE rw rw C/T2 rw CP/ RL2 rw DCEN rw T2 Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name C3H C4H C5H 3.2.4.9 Timer 21 Registers The Timer 21 SFRs can be accessed in the mapped memory area (RMAP = 1). Table 13 RMAP = 1 C0H T21_T2CON Reset: 00H Timer 2 Control Register Bit Field Type C1H T21_T2MOD Reset: 00H Timer 2 Mode Register Bit Field Type C2H T21_RC2L Reset: 00H Timer 2 Reload/Capture Register Low T21_RC2H Reset: 00H Timer 2 Reload/Capture Register High T21_T2L Reset: 00H Timer 2 Register Low Bit Field Type Bit Field Type Bit Field Type TF2 rwh T2RE GS rw EXF2 rwh T2RH EN rw EDGE SEL rw 0 r PREN rw RC2 rwh RC2 rwh THL2 rwh rw EXEN 2 rw TR2 rwh T2PRE rw rw C/T2 rw CP/ RL2 rw DCEN rw T21 Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name C3H C4H Data Sheet 43 V0.9, 2006-12 XC886/888CLM Functional Description Table 13 C5H T21 Register Overview (cont’d) Bit Bit Field Type Addr Register Name T21_T2H Reset: 00H Timer 2 Register High 7 6 5 4 THL2 rwh 3 2 1 0 3.2.4.10 CCU6 Registers The CCU6 SFRs can be accessed in the standard memory area (RMAP = 0). Table 14 RMAP = 0 A3H CCU6_PAGE Page Register Reset: 00H Bit Field Type OP w STNR w 0 r PAGE rw CCU6 Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name RMAP = 0, PAGE 0 9AH CCU6_CC63SRL Reset: 00H Capture/Compare Shadow Register for Channel CC63 Low CCU6_CC63SRH Reset: 00H Capture/Compare Shadow Register for Channel CC63 High CCU6_TCTR4L Reset: 00H Timer Control Register 4 Low Bit Field Type Bit Field Type Bit Field Type 9DH CCU6_TCTR4H Reset: 00H Timer Control Register 4 High Bit Field Type 9EH CCU6_MCMOUTSL Reset: 00H Multi-Channel Mode Output Shadow Register Low CCU6_MCMOUTSH Reset: 00H Multi-Channel Mode Output Shadow Register High CCU6_ISRL Reset: 00H Capture/Compare Interrupt Status Reset Register Low CCU6_ISRH Reset: 00H Capture/Compare Interrupt Status Reset Register High CCU6_CMPMODIFL Reset: 00H Compare State Modification Register Low CCU6_CMPMODIFH Reset: 00H Compare State Modification Register High Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type T12 STD w T13 STD w STRM CM w STRH P w RT12 PM w RSTR w 0 r 0 r T12 STR w T13 STR w 0 r 0 r RT12 OM w RIDLE w MCC6 3S w MCC6 3R w RCC6 2F w RWH E w CURHS rw RCC6 2R w RCHE w 0 r 0 r RCC6 1F w 0 r RCC6 1R w RTRP F w MCC6 2S w MCC6 2R w 0 r 0 r CC63SL rw CC63SH rw DT RES w T12 RES w T13 RES w MCMPS rw EXPHS rw RCC6 0F w RT13 PM w MCC6 1S w MCC6 1R w RCC6 0R w RT13 CM w MCC6 0S w MCC6 0R w T12R S w T13R S w T12R R w T13R R w 9BH 9CH 9FH A4H A5H A6H A7H Data Sheet 44 V0.9, 2006-12 XC886/888CLM Functional Description Table 14 FAH CCU6 Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Addr Register Name CCU6_CC60SRL Reset: 00H Capture/Compare Shadow Register for Channel CC60 Low CCU6_CC60SRH Reset: 00H Capture/Compare Shadow Register for Channel CC60 High CCU6_CC61SRL Reset: 00H Capture/Compare Shadow Register for Channel CC61 Low CCU6_CC61SRH Reset: 00H Capture/Compare Shadow Register for Channel CC61 High CCU6_CC62SRL Reset: 00H Capture/Compare Shadow Register for Channel CC62 Low CCU6_CC62SRH Reset: 00H Capture/Compare Shadow Register for Channel CC62 High 7 6 5 4 rwh 3 2 1 0 CC60SL FBH CC60SH rwh CC61SL rwh CC61SH rwh CC62SL rwh CC62SH rwh FCH FDH FEH FFH RMAP = 0, PAGE 1 9AH CCU6_CC63RL Reset: 00H Capture/Compare Register for Channel CC63 Low CCU6_CC63RH Reset: 00H Capture/Compare Register for Channel CC63 High CCU6_T12PRL Reset: 00H Timer T12 Period Register Low CCU6_T12PRH Reset: 00H Timer T12 Period Register High CCU6_T13PRL Reset: 00H Timer T13 Period Register Low CCU6_T13PRH Reset: 00H Timer T13 Period Register High CCU6_T12DTCL Reset: 00H Dead-Time Control Register for Timer T12 Low CCU6_T12DTCH Reset: 00H Dead-Time Control Register for Timer T12 High CCU6_TCTR0L Reset: 00H Timer Control Register 0 Low Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type A7H CCU6_TCTR0H Reset: 00H Timer Control Register 0 High Bit Field Type FAH CCU6_CC60RL Reset: 00H Capture/Compare Register for Channel CC60 Low Bit Field Type 0 r CTM rw 0 r DTR2 rh CDIR rh DTR1 rh STE1 2 rh STE1 3 rh DTR0 rh T12R rh T13R rh CC63VL rh CC63VH rh T12PVL rwh T12PVH rwh T13PVL rwh T13PVH rwh DTM rw 0 r T12 PRE rw T13 PRE rw DTE2 rw DTE1 rw T12CLK rw T13CLK rw DTE0 rw 9BH 9CH 9DH 9EH 9FH A4H A5H A6H CC60VL rh Data Sheet 45 V0.9, 2006-12 XC886/888CLM Functional Description Table 14 FBH CCU6 Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Addr Register Name CCU6_CC60RH Reset: 00H Capture/Compare Register for Channel CC60 High CCU6_CC61RL Reset: 00H Capture/Compare Register for Channel CC61 Low CCU6_CC61RH Reset: 00H Capture/Compare Register for Channel CC61 High CCU6_CC62RL Reset: 00H Capture/Compare Register for Channel CC62 Low CCU6_CC62RH Reset: 00H Capture/Compare Register for Channel CC62 High 7 6 5 4 rh 3 2 1 0 CC60VH FCH CC61VL rh CC61VH rh CC62VL rh CC62VH rh FDH FEH FFH RMAP = 0, PAGE 2 9AH CCU6_T12MSELL Reset: 00H T12 Capture/Compare Mode Select Register Low CCU6_T12MSELH Reset: 00H T12 Capture/Compare Mode Select Register High CCU6_IENL Reset: 00H Capture/Compare Interrupt Enable Register Low Bit Field Type Bit Field Type Bit Field DBYP rw ENT1 2 PM rw EN STR rw ENT1 2 OM rw EN IDLE rw MSEL61 rw HSYNC rw ENCC 62F rw EN WHE rw ENCC 62R rw EN CHE rw ENCC 61F rw 0 r ENCC 61R rw EN TRPF rw MSEL60 rw MSEL62 rw ENCC 60F rw ENT1 3PM rw ENCC 60R rw ENT1 3CM rw 9BH 9CH Type 9DH CCU6_IENH Reset: 00H Capture/Compare Interrupt Enable Register High CCU6_INPL Reset: 40H Capture/Compare Interrupt Node Pointer Register Low CCU6_INPH Reset: 39H Capture/Compare Interrupt Node Pointer Register High CCU6_ISSL Reset: 00H Capture/Compare Interrupt Status Set Register Low CCU6_ISSH Reset: 00H Capture/Compare Interrupt Status Set Register High CCU6_PSLR Reset: 00H Passive State Level Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type 9EH INPCHE rw 0 r ST12 PM w SSTR w PSL63 rwh 0 r 0 r T13TED rw ST12 OM w SIDLE w 0 r INPCC62 rw INPT13 rw SCC6 2F w SWHE w SCC6 2R w SCHE w INPCC61 rw INPT12 rw SCC6 1F w SWH C w PSL rwh SCC6 1R w STRP F w INPCC60 rw INPERR rw SCC6 0F w ST13 PM w SCC6 0R w ST13 CM w 9FH A4H A5H A6H A7H CCU6_MCMCTR Reset: 00H Bit Field Multi-Channel Mode Control Register Type CCU6_TCTR2L Reset: 00H Timer Control Register 2 Low Bit Field Type SWSYN rw 0 r T13TEC rw SWSEL rw T13 SSC rw T12 SSC rw FAH Data Sheet 46 V0.9, 2006-12 XC886/888CLM Functional Description Table 14 FBH CCU6 Register Overview (cont’d) Bit Bit Field Type Bit Field Type MCM EN rw ECT1 3O rw 0 r 0 r 0 r TRPP EN rw TRPE N13 rw Addr Register Name CCU6_TCTR2H Reset: 00H Timer Control Register 2 High CCU6_MODCTRL Reset: 00H Modulation Control Register Low 7 6 0 r 5 4 3 rw 2 1 rw 0 T13RSEL T12RSEL FCH T12MODEN rw T13MODEN rw TRPM 2 rw TRPEN rw TRPM 1 rw TRPM 0 rw FDH CCU6_MODCTRH Reset: 00H Modulation Control Register High Bit Field Type FEH CCU6_TRPCTRL Reset: 00H Trap Control Register Low Bit Field Type FFH CCU6_TRPCTRH Reset: 00H Trap Control Register High Bit Field Type RMAP = 0, PAGE 3 9AH CCU6_MCMOUTL Reset: 00H Multi-Channel Mode Output Register Low CCU6_MCMOUTH Reset: 00H Multi-Channel Mode Output Register High CCU6_ISL Reset: 00H Capture/Compare Interrupt Status Register Low CCU6_ISH Reset: 00H Capture/Compare Interrupt Status Register High CCU6_PISEL0L Reset: 00H Port Input Select Register 0 Low CCU6_PISEL0H Reset: 00H Port Input Select Register 0 High CCU6_PISEL2 Reset: 00H Port Input Select Register 2 CCU6_T12L Reset: 00H Timer T12 Counter Register Low CCU6_T12H Reset: 00H Timer T12 Counter Register High CCU6_T13L Reset: 00H Timer T13 Counter Register Low CCU6_T13H Reset: 00H Timer T13 Counter Register High Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type T12 PM rh STR rh ISTRP rw IST12HR rw 0 r 0 r T12 OM rh IDLE rh ICC62 F rh WHE rh R rh CURH rh ICC62 R rh CHE rh ICC61 F rh TRPS rh ICC61 R rh TRPF rh MCMP rh EXPH rh ICC60 F rh T13 PM rh ICC60 R rh T13 CM rh 9BH 9CH 9DH 9EH ISCC62 rw ISPOS2 rw 0 r T12CVL rwh T12CVH rwh T13CVL rwh T13CVH rwh ISCC61 rw ISPOS1 rw ISCC60 rw ISPOS0 rw IST13HR rw 9FH A4H FAH FBH FCH FDH Data Sheet 47 V0.9, 2006-12 XC886/888CLM Functional Description Table 14 FEH CCU6 Register Overview (cont’d) Bit Bit Field Type Addr Register Name CCU6_CMPSTATL Reset: 00H Compare State Register Low 7 0 r T13IM rwh 6 CC63 ST rh COUT 63PS rwh 5 CC POS2 rh COUT 62PS rwh 4 CC POS1 rh CC62 PS rwh 3 CC POS0 rh COUT 61PS rwh 2 CC62 ST rh CC61 PS rwh 1 CC61 ST rh COUT 60PS rwh 0 CC60 ST rh CC60 PS rwh FFH CCU6_CMPSTATH Reset: 00H Compare State Register High Bit Field Type 3.2.4.11 UART1 Registers The UART1 SFRs can be accessed in the mapped memory area (RMAP = 1). Table 15 RMAP = 1 C8H SCON Reset: 00H Serial Channel Control Register SBUF Reset: 00H Serial Data Buffer Register BCON Reset: 00H Baud Rate Control Register BG Reset: 00H Baud Rate Timer/Reload Register FDCON Reset: 00H Fractional Divider Control Register FDSTEP Reset: 00H Fractional Divider Reload Register FDRES Reset: 00H Fractional Divider Result Register Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type 0 r STEP rw RESULT rh 0 r BR_VALUE rwh NDOV rwh FDM rw FDEN rw SM0 rw SM1 rw SM2 rw REN rw VAL rwh BRPRE rw R rw TB8 rw RB8 rwh TI rwh RI rwh UART1 Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name C9H CAH CBH CCH CDH CEH Data Sheet 48 V0.9, 2006-12 XC886/888CLM Functional Description 3.2.4.12 SSC Registers The SSC SFRs can be accessed in the standard memory area (RMAP = 0). Table 16 RMAP = 0 A9H SSC_PISEL Reset: 00H Port Input Select Register SSC_CONL Reset: 00H Control Register Low Programming Mode SSC_CONL Reset: 00H Control Register Low Operating Mode SSC_CONH Reset: 00H Control Register High Programming Mode SSC_CONH Reset: 00H Control Register High Operating Mode SSC_TBL Reset: 00H Transmitter Buffer Register Low SSC_RBL Reset: 00H Receiver Buffer Register Low SSC_BRL Reset: 00H Baud Rate Timer Reload Register Low SSC_BRH Reset: 00H Baud Rate Timer Reload Register High Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type Bit Field Type EN rw EN rw MS rw MS rw LB rw PO rw 0 r 0 r 0 r AREN rw BSY rh BEN rw BE rwh PEN rw PE rwh 0 r PH rw HB rw CIS rw BM rw BC rh REN rw RE rwh TEN rw TE rwh SIS rw MIS rw SSC Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name AAH AAH ABH ABH ACH TB_VALUE rw RB_VALUE rh BR_VALUE rw BR_VALUE rw ADH AEH AFH 3.2.4.13 MultiCAN Registers The MultiCAN SFRs can be accessed in the standard memory area (RMAP = 0). Table 17 RMAP = 0 D8H ADCON Reset: 00H CAN Address/Data Control Register ADL Reset: 00H CAN Address Register Low ADH Reset: 00H CAN Address Register High Bit Field Type Bit Field Type Bit Field Type V3 rw CA9 rwh V2 rw CA8 rwh 0 r V1 rw CA7 rwh V0 rw CA6 rwh CA5 rwh CA13 rwh AUAD rw CA4 rwh CA12 rwh BSY rh CA3 rwh CA11 rwh RWEN rw CA2 rwh CA10 rwh CAN Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name D9H DAH Data Sheet 49 V0.9, 2006-12 XC886/888CLM Functional Description Table 17 DBH CAN Register Overview (cont’d) Bit Bit Field Type Bit Field Type Bit Field Type Bit Field Type Addr Register Name DATA0 Reset: 00H CAN Data Register 0 DATA1 Reset: 00H CAN Data Register 1 DATA2 Reset: 00H CAN Data Register 2 DATA3 Reset: 00H CAN Data Register 3 7 6 5 4 CD rwh CD rwh CD rwh CD rwh 3 2 1 0 DCH DDH DEH 3.2.4.14 OCDS Registers The OCDS SFRs can be accessed in the mapped memory area (RMAP = 1). Table 18 RMAP = 1 E9H MMCR2 Reset: 1UH Monitor Mode Control 2 Register MMCR Reset: 00H Monitor Mode Control Register Bit Field Type Bit Field Type F2H MMSR Reset: 00H Monitor Mode Status Register Bit Field Type F3H MMBPCR Reset: 00H Breakpoints Control Register Bit Field Type F4H MMICR Reset: 00H Monitor Mode Interrupt Control Register MMDR Reset: 00H Monitor Mode Data Transfer Register Receive HWBPSR Reset: 00H Hardware Breakpoints Select Register HWBPDR Reset: 00H Hardware Breakpoints Data Register MMWR1 Reset: 00H Monitor Work Register 1 Bit Field Type Bit Field Type STMO DE rw MEXIT _P w MBCA M rw SWBC rw DVEC T rwh DRET R rwh EXBC rw MEXIT rwh MBCIN rwh DSUS P rw 0 r EXBF rwh MBCO N rwh MSTE P rw SWBF rwh ALTDI rw MRAM S_P w HWB3 F rwh MMEP rwh MRAM S rwh HWB2 F rwh HWB1 C rw MMUI E_P w MMRR rh MMUI E rw RRIE_ P w MMOD E rh TRF rh HWB1 F rwh JENA rh RRF rh HWB0 F rwh OCDS Register Overview Bit 7 6 5 4 3 2 1 0 Addr Register Name F1H HWB3C rw COMR ST rwh HWB2C rw MSTS EL rh HWB0C rw RRIE rw F5H F6H Bit Field Type Bit Field Type Bit Field Type 0 r BPSEL _P w HWBPxx rw MMWR1 rw BPSEL rw F7H EBH Data Sheet 50 V0.9, 2006-12 XC886/888CLM Functional Description Table 18 ECH OCDS Register Overview (cont’d) Bit Bit Field Type Addr Register Name MMWR2 Reset: 00H Monitor Work Register 2 7 6 5 4 rw 3 2 1 0 MMWR2 Data Sheet 51 V0.9, 2006-12 XC886/888CLM Functional Description 3.3 Flash Memory The Flash memory provides an embedded user-programmable non-volatile memory, allowing fast and reliable storage of user code and data. It is operated from a single 2.5 V supply from the Embedded Voltage Regulator (EVR) and does not require additional programming or erasing voltage. The sectorization of the Flash memory allows each sector to be erased independently. Features • • • • • • • • • • • • In-System Programming (ISP) via UART In-Application Programming (IAP) Error Correction Code (ECC) for dynamic correction of single-bit errors Background program and erase operations for CPU load minimization Support for aborting erase operation Minimum program width1) of 32-byte for D-Flash and 64-byte for P-Flash 1-sector minimum erase width 1-byte read access Operating supply voltage: 2.5 V ± 7.5 % Read access time: 3 × tCCLK = 125 ns2) Program time: 248256 / fSYS = 2.6 ms3) Erase time: 9807360 / fSYS = 102 ms3) 1) P-Flash: 64-byte wordline can only be programmed once, i.e., one gate disturb allowed. D-Flash: 32-byte wordline can be programmed twice, i.e., two gate disturbs allowed. 2) Values shown here are typical values. fsys = 96 MHz ± 7.5% (fCCLK = 24 MHz ± 7.5 %) is the maximum frequency range for Flash read access. 3) Values shown here are typical values. fsys = 96 MHz ± 7.5% is the only frequency range for Flash programming and erasing. fsysmin is used for obtaining the worst case timing. Data Sheet 52 V0.9, 2006-12 XC886/888CLM Functional Description Table 19 shows the Flash data retention and endurance targets. Table 19 Retention Program Flash 20 years 20 years Data Flash 20 years 5 years 2 years 2 years 1,000 cycles 10,000 cycles 70,000 cycles 100,000 cycles 4 Kbytes 1 Kbyte 512 bytes 128 bytes 1,000 cycles 1,000 cycles up to 32 Kbytes2) up to 24 Kbytes2) for 32-Kbyte Variant for 24-Kbyte Variant Flash Data Retention and Endurance (Operating Conditions apply) Endurance1) Size Remarks 1) One cycle refers to the programming of all wordlines in a sector and erasing of sector. The Flash endurance data specified in Table 19 is valid only if the following conditions are fulfilled: - the maximum number of erase cycles per Flash sector must not exceed 100,000 cycles. - the maximum number of erase cycles per Flash bank must not exceed 300,000 cycles. - the maximum number of program cycles per Flash bank must not exceed 2,500,000 cycles. 2) If no Flash is used for data, the Program Flash size can be up to the maximum Flash size available in the device variant. Having more Data Flash will mean less Flash is available for Program Flash. 3.3.1 Flash Bank Sectorization The XC886/888 product family offers Flash devices with either 24 Kbytes or 32 Kbytes of embedded Flash memory. Each Flash device consists of Program Flash (P-Flash) and Data Flash (D-Flash) bank(s) with different sectorization shown in Figure 11. Both types can be used for code and data storage. The label “Data” neither implies that the D-Flash is mapped to the data memory region, nor that it can only be used for data storage. It is used to distinguish the different Flash bank sectorizations. The 32-Kbyte Flash device consists of 6 P-Flash and 2 D-Flash banks, while the 24Kbyte Flash device consists of also of 6 P-Flash banks but with the upper 2 banks only 2 Kbytes each, and only 1 D-Flash bank. The XC886/888 ROM devices offer a single 4Kbyte D-Flash bank. Data Sheet 53 V0.9, 2006-12 XC886/888CLM Functional Description Sector 2: 128-byte Sector 1: 128-byte Sector Sector Sector Sector 9: 8: 7: 6: 128-byte 128-byte 128-byte 128-byte Sector 5: 256-byte Sector 4: 256-byte Sector 3: 512-byte Sector 0: 3.75-Kbyte Sector 2: 512-byte Sector 1: 1-Kbyte Sector 0: 1-Kbyte P-Flash D-Flash Figure 11 Flash Bank Sectorization The internal structure of each Flash bank represents a sector architecture for flexible erase capability. The minimum erase width is always a complete sector, and sectors can be erased separately or in parallel. Contrary to standard EPROMs, erased Flash memory cells contain 0s. The D-Flash bank is divided into more physical sectors for extended erasing and reprogramming capability; even numbers for each sector size are provided to allow greater flexibility and the ability to adapt to a wide range of application requirements. 3.3.2 Parallel Read Access of P-Flash To enhance system performance, the P-Flash banks are configured for parallel read to allow two bytes of linear code to be read in 4 x CCLK cycles, compared to 6 x CCLK cycles if serial read is performed. This is achieved by reading two bytes in parallel from a P-Flash bank pair within the 3 x CCLK cycles access time and storing them in a cache. Subsequent read from the cache by the CPU does not require a wait state and can be completed within 1 x CCLK cycle. The result is the average instruction fetch time from the P-Flash banks is reduced and thus, the MIPS (Mega Instruction Per Second) of the system is increased. However, if the parallel read feature is not desired due to certain timing constraints, it can be disabled by calling the parallel read disable subroutine. Data Sheet 54 V0.9, 2006-12 XC886/888CLM Functional Description 3.3.3 Flash Programming Width For the P-Flash banks, a programmed wordline (WL) must be erased before it can be reprogrammed as the Flash cells can only withstand one gate disturb. This means that the entire sector containing the WL must be erased since it is impossible to erase a single WL. For the D-Flash bank, the same WL can be programmed twice before erasing is required as the Flash cells are able to withstand two gate disturbs. This means if the number of data bytes that needs to be written is smaller than the 32-byte minimum programming width, the user can opt to program this number of data bytes (x; where x can be any integer from 1 to 31) first and program the remaining bytes (32 - x) later. Hence, it is possible to program the same WL, for example, with 16 bytes of data two times (see Figure 12) 32 bytes (1 WL) 0000 ….. 0000 H 0000 ….. 0000 H Program 1 16 bytes 0000 ….. 0000 H 16 bytes 1111 ….. 1111 H 0000 ….. 0000 H 1111 ….. 1111 H Program 2 1111 ….. 0000 H 0000 ….. 0000 H 1111 ….. 0000 H 1111 ….. 1111 H Note: A Flash memory cell can be programmed from 0 to 1, but not from 1 to 0. Flash memory cells 32-byte write buffers Figure 12 D-Flash Programming Note: When programming a D-Flash WL the second time, the previously programmed Flash memory cells (whether 0s or 1s) should be reprogrammed with 0s to retain its original contents and to prevent “over-programming”. Data Sheet 55 V0.9, 2006-12 XC886/888CLM Functional Description 3.4 Interrupt System The XC800 Core supports one non-maskable interrupt (NMI) and 14 maskable interrupt requests. In addition to the standard interrupt functions supported by the core, e.g., configurable interrupt priority and interrupt masking, the XC886/888 interrupt system provides extended interrupt support capabilities such as the mapping of each interrupt vector to several interrupt sources to increase the number of interrupt sources supported, and additional status registers for detecting and determining the interrupt source. 3.4.1 Interrupt Source Figure 13 to Figure 17 give a general overview of the interrupt sources and nodes, and their corresponding control and status flags. WDT Overflow FNMIWDT NMIISR.0 NMIWDT NMICON.0 PLL Loss of Lock FNMIPLL NMIISR.1 NMIPLL NMICON.1 Flash Operation Complete FNMIFLASH NMIISR.2 NMIFLASH >=1 Non Maskable Interrupt VDD Pre-Warning FNMIVDD NMIISR.4 NMIVDD NMICON.4 0073 H VDDP Pre-Warning FNMIVDDP NMIISR.5 NMIVDDP NMICON.5 Flash ECC Error FNMIECC NMIISR.6 NMIECC NMICON.6 Figure 13 Non-Maskable Interrupt Request Sources Data Sheet 56 V0.9, 2006-12 XC886/888CLM Functional Description Highest Timer 0 Overflow TF0 TCON.5 ET0 IEN0.1 000B H IP.1/ IPH.1 Lowest Priority Level Timer 1 Overflow TF1 TCON.7 ET1 IEN0.3 001B H IP.3/ IPH.3 UART Receive UART Transmit RI SCON.0 TI SCON.1 >=1 ES IEN0.4 0023 H IP.4/ IPH.4 P o l l i n g S e q u e n c e IE0 EINT0 IT0 TCON.0 EXINT0 EXICON0.0/1 TCON.1 EX0 IEN0.0 0003 H IP.0/ IPH.0 IE1 EINT1 IT1 TCON.2 EXINT1 EXICON0.2/3 TCON.3 EX1 IEN0.2 0013 H IP.2/ IPH.2 EA IEN0.7 Bit-addressable Request flag is cleared by hardware Figure 14 Interrupt Request Sources (Part 1) Data Sheet 57 V0.9, 2006-12 XC886/888CLM Functional Description Highest Timer 2 Overflow TF2 T2_T2CON.7 >=1 T2EX EXEN2 EDGES EL T2_T2MOD.5 T2_T2CON.3 Lowest Priority Level EXF2 T2_T2CON.6 Normal Divider Overflow NDOV >=1 FDCON.2 End of Synch Byte Synch Byte Error EOFSYN FDCON.4 ET2 >=1 SYNEN 002B H IEN0.5 IP.5/ IPH.5 ERRSYN FDCON.5 MultiCAN_0 CANSRC0 IRCON2.0 P o l l i n g S e q u e n c e ADC_0 ADCSR0 IRCON1.3 ADC_1 ADCSR1 IRCON1.4 >=1 EADC IEN1.0 0033 H IP1.0/ IPH1.0 MultiCAN_1 CANSRC1 IRCON1.5 MultiCAN_2 CANSRC2 IRCON1.6 Bit-addressable Request flag is cleared by hardware EA IEN0.7 Figure 15 Interrupt Request Sources (Part 2) Data Sheet 58 V0.9, 2006-12 XC886/888CLM Functional Description Highest Lowest Priority Level EIR IRCON1.0 SSC_EIR SSC_TIR TIR IRCON1.1 >=1 ESSC IEN1.1 003B H IP1.1/ IPH1.1 SSC_RIR RIR IRCON1.2 EINT2 EXINT2 IRCON0.2 EXINT2 EXICON0.4/5 P o l l i n g S e q u e n c e RI UART1 UART1_SCON.0 TI UART1_SCON.1 Timer 21 Overflow TF2 T21_T2CON.7 >=1 >=1 EX2 >=1 IEN1.2 0043 H T21EX EXF2 EXEN2 T21_T2CON.6 IP1.2/ IPH1.2 EDGES EL T21_T2MOD.5 T21_T2CON.3 Normal Divider Overflow Cordic NDOV UART1_FDCON.2 EOC CDSTATC.2 MDU_0 IRDY MDUSTAT.0 MDU_1 IERR MDUSTAT.1 EA IEN0.7 Bit-addressable Request flag is cleared by hardware Figure 16 Interrupt Request Sources (Part 3) Data Sheet 59 V0.9, 2006-12 XC886/888CLM Functional Description Highest EINT3 EXINT3 IRCON0.3 Lowest Priority Level EXINT3 EXICON0.6/7 EINT4 EXINT4 IRCON0.4 EXINT3 EXICON1.0/1 >=1 EINT5 EXINT5 IRCON0.5 P o l l i n g EXM IEN1.3 004B H IP1.3/ IPH1.3 EXINT5 EXICON1.2/3 EINT6 EXINT6 IRCON0.6 S e q u e n c e EXINT6 EXICON1.4/5 MultiCAN_3 CANSRC3 IRCON2.4 Bit-addressable Request flag is cleared by hardware EA IEN0.7 Figure 17 Interrupt Request Sources (Part 4) Data Sheet 60 V0.9, 2006-12 XC886/888CLM Functional Description Highest Lowest CCU6 interrupt node 0 MultiCAN_4 CCU6SR0 IRCON3.0 Priority Level >=1 ECCIP0 IEN1.4 0053 H IP1.4/ IPH1.4 CANSRC4 IRCON3.1 CCU6 interrupt node 1 MultiCAN_5 CCU6SR1 IRCON3.4 >=1 ECCIP1 IEN1.5 005B H IP1.5/ IPH1.5 P o l l i n g S e q u e n c e CANSRC5 IRCON3.5 CCU6 interrupt node 2 CCU6SR2 IRCON4.0 >=1 ECCIP2 IEN1.6 0063 MutliCAN_6 CANSRC6 IRCON4.1 H IP1.6/ IPH1.6 CCU6 interrupt node 3 MultiCAN_7 CCU6SRC3 IRCON4.4 >=1 ECCIP3 IEN1.7 CANSRC7 IRCON4.5 006B H IP1.7/ IPH1.7 EA IEN0.7 Bit-addressable Request flag is cleared by hardware Figure 18 Interrupt Request Sources (Part 5) Data Sheet 61 V0.9, 2006-12 XC886/888CLM Functional Description 3.4.2 Interrupt Source and Vector Each interrupt event source has an associated interrupt vector address for the interrupt node it belongs to. This vector is accessed to service the corresponding interrupt node request. The interrupt service of each interrupt source can be individually enabled or disabled via an enable bit. The assignment of the XC886/888 interrupt sources to the interrupt vector address and the corresponding interrupt node enable bits are summarized in Table 20. Table 20 Interrupt Source NMI Interrupt Vector Addresses Vector Address 0073H Assignment for XC886/888 Watchdog Timer NMI PLL NMI Flash NMI VDDC Prewarning NMI VDDP Prewarning NMI Flash ECC NMI XINTR0 XINTR1 XINTR2 XINTR3 XINTR4 XINTR5 0003H 000BH 0013H 001BH 0023H 002BH External Interrupt 0 Timer 0 External Interrupt 1 Timer 1 UART T2 UART Fractional Divider (Normal Divider Overflow) MultiCAN Node 0 LIN Enable Bit NMIWDT NMIPLL NMIFLASH NMIVDD NMIVDDP NMIECC EX0 ET0 EX1 ET1 ES ET2 IEN0 SFR NMICON Data Sheet 62 V0.9, 2006-12 XC886/888CLM Functional Description Table 20 Interrupt Source XINTR6 XINTR7 XINTR8 Interrupt Vector Addresses (cont’d) Vector Address 0033H 003BH 0043H Assignment for XC886/888 MultiCAN Nodes 1 and 2 ADC[1:0] SSC External Interrupt 2 T21 CORDIC UART1 UART1 Fractional Divider (Normal Divider Overflow) MDU[1:0] XINTR9 004BH External Interrupt 3 External Interrupt 4 External Interrupt 5 External Interrupt 6 MultiCAN Node 3 XINTR10 XINTR11 XINTR12 XINTR13 0053H 005BH 0063H 006BH CCU6 INP0 MultiCAN Node 4 CCU6 INP1 MultiCAN Node 5 CCU6 INP2 MultiCAN Node 6 CCU6 INP3 MultiCAN Node 7 ECCIP3 ECCIP2 ECCIP1 ECCIP0 EXM ESSC EX2 Enable Bit EADC SFR IEN1 Data Sheet 63 V0.9, 2006-12 XC886/888CLM Functional Description 3.4.3 Interrupt Priority An interrupt that is currently being serviced can only be interrupted by a higher-priority interrupt, but not by another interrupt of the same or lower priority. Hence, an interrupt of the highest priority cannot be interrupted by any other interrupt request. If two or more requests of different priority levels are received simultaneously, the request of the highest priority is serviced first. If requests of the same priority are received simultaneously, then an internal polling sequence determines which request is serviced first. Thus, within each priority level, there is a second priority structure determined by the polling sequence shown in Table 21. Table 21 Source Non-Maskable Interrupt (NMI) External Interrupt 0 Timer 0 Interrupt External Interrupt 1 Timer 1 Interrupt UART Interrupt Timer 2,UART Normal Divider Overflow, MultiCAN, LIN Interrupt ADC, MultiCAN Interrupt SSC Interrupt Priority Structure within Interrupt Level Level (highest) 1 2 3 4 5 6 7 8 External Interrupt 2, Timer 21, UART1, UART1 9 Normal Divider Overflow, MDU, CORDIC Interrupt External Interrupt [6:3], MultiCAN Interrupt 10 CCU6 Interrupt Node Pointer 0, MultiCAN interrupt 11 CCU6 Interrupt Node Pointer 1, MultiCAN Interrupt 12 CCU6 Interrupt Node Pointer 2, MultiCAN Interrupt 13 CCU6 Interrupt Node Pointer 3, MultiCAN Interrupt 14 Data Sheet 64 V0.9, 2006-12 XC886/888CLM Functional Description 3.5 Parallel Ports The XC886 has 34 port pins organized into five parallel ports, Port 0 (P0) to Port 4 (P4), while the XC888 has 48 port pins organized into six parallel ports, Port 0 (P0) to Port 5 (P5). Each pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled. Ports P0, P1, P3, P4 and P5 are bidirectional and can be used as general purpose input/output (GPIO) or to perform alternate input/output functions for the on-chip peripherals. When configured as an output, the open drain mode can be selected. Port P2 is an input-only port, providing general purpose input functions, alternate input functions for the on-chip peripherals, and also analog inputs for the Analog-to-Digital Converter (ADC). Bidirectional Port Features • • • • • Configurable pin direction Configurable pull-up/pull-down devices Configurable open drain mode Transfer of data through digital inputs and outputs (general purpose I/O) Alternate input/output for on-chip peripherals Input Port Features • • • • • Configurable input driver Configurable pull-up/pull-down devices Receive of data through digital input (general purpose input) Alternate input for on-chip peripherals Analog input for ADC module Data Sheet 65 V0.9, 2006-12 XC886/888CLM Functional Description Figure 19 shows the structure of a bidirectional port pin. Internal Bus Px_PUDSEL Pull-up/Pull-down Select Register Px_PUDEN Pull-up/Pull-down Enable Register Px_OD Open Drain Control Register Px_DIR Direction Register Px_ALTSEL0 Alternate Select Register 0 VDDP Px_ALTSEL1 Alternate Select Register 1 AltDataOut 3 AltDataOut 2 AltDataOut1 11 10 01 00 enable Pull Up Device enable Output Driver Pin Px_Data Data Register Out In enable Input Driver AltDataIn Schmitt Trigger enable Pull Down Device Pad Figure 19 General Structure of Bidirectional Port Data Sheet 66 V0.9, 2006-12 XC886/888CLM Functional Description Figure 20 shows the structure of an input-only port pin. Internal Bus Px_PUDSEL Pull-up/Pull-down Select Register Px_PUDEN Pull-up/Pull-down Enable Register Px_DIR Direction Register VDDP enable enable Input Driver Pull Up Device Pin Px_DATA Data Register In Schmitt Trigger AltDataIn AnalogIn enable Pull Down Device Pad Figure 20 General Structure of Input Port Data Sheet 67 V0.9, 2006-12 XC886/888CLM Functional Description 3.6 • • Power Supply System with Embedded Voltage Regulator The XC886/888 microcontroller requires two different levels of power supply: 3.3 V or 5.0 V for the Embedded Voltage Regulator (EVR) and Ports 2.5 V for the core, memory, on-chip oscillator, and peripherals Figure 21 shows the XC886/888 power supply system. A power supply of 3.3 V or 5.0 V must be provided from the external power supply pin. The 2.5 V power supply for the logic is generated by the EVR. The EVR helps to reduce the power consumption of the whole chip and the complexity of the application board design. The EVR consists of a main voltage regulator and a low power voltage regulator. In active mode, both voltage regulators are enabled. In power-down mode, the main voltage regulator is switched off, while the low power voltage regulator continues to function and provide power supply to the system with low power consumption. CPU & Memory On-chip OSC Peripheral logic ADC V DDC (2.5V) FLASH PLL XTAL1& XTAL2 GPIO Ports (P0-P5) EVR VDDP (3.3V/5.0V) VSSP Figure 21 XC886/888 Power Supply System EVR Features • • • • • Input voltage (VDDP): 3.3 V/5.0 V Output voltage (VDDC): 2.5 V ± 7.5% Low power voltage regulator provided in power-down mode VDDC and VDDP prewarning detection VDDC brownout detection Data Sheet 68 V0.9, 2006-12 XC886/888CLM Functional Description 3.7 Reset Control The XC886/888 has five types of reset: power-on reset, hardware reset, watchdog timer reset, power-down wake-up reset, and brownout reset. When the XC886/888 is first powered up, the status of certain pins (see Table 23) must be defined to ensure proper start operation of the device. At the end of a reset sequence, the sampled values are latched to select the desired boot option, which cannot be modified until the next power-on reset or hardware reset. This guarantees stable conditions during the normal operation of the device. In order to power up the system properly, the external reset pin RESET must be asserted until VDDC reaches 0.9*VDDC. The delay of external reset can be realized by an external capacitor at RESET pin. This capacitor value must be selected so that VRESET reaches 0.4 V, but not before VDDC reaches 0.9* VDDC. A typical application example is shown in Figure 22. The VDDP capacitor value is 100 nF while the VDDC capacitor value is 220 nF. The capacitor connected to RESET pin is 100 nF. Typically, the time taken for VDDC to reach 0.9*VDDC is less than 50 µs once VDDP reaches 2.3V. Hence, based on the condition that 10% to 90% VDDP (slew rate) is less than 500 µs, the RESET pin should be held low for 500 µs typically. See Figure 23. VIN VR 3.3 / 5V 100nF 220nF VSSP typ. 100nF RESET V DDP VDDC VSSC EVR 30k XC886/888 Figure 22 Reset Circuitry Data Sheet 69 V0.9, 2006-12 XC886/888CLM Functional Description Voltage 5V 2.5V 2.3V 0.9*VDDC VDDP VDDC Time Voltage 5V RESET wit h capacitor < 0.4V 0V typ. < 50µs Time Figure 23 VDDP, VDDC and VRESET during Power-on Reset The second type of reset in XC886/888 is the hardware reset. This reset function can be used during normal operation or when the chip is in power-down mode. A reset input pin RESET is provided for the hardware reset. The Watchdog Timer (WDT) module is also capable of resetting the device if it detects a malfunction in the system. Another type of reset that needs to be detected is a reset while the device is in power-down mode (wake-up reset). While the contents of the static RAM are undefined after a power-on reset, they are well defined after a wake-up reset from power-down mode. Data Sheet 70 V0.9, 2006-12 XC886/888CLM Functional Description 3.7.1 Module Reset Behavior Table 22 lists the functions of the XC886/888 and the various reset types that affect these functions. The symbol “■” signifies that the particular function is reset to its default state. Table 22 Module/ Function CPU Core Peripherals On-Chip Static RAM Oscillator, PLL Port Pins EVR Effect of Reset on Device Functions Wake-Up Reset ■ ■ Watchdog Reset ■ ■ Hardware Reset ■ ■ Power-On Reset ■ ■ Brownout Reset ■ ■ Not affected, Not affected, Not affected, Affected, un- Affected, unReliable Reliable Reliable reliable reliable ■ ■ The voltage regulator is switched on ■ Disabled Not affected ■ ■ ■ ■ ■ ■ ■ ■ ■ Not affected ■ FLASH NMI ■ Disabled ■ ■ ■ ■ ■ ■ 3.7.2 Booting Scheme When the XC886/888 is reset, it must identify the type of configuration with which to start the different modes once the reset sequence is complete. Thus, boot configuration information that is required for activation of special modes and conditions needs to be applied by the external world through input pins. After power-on reset or hardware reset, the pins MBC, TMS and P0.0 collectively select the different boot options. Table 23 shows the available boot options in the XC886/888. Table 23 MBC 1 0 0 1 TMS 0 0 1 1 XC886/888 Boot Selection P0.0 X X 0 0 Type of Mode PC Start Value User Mode1); on-chip OSC/PLL non-bypassed 0000H BSL Mode; on-chip OSC/PLL non-bypassed2) 0000H OCDS Mode; on-chip OSC/PLL nonbypassed User (JTAG) Mode3); on-chip OSC/PLL nonbypassed (normal) 71 0000H 0000H Data Sheet V0.9, 2006-12 XC886/888CLM Functional Description 1) BSL mode is automatically entered if no valid password is installed and data at memory address 0000H equals zero. 2) OSC is bypassed in MultiCAN BSL mode 3) Normal user mode with standard JTAG (TCK,TDI,TDO) pins for hot-attach purpose. Note: The boot options are valid only with the default set of UART and JTAG pins. 3.8 Clock Generation Unit The Clock Generation Unit (CGU) allows great flexibility in the clock generation for the XC886/888. The power consumption is indirectly proportional to the frequency, whereas the performance of the microcontroller is directly proportional to the frequency. During user program execution, the frequency can be programmed for an optimal ratio between performance and power consumption. Therefore the power consumption can be adapted to the actual application state. Features • • • • • Phase-Locked Loop (PLL) for multiplying clock source by different factors PLL Base Mode Prescaler Mode PLL Mode Power-down mode support The CGU consists of an oscillator circuit and a PLL. In the XC886/888, the oscillator can be from either of these two sources: the on-chip oscillator (9.6 MHz) or the external oscillator (3 MHz to 12 MHz). The term “oscillator” is used to refer to both on-chip oscillator and external oscillator, unless otherwise stated. After the reset, the on-chip oscillator will be used by default.The external oscillator can be selected via software. In addition, the PLL provides a fail-safe logic to perform oscillator run and loss-of-lock detection. This allows emergency routines to be executed for system recovery or to perform system shut down. Data Sheet 72 V0.9, 2006-12 XC886/888CLM Functional Description osc fail detect lock detect OSCR LOCK OSC fosc P:1 fp fn PLL core fvco K:1 fsys N:1 PLLBYP OSCDISC NDIV VCOBYP Figure 24 CGU Block Diagram PLL Base Mode When the oscillator is disconnected from the PLL, the system clock is derived from the VCO base (free running) frequency clock (Table 25) divided by the K factor. 1 f SYS = f VCObase × --K (3.1) Prescaler Mode (VCO Bypass Operation) In VCO bypass operation, the system clock is derived from the oscillator clock, divided by the P and K factors. 1 f SYS = f OSC × ------------P×K (3.2) Data Sheet 73 V0.9, 2006-12 XC886/888CLM Functional Description PLL Mode The system clock is derived from the oscillator clock, multiplied by the N factor, and divided by the P and K factors. Both VCO bypass and PLL bypass must be inactive for this PLL mode. The PLL mode is used during normal system operation. N f SYS = f OSC × ------------P×K (3.3) System Frequency Selection For the XC886/888, the value of P is fixed to 1. In order to obtain the required fsys, the value of N and K can be selected by bits NDIV and KDIV respectively for different oscillator inputs. The output frequency must always be configured for 96 MHz. Table 24 provides examples on how fsys = 96 MHz can be obtained for the different oscillator sources. Table 24 Oscillator On-chip External System frequency (fsys = 96 MHz) Fosc 9.6 MHz 8 MHz 6 MHz 4 MHz N 20 24 32 48 P 1 1 1 1 K 2 2 2 2 Fsys 96 MHz 96 MHz 96 MHz 96 MHz Data Sheet 74 V0.9, 2006-12 XC886/888CLM Functional Description Table 25 shows the VCO range for the XC886/888. Table 25 VCO Range fVCOmin 150 100 fVCOmax 200 150 fVCOFREEmin 20 10 fVCOFREEmax 80 80 Unit MHz MHz 3.8.1 Recommended External Oscillator Circuits The oscillator circuit, a Pierce oscillator, is designed to work with both, an external crystal oscillator or an external stable clock source. It basically consists of an inverting amplifier and a feedback element with XTAL1 as input, and XTAL2 as output. When using a crystal, a proper external oscillator circuitry must be connected to both pins, XTAL1 and XTAL2. The crystal frequency can be within the range of 4 MHz to 12 MHz. Additionally, it is necessary to have two load capacitances CX1 and CX2, and depending on the crystal type, a series resistor RX2, to limit the current. A test resistor RQ may be temporarily inserted to measure the oscillation allowance (negative resistance) of the oscillator circuitry. RQ values are typically specified by the crystal vendor. The CX1 and CX2 values shown in Figure 25 can be used as starting points for the negative resistance evaluation and for non-productive systems. The exact values and related operating range are dependent on the crystal frequency and have to be determined and optimized together with the crystal vendor using the negative resistance method. Oscillation measurement with the final target system is strongly recommended to verify the input amplitude at XTAL1 and to determine the actual oscillation allowance (margin negative resistance) for the oscillator-crystal system. When using an external clock signal, the signal must be connected to XTAL1. XTAL2 is left open (unconnected). The oscillator can also be used in combination with a ceramic resonator. The final circuitry must also be verified by the resonator vendor.Figure 25 shows the recommended external oscillator circuitries for both operating modes, external crystal mode and external input clock mode. Data Sheet 75 V0.9, 2006-12 XC886/888CLM Functional Description XTAL1 4 - 12 MHz XC886/888 Oscillator f OSC External Clock Signal XTAL1 XC886/888 Oscillator XTAL2 fOSC RQ R X2 XTAL2 CX1 CX2 VSS 1) Fundamental Mode Crystal V SS RX2 0 0 0 0 Clock_EXOSC 1) Crystal Frequency CX1, CX2 4 MHz 8 MHz 10 MHz 12 MHz 33 18 15 12 pF pF pF pF 1) Note that these are evaluation start values! Figure 25 External Oscillator Circuitry Note: For crystal operation, it is strongly recommended to measure the negative resistance in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the minimum and maximum values of the negative resistance specified by the crystal supplier. Data Sheet 76 V0.9, 2006-12 XC886/888CLM Functional Description 3.8.2 Clock Management The CGU generates all clock signals required within the microcontroller from a single clock, fsys. During normal system operation, the typical frequencies of the different modules are as follow: • • • • CPU clock: CCLK, SCLK = 24 MHz Fast clock (used by MultiCAN): FCLK = 24 or 48 MHz Peripheral clock: PCLK = 24 MHz Flash Interface clock: CCLK2 = 48 MHz and CCLK = 24 MHz In addition, different clock frequencies can be output to pin CLKOUT (P0.0 or P0.7). The clock output frequency, which is derived from the clock output divider (bit COREL), can further be divided by 2 using toggle latch (bit TLEN is set to 1). The resulting output frequency has a 50% duty cycle. Figure 26 shows the clock distribution of the XC886/888. FCCFG CLKREL FCLK MultiCAN SD 1 fsys= 96MHz PCLK SCLK /2 CCLK CORE Peripherals OSC fosc PLL /2 0 COREL TLEN Toggle Latch CCLK2 N,P,K FLASH Interface CLKOUT COUTS Figure 26 Clock Generation from fsys Data Sheet 77 V0.9, 2006-12 XC886/888CLM Functional Description For power saving purposes, the clocks may be disabled or slowed down according to Table 26. Table 26 Idle Slow-down System frequency (fsys = 96 MHz) Action Clock to the CPU is disabled. Clocks to the CPU and all the peripherals are divided by a common programmable factor defined by bit field CMCON.CLKREL. Oscillator and PLL are switched off. Power Saving Mode Power-down Data Sheet 78 V0.9, 2006-12 XC886/888CLM Functional Description 3.9 Power Saving Modes The power saving modes of the XC886/888 provide flexible power consumption through a combination of techniques, including: • • • • Stopping the CPU clock Stopping the clocks of individual system components Reducing clock speed of some peripheral components Power-down of the entire system with fast restart capability After a reset, the active mode (normal operating mode) is selected by default (see Figure 27) and the system runs in the main system clock frequency. From active mode, different power saving modes can be selected by software. They are: • • • Idle mode Slow-down mode Power-down mode any interrupt & SD=0 set IDLE bit ACTIVE EXINT0/RXD pin & SD=0 set PD bit IDLE set SD bit clear SD bit POWER-DOWN set IDLE bit any interrupt & SD=1 SLOW-DOWN set PD bit EXINT0/RXD pin & SD=1 Figure 27 Transition between Power Saving Modes Data Sheet 79 V0.9, 2006-12 XC886/888CLM Functional Description 3.10 Watchdog Timer The Watchdog Timer (WDT) provides a highly reliable and secure way to detect and recover from software or hardware failures. The WDT is reset at a regular interval that is predefined by the user. The CPU must service the WDT within this interval to prevent the WDT from causing an XC886/888 system reset. Hence, routine service of the WDT confirms that the system is functioning properly. This ensures that an accidental malfunction of the XC886/888 will be aborted in a user-specified time period. In debug mode, the WDT is default suspended and stops counting. Therefore, there is no need to refresh the WDT during debugging. Features • • • • • 16-bit Watchdog Timer Programmable reload value for upper 8 bits of timer Programmable window boundary Selectable input frequency of fPCLK/2 or fPCLK/128 Time-out detection with NMI generation and reset prewarning activation (after which a system reset will be performed) The WDT is a 16-bit timer incremented by a count rate of fPCLK/2 or fPCLK/128. This 16-bit timer is realized as two concatenated 8-bit timers. The upper 8 bits of the WDT can be preset to a user-programmable value via a watchdog service access in order to modify the watchdog expire time period. The lower 8 bits are reset on each service access. Figure 28 shows the block diagram of the WDT unit. WDT Control WDTREL 1:2 MUX f PCLK 1:128 Clear WDT Low Byte WDT High Byte Overflow/Time-out Control & Window-boundary control WDTIN ENWDT Logic ENWDT_P WDTWINB FNMIWDT WDTRST . Figure 28 WDT Block Diagram Data Sheet 80 V0.9, 2006-12 XC886/888CLM Functional Description If the WDT is not serviced before the timer overflow, a system malfunction is assumed. As a result, the WDT NMI is triggered (assert FNMIWDT) and the reset prewarning is entered. The prewarning period lasts for 30H count, after which the system is reset (assert WDTRST). The WDT has a “programmable window boundary” which disallows any refresh during the WDT’s count-up. A refresh during this window boundary constitutes an invalid access to the WDT, causing the reset prewarning to be entered but without triggering the WDT NMI. The system will still be reset after the prewarning period is over. The window boundary is from 0000H to the value obtained from the concatenation of WDTWINB and 00H. After being serviced, the WDT continues counting up from the value ( * 28). The time period for an overflow of the WDT is programmable in two ways: • • The input frequency to the WDT can be selected to be either fPCLK/2 or fPCLK/128 The reload value WDTREL for the high byte of WDT can be programmed in register WDTREL The period, PWDT, between servicing the WDT and the next overflow can be determined by the following formula: 2 ( 1 + WDTIN × 6 ) × ( 2 16 – WDTREL × 2 8 ) P WDT = --------------------------------------------------------------------------------------------------------f PCLK (3.4) If the Window-Boundary Refresh feature of the WDT is enabled, the period PWDT between servicing the WDT and the next overflow is shortened if WDTWINB is greater than WDTREL, see Figure 29. This period can be calculated using the same formula by replacing WDTREL with WDTWINB. For this feature to be useful, WDTWINB cannot be smaller than WDTREL. Data Sheet 81 V0.9, 2006-12 XC886/888CLM Functional Description Count FFFFH WDTWINB WDTREL time No refresh allowed Refresh allowed Figure 29 WDT Timing Diagram Table 27 lists the possible watchdog time ranges that can be achieved using a certain module clock. Some numbers are rounded to 3 significant digits. Table 27 Reload value In WDTREL Watchdog Time Ranges Prescaler for fPCLK 2 (WDTIN = 0) 24 MHz FFH 7FH 00H 21.3 µs 2.75 ms 5.46 ms 128 (WDTIN = 1) 24 MHz 1.37 ms 176 ms 350 ms Data Sheet 82 V0.9, 2006-12 XC886/888CLM Functional Description 3.11 Multiplication/Division Unit The Multiplication/Division Unit (MDU) provides fast 16-bit multiplication, 16-bit and 32-bit division as well as shift and normalize features. It has been integrated to support the XC886/888 Core in real-time control applications, which require fast mathematical computations. Features • • • • Fast signed/unsigned 16-bit multiplication Fast signed/unsigned 32-bit divide by 16-bit and 16-bit divide by 16-bit operations 32-bit unsigned normalize operation 32-bit arithmetic/logical shift operations Table 28 specifies the number of clock cycles used for calculation in various operations. Table 28 Operation Signed 32-bit/16-bit Signed 16-bit/16bit Signed 16-bit x 16-bit Unsigned 32-bit/16-bit Unsigned 16-bit/16-bit Unsigned 16-bit x 16-bit 32-bit normalize 32-bit shift L/R MDU Operation Characteristics Result 32-bit 16-bit 32-bit 32-bit 16-bit 32-bit Remainder 16-bit 16-bit 16-bit 16-bit 33 17 16 32 16 16 No. of shifts + 1 (Max. 32) No. of shifts + 1 (Max. 32) No. of Clock Cycles used for calculation Data Sheet 83 V0.9, 2006-12 XC886/888CLM Functional Description 3.12 CORDIC Coprocessor The CORDIC Coprocessor provides CPU with hardware support for the solving of circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions. Features • Modes of operation – Supports all CORDIC operating modes for solving circular (trigonometric), linear (multiply-add, divide-add) and hyperbolic functions – Integrated look-up tables (LUTs) for all operating modes Circular vectoring mode: Extended support for values of initial X and Y data up to full range of [-215,(215-1)] for solving angle and magnitude Circular rotation mode: Extended support for values of initial Z data up to full range of [-215,(215-1)], representing angles in the range [-π,((215-1)/215)π] for solving trigonometry Implementation-dependent operational frequency of up to 80 MHz Gated clock input to support disabling of module 16-bit accessible data width – 24-bit kernel data width plus 2 overflow bits for X and Y each – 20-bit kernel data width plus 1 overflow bit for Z – With KEEP bit to retain the last value in the kernel register for a new calculation 16 iterations per calculation: Approximately 41 clock-cycles or less, from set of start (ST) bit to set of end-of-calculation flag, excluding time taken for write and read access of data bytes. Twos complement data processing – Only exception: X result data with user selectable option for unsigned result X and Y data generally accepted as integer or rational number; X and Y must be of the same data form Entries of LUTs are 20-bit signed integers – Entries of atan and atanh LUTs are integer representations (S19) of angles with the scaling such that [-215,(215-1)] represents the range [-π,((215-1)/215)π] – Accessible Z result data for circular and hyperbolic functions is integer in data form of S15 Emulated LUT for linear function – Data form is 1 integer bit and 15-bit fractional part (1.15) – Accessible Z result data for linear function is rational number with fixed data form of S4.11 (signed 4Q16) Truncation Error – The result of a CORDIC calculation may return an approximation due to truncation of LSBs – Good accuracy of the CORDIC calculated result data, especially in circular mode Interrupt – On completion of a calculation 84 V0.9, 2006-12 • • • • • • • • • • • • Data Sheet XC886/888CLM Functional Description – Interrupt enabling and corresponding flag 3.13 UART and UART1 The XC886/888 provides two Universal Asynchronous Receiver/Transmitter (UART and UART1) modules for full-duplex asynchronous reception/transmission. Both are also receive-buffered, i.e., they can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, one of the bytes will be lost. Features • Full-duplex asynchronous modes – 8-bit or 9-bit data frames, LSB first – Fixed or variable baud rate Receive buffered Multiprocessor communication Interrupt generation on the completion of a data transmission or reception • • • The UART modules can operate in the four modes shown in Table 29. Table 29 UART Modes Baud Rate Operating Mode Mode 0: 8-bit shift register Mode 1: 8-bit shift UART Mode 2: 9-bit shift UART Mode 3: 9-bit shift UART fPCLK/2 Variable fPCLK/32 or fPCLK/641) Variable 1) For UART1 module, the baud rate is fixed at fPCLK/64. There are several ways to generate the baud rate clock for the serial port, depending on the mode in which it is operating. In mode 0, the baud rate for the transfer is fixed at fPCLK/2. In mode 2, the baud rate is generated internally based on the UART input clock and can be configured to eitherfPCLK/32 or fPCLK/64. For UART1 module, only fPCLK/64 is available. The variable baud rate is set by the underflow rate on the dedicated baud-rate generator. For UART module, the variable baud rate alternatively can be set by the overflow rate on Timer 1. 3.13.1 Baud-Rate Generator Both UART modules have their own dedicated baud-rate generator, which is based on a programmable 8-bit reload value, and includes divider stages (i.e., prescaler and Data Sheet 85 V0.9, 2006-12 XC886/888CLM Functional Description fractional divider) for generating a wide range of baud rates based on its input clock fPCLK, see Figure 30. Fractional Divider FDSTEP 1 FDM 1 0 FDEN&FDM 8-Bit Reload Value Adder fDIV 0 00 01 0 1 8-Bit Baud Rate Timer fBR FDEN FDRES fMOD (overflow) 11 10 R fPCLK Prescaler fDIV clk 11 10 01 ‘0’ 00 NDOV Figure 30 Baud-rate Generator Circuitry The baud rate timer is a count-down timer and is clocked by either the output of the fractional divider (fMOD) if the fractional divider is enabled (FDCON.FDEN = 1), or the output of the prescaler (fDIV) if the fractional divider is disabled (FDEN = 0). For baud rate generation, the fractional divider must be configured to fractional divider mode (FDCON.FDM = 0). This allows the baud rate control run bit BCON.R to be used to start or stop the baud rate timer. At each timer underflow, the timer is reloaded with the 8-bit reload value in register BG and one clock pulse is generated for the serial channel. Enabling the fractional divider in normal divider mode (FDEN = 1 and FDM = 1) stops the baud rate timer and nullifies the effect of bit BCON.R. See Section 3.14. The baud rate (fBR) value is dependent on the following parameters: • • • Input clock fPCLK Prescaling factor (2BRPRE) defined by bit field BRPRE in register BCON Fractional divider (STEP/256) defined by register FDSTEP (to be considered only if fractional divider is enabled and operating in fractional divider mode) 8-bit reload value (BR_VALUE) for the baud rate timer defined by register BG • Data Sheet 86 V0.9, 2006-12 XC886/888CLM Functional Description The following formulas calculate the final baud rate without and with the fractional divider respectively: f PCLK BRPRE baud rate = ----------------------------------------------------------------------------------- where 2 × ( BR_VALUE + 1 ) > 1 BRPRE 16 × 2 × ( BR_VALUE + 1 ) (3.5) f PCLK STEP baud rate = ------------------------------------------------------------------------------------ × -------------BRPRE 256 16 × 2 × ( BR_VALUE + 1 ) (3.6) The maximum baud rate that can be generated is limited to fPCLK/32. Hence, for a module clock of 24 MHz, the maximum achievable baud rate is 0.75 MBaud. Standard LIN protocol can support a maximum baud rate of 20 kHz, the baud rate accuracy is not critical and the fractional divider can be disabled. Only the prescaler is used for auto baud rate calculation. For LIN fast mode, which supports the baud rate of 20 kHz to 115.2 kHz, the higher baud rates require the use of the fractional divider for greater accuracy. Table 30 lists the various commonly used baud rates with their corresponding parameter settings and deviation errors. The fractional divider is disabled and a module clock of 24 MHz is used. Table 30 Baud rate 19.2 kBaud 9600 Baud 4800 Baud 2400 Baud Typical Baud rates for UART with Fractional Divider disabled Prescaling Factor (2BRPRE) 1 (BRPRE=000B) 1 (BRPRE=000B) 2 (BRPRE=001B) 4 (BRPRE=010B) Reload Value (BR_VALUE + 1) 78 (4EH) 156 (9CH) 156 (9CH) 156 (9CH) Deviation Error 0.17 % 0.17 % 0.17 % 0.17 % The fractional divider allows baud rates of higher accuracy (lower deviation error) to be generated. Table 31 lists the resulting deviation errors from generating a baud rate of 115.2 kHz, using different module clock frequencies. The fractional divider is enabled (fractional divider mode) and the corresponding parameter settings are shown. Data Sheet 87 V0.9, 2006-12 XC886/888CLM Functional Description Table 31 Deviation Error for UART with Fractional Divider enabled Prescaling Factor Reload Value STEP (2BRPRE) (BR_VALUE + 1) 1 1 1 1 10 (AH) 6 (6H) 4 (4H) 3 (3H) 197 (C5H) 236 (ECH) 236 (ECH) 236 (ECH) Deviation Error +0.20 % +0.03 % +0.03 % +0.03 % fPCLK 24 MHz 12 MHz 8 MHz 6 MHz 3.13.2 Baud Rate Generation using Timer 1 In UART modes 1 and 3 of UART module, Timer 1 can be used for generating the variable baud rates. In theory, this timer could be used in any of its modes. But in practice, it should be set into auto-reload mode (Timer 1 mode 2), with its high byte set to the appropriate value for the required baud rate. The baud rate is determined by the Timer 1 overflow rate and the value of SMOD as follows: 2 × f PCLK Mode 1, 3 baud rate = ---------------------------------------------------32 × 2 × ( 256 – TH1 ) SMOD (3.7) 3.14 Normal Divider Mode (8-bit Auto-reload Timer) Setting bit FDM in register FDCON to 1 configures the fractional divider to normal divider mode, while at the same time disables baud rate generation (see Figure 30). Once the fractional divider is enabled (FDEN = 1), it functions as an 8-bit auto-reload timer (with no relation to baud rate generation) and counts up from the reload value with each input clock pulse. Bit field RESULT in register FDRES represents the timer value, while bit field STEP in register FDSTEP defines the reload value. At each timer overflow, an overflow flag (FDCON.NDOV) will be set and an interrupt request generated. This gives an output clock fMOD that is 1/n of the input clock fDIV, where n is defined by 256 - STEP. The output frequency in normal divider mode is derived as follows: 1 f MOD = f DIV × ----------------------------256 – STEP (3.8) Data Sheet 88 V0.9, 2006-12 XC886/888CLM Functional Description 3.15 LIN Protocol The UART module can be used to support the Local Interconnect Network (LIN) protocol for both master and slave operations. This option is not available with UART1 module. The LIN baud rate detection feature provides the capability to detect the baud rate within LIN protocol using Timer 2. This allows the UART to be synchronized to the LIN baud rate for data transmission and reception. LIN is a holistic communication concept for local interconnected networks in vehicles. The communication is based on the SCI (UART) data format, a single-master/multipleslave concept, a clock synchronization for nodes without stabilized time base. An attractive feature of LIN is self-synchronization of the slave nodes without a crystal or ceramic resonator, which significantly reduces the cost of hardware platform. Hence, the baud rate must be calculated and returned with every message frame. The structure of a LIN frame is shown in Figure 31. The frame consists of the: • • • • Header, which comprises a Break (13-bit time low), Synch Byte (55H), and ID field Response time Data bytes (according to UART protocol) Checksum Frame slot Frame Response space Header Response Synch Protected identifier Data 1 Data 2 Data N Checksum Figure 31 Structure of LIN Frame 3.15.1 LIN Header Transmission LIN header transmission is only applicable in master mode. In the LIN communication, a master task decides when and which frame is to be transferred on the bus. It also identifies a slave task to provide the data transported by each frame. The information needed for the handshaking between the master and slave tasks is provided by the master task through the header portion of the frame. Data Sheet 89 V0.9, 2006-12 XC886/888CLM Functional Description The header consists of a break and synch pattern followed by an identifier. Among these three fields, only the break pattern cannot be transmitted as a normal 8-bit UART data. The break must contain a dominant value of 13 bits or more to ensure proper synchronization of slave nodes. In the LIN communication, a slave task is required to be synchronized at the beginning of the protected identifier field of frame. For this purpose, every frame starts with a sequence consisting of a break field followed by a synch byte field. This sequence is unique and provides enough information for any slave task to detect the beginning of a new frame and be synchronized at the start of the identifier field. Upon entering LIN communication, a connection is established and the transfer speed (baud rate) of the serial communication partner (host) is automatically synchronized in the following steps: STEP 1: Initialize interface for reception and timer for baud rate measurement STEP 2: Wait for an incoming LIN frame from host STEP 3: Synchronize the baud rate to the host STEP 4: Enter for Master Request Frame or for Slave Response Frame Note: Re-synchronization and setup of baud rate are always done for every Master Request Header or Slave Response Header LIN frame. Data Sheet 90 V0.9, 2006-12 XC886/888CLM Functional Description 3.16 High-Speed Synchronous Serial Interface The High-Speed Synchronous Serial Interface (SSC) supports full-duplex and half-duplex synchronous communication. The serial clock signal can be generated by the SSC internally (master mode), using its own 16-bit baud-rate generator, or can be received from an external master (slave mode). Data width, shift direction, clock polarity and phase are programmable. This allows communication with SPI-compatible devices or devices using other synchronous serial interfaces. Features • • • Master and slave mode operation – Full-duplex or half-duplex operation Transmit and receive buffered Flexible data format – Programmable number of data bits: 2 to 8 bits – Programmable shift direction: LSB or MSB shift first – Programmable clock polarity: idle low or high state for the shift clock – Programmable clock/data phase: data shift with leading or trailing edge of the shift clock Variable baud rate Compatible with Serial Peripheral Interface (SPI) Interrupt generation – On a transmitter empty condition – On a receiver full condition – On an error condition (receive, phase, baud rate, transmit error) • • • Data is transmitted or received on lines TXD and RXD, which are normally connected to the pins MTSR (Master Transmit/Slave Receive) and MRST (Master Receive/Slave Transmit). The clock signal is output via line MS_CLK (Master Serial Shift Clock) or input via line SS_CLK (Slave Serial Shift Clock). Both lines are normally connected to the pin SCLK. Transmission and reception of data are double-buffered. Figure 32 shows the block diagram of the SSC. Data Sheet 91 V0.9, 2006-12 XC886/888CLM Functional Description PCLK Baud-rate Generator Clock Control Shift Clock RIR SSC Control Block Register CON TIR EIR SS_CLK MS_CLK Receive Int. Request Transmit Int. Request Error Int. Request Status Control TXD(Master) Pin Control RXD(Slave) TXD(Slave) RXD(Master) 16-Bit Shift Register Transmit Buffer Register TB Receive Buffer Register RB Internal Bus Figure 32 SSC Block Diagram Data Sheet 92 V0.9, 2006-12 XC886/888CLM Functional Description 3.17 Timer 0 and Timer 1 Timer 0 and Timer 1 can function as both timers or counters. When functioning as a timer, Timer 0 and Timer 1 are incremented every machine cycle, i.e. every 2 input clocks (or 2 PCLKs). When functioning as a counter, Timer 0 and Timer 1 are incremented in response to a 1-to-0 transition (falling edge) at their respective external input pins, T0 or T1. Timer 0 and 1 are fully compatible and can be configured in four different operating modes for use in a variety of applications, see Table 32. In modes 0, 1 and 2, the two timers operate independently, but in mode 3, their functions are specialized. Table 32 Mode 0 Timer 0 and Timer 1 Modes Operation 13-bit timer The timer is essentially an 8-bit counter with a divide-by-32 prescaler. This mode is included solely for compatibility with Intel 8048 devices. 16-bit timer The timer registers, TLx and THx, are concatenated to form a 16-bit counter. 8-bit timer with auto-reload The timer register TLx is reloaded with a user-defined 8-bit value in THx upon overflow. Timer 0 operates as two 8-bit timers The timer registers, TL0 and TH0, operate as two separate 8-bit counters. Timer 1 is halted and retains its count even if enabled. 1 2 3 Data Sheet 93 V0.9, 2006-12 XC886/888CLM Functional Description 3.18 Timer 2 and Timer 21 Timer 2 and Timer 21 are 16-bit general purpose timers (THL2) that are fully compatible and have two modes of operation, a 16-bit auto-reload mode and a 16-bit one channel capture mode, see Table 33. As a timer, the timers count with an input clock of PCLK/12 (if prescaler is disabled). As a counter, they count 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for the count is PCLK/24 (if prescaler is disabled). Table 33 Mode Timer 2 Modes Description Auto-reload Up/Down Count Disabled • Count up only • Start counting from 16-bit reload value, overflow at FFFFH • Reload event configurable for trigger by overflow condition only, or by negative/positive edge at input pin T2EX as well • Programmble reload value in register RC2 • Interrupt is generated with reload event Up/Down Count Enabled • Count up or down, direction determined by level at input pin T2EX • No interrupt is generated • Count up – Start counting from 16-bit reload value, overflow at FFFFH – Reload event triggered by overflow condition – Programmble reload value in register RC2 • Count down – Start counting from FFFFH, underflow at value defined in register RC2 – Reload event triggered by underflow condition – Reload value fixed at FFFFH Channel capture • • • • • • • Count up only Start counting from 0000H, overflow at FFFFH Reload event triggered by overflow condition Reload value fixed at 0000H Capture event triggered by falling/rising edge at pin T2EX Captured timer value stored in register RC2 Interrupt is generated with reload or capture event Data Sheet 94 V0.9, 2006-12 XC886/888CLM Functional Description 3.19 Capture/Compare Unit 6 The Capture/Compare Unit 6 (CCU6) provides two independent timers (T12, T13), which can be used for Pulse Width Modulation (PWM) generation, especially for AC-motor control. The CCU6 also supports special control modes for block commutation and multi-phase machines. The timer T12 can function in capture and/or compare mode for its three channels. The timer T13 can work in compare mode only. The multi-channel control unit generates output patterns, which can be modulated by T12 and/or T13. The modulation sources can be selected and combined for the signal modulation. Timer T12 Features • • • • • • • • • Three capture/compare channels, each channel can be used either as a capture or as a compare channel Supports generation of a three-phase PWM (six outputs, individual signals for highside and lowside switches) 16-bit resolution, maximum count frequency = peripheral clock frequency Dead-time control for each channel to avoid short-circuits in the power stage Concurrent update of the required T12/13 registers Generation of center-aligned and edge-aligned PWM Supports single-shot mode Supports many interrupt request sources Hysteresis-like control mode Timer T13 Features • • • • • One independent compare channel with one output 16-bit resolution, maximum count frequency = peripheral clock frequency Can be synchronized to T12 Interrupt generation at period-match and compare-match Supports single-shot mode Additional Features • • • • • • • Implements block commutation for Brushless DC-drives Position detection via Hall-sensor pattern Automatic rotational speed measurement for block commutation Integrated error handling Fast emergency stop without CPU load via external signal (CTRAP) Control modes for multi-channel AC-drives Output levels can be selected and adapted to the power stage The block diagram of the CCU6 module is shown in Figure 33. Data Sheet 95 V0.9, 2006-12 XC886/888CLM Functional Description module kernel compare address decoder T12 clock control channel 0 channel 1 channel 2 start capture 1 1 deadtime control multichannel control trap control 1 output select output select 3 T13 interrupt control channel 3 compare 1 3 2 2 2 trap input 1 input / output control CCPOS0 CCPOS1 CCPOS2 COUT63 COUT60 COUT61 COUT62 Hall input compare compare compare port control CCU6_block_diagram Figure 33 CCU6 Block Diagram Data Sheet 96 V0.9, 2006-12 CTRAP T12HR T13HR CC60 CC61 CC62 XC886/888CLM Functional Description 3.20 Controller Area Network (MultiCAN) The MultiCAN module contains two Full-CAN nodes operating independently or exchanging data and remote frames via a gateway function. Transmission and reception of CAN frames is handled in accordance to CAN specification V2.0 B active. Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Both CAN nodes share a common set of message objects, where each message object may be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects may be combined to build gateways between the CAN nodes or to setup a FIFO buffer. The message objects are organized in double chained lists, where each CAN node has it’s own list of message objects. A CAN node stores frames only into message objects that are allocated to the list of the CAN node. It only transmits messages from objects of this list. A powerful, command driven list controller performs all list operations. The bit timings for the CAN nodes are derived from the peripheral clock (fCAN) and are programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connects each CAN node to a bus transceiver. MultiCAN Module Kernel Interrupt Controller CANSRC[7:0] Clock Control fCAN Message Object Buffer 32 Objects Linked List Control CAN Node 1 CAN Node 0 TXDC1 RXDC1 TXDC0 RXDC0 Port Control Address Decoder & Data control Access Mediator A[13: 2] D[31:0] CAN Control MultiCAN_XC8_overview Figure 34 Features • Overview of the MultiCAN Compliant to ISO 11898. 97 V0.9, 2006-12 Data Sheet XC886/888CLM Functional Description • • • • • • CAN functionality according to CAN specification V2.0 B active. Dedicated control registers are provided for each CAN node. A data transfer rate up to 1 MBaud is supported. Flexible and powerful message transfer control and error handling capabilities are implemented. Advanced CAN bus bit timing analysis and baud rate detection can be performed for each CAN node via the frame counter. Full-CAN functionality: A set of 32 message objects can be individually – allocated (assigned) to any CAN node – configured as transmit or receive object – setup to handle frames with 11-bit or 29-bit identifier – counted or assigned a timestamp via a frame counter – configured to remote monitoring mode Advanced Acceptance Filtering: – Each message object provides an individual acceptance mask to filter incoming frames. – A message object can be configured to accept only standard or only extended frames or to accept both standard and extended frames. – Message objects can be grouped into 4 priority classes. – The selection of the message to be transmitted first can be performed on the basis of frame identifier, IDE bit and RTR bit according to CAN arbitration rules. Advanced Message Object Functionality: – Message Objects can be combined to build FIFO message buffers of arbitrary size, which is only limited by the total number of message objects. – Message objects can be linked to form a gateway to automatically transfer frames between 2 different CAN buses. A single gateway can link any two CAN nodes. An arbitrary number of gateways may be defined. Advanced Data Management: – The Message objects are organized in double chained lists. – List reorganizations may be performed any time, even during full operation of the CAN nodes. – A powerful, command driven list controller manages the organization of the list structure and ensures consistency of the list. – Message FIFOs are based on the list structure and can easily be scaled in size during CAN operation. – Static Allocation Commands offer compatibility with TwinCAN applications, which are not list based. Advanced Interrupt Handling: – Up to 8 interrupt output lines are available. Most interrupt requests can be individually routed to one of the 8 interrupt output lines. – Message postprocessing notifications can be flexibly aggregated into a dedicated register field of 64 notification bits. • • • • Data Sheet 98 V0.9, 2006-12 XC886/888CLM Functional Description 3.21 Analog-to-Digital Converter The XC886/888 includes a high-performance 10-bit Analog-to-Digital Converter (ADC) with eight multiplexed analog input channels. The ADC uses a successive approximation technique to convert the analog voltage levels from up to eight different sources. The analog input channels of the ADC are available at Port 2. Features • • • • • • • • • • • • • • • • • • Successive approximation 8-bit or 10-bit resolution (TUE of ± 1 LSB and ± 2 LSB, respectively) Eight analog channels Four independent result registers Result data protection for slow CPU access (wait-for-read mode) Single conversion mode Autoscan functionality Limit checking for conversion results Data reduction filter (accumulation of up to 2 conversion results) Two independent conversion request sources with programmable priority Selectable conversion request trigger Flexible interrupt generation with configurable service nodes Programmable sample time Programmable clock divider Cancel/restart feature for running conversions Integrated sample and hold circuitry Compensation of offset errors Low power modes 3.21.1 ADC Clocking Scheme A common module clock fADC generates the various clock signals used by the analog and digital parts of the ADC module: • • fADCA is input clock for the analog part. fADCI is internal clock for the analog part (defines the time base for conversion length and the sample time). This clock is generated internally in the analog part, based on the input clock fADCA to generate a correct duty cycle for the analog components. fADCD is input clock for the digital part. • The internal clock for the analog part fADCI is limited to a maximum frequency of 10 MHz. Therefore, the ADC clock prescaler must be programmed to a value that ensures fADCI does not exceed 10 MHz. The prescaler ratio is selected by bit field CTC in register Data Sheet 99 V0.9, 2006-12 XC886/888CLM Functional Description GLOBCTR. A prescaling ratio of 32 can be selected when the maximum performance of the ADC is not required. f ADC = fPCLK fADCD arbiter registers interrupts digital part fADCA CTC ÷ 32 f ADCI ÷4 MUX ÷3 ÷2 clock prescaler analog components analog part 1 f ADCI Condition: f ADCI ≤ 10 MHz, where t ADCI = Figure 35 ADC Clocking Scheme For module clock fADC = 24 MHz, the analog clock fADCI frequency can be selected as shown in Table 34. Table 34 24 MHz fADCI Frequency Selection CTC 00B 01B 10B 11B (default) Prescaling Ratio ÷2 ÷3 ÷4 ÷ 32 Analog Clock fADCI 12 MHz (N.A) 8 MHz 6 MHz 750 kHz Module Clock fADC As fADCI cannot exceed 10 MHz, bit field CTC should not be set to 00B when fADC is 24 MHz. During slow-down mode where fADC may be reduced to 12 MHz, 6 MHz etc., CTC can be set to 00B as long as the divided analog clock fADCI does not exceed 10 MHz. Data Sheet 100 V0.9, 2006-12 XC886/888CLM Functional Description However, it is important to note that the conversion error could increase due to loss of charges on the capacitors, if fADC becomes too low during slow-down mode. 3.21.2 • • • • ADC Conversion Sequence The analog-to-digital conversion procedure consists of the following phases: Synchronization phase (tSYN) Sample phase (tS) Conversion phase Write result phase (tWR) conversion start trigger Sample Phase fADCI BUSY Bit SAMPLE Bit tSYN tS tCONV Write Result Phase tWR Conversion Phase Source interrupt Channel interrupt Result interrupt Figure 36 ADC Conversion Timing Data Sheet 101 V0.9, 2006-12 XC886/888CLM Functional Description 3.22 On-Chip Debug Support The On-Chip Debug Support (OCDS) provides the basic functionality required for the software development and debugging of XC800-based systems. The OCDS design is based on these principles: • • • • Use the built-in debug functionality of the XC800 Core Add a minimum of hardware overhead Provide support for most of the operations by a Monitor Program Use standard interfaces to communicate with the Host (a Debugger) Features • • • • • Set breakpoints on instruction address and on address range within the Program Memory Set breakpoints on internal RAM address range Support unlimited software breakpoints in Flash/RAM code region Process external breaks via JTAG and upon activating a dedicated pin Step through the program code The OCDS functional blocks are shown in Figure 37. The Monitor Mode Control (MMC) block at the center of OCDS system brings together control signals and supports the overall functionality. The MMC communicates with the XC800 Core, primarily via the Debug Interface, and also receives reset and clock signals. After processing memory address and control signals from the core, the MMC provides proper access to the dedicated extra-memories: a Monitor ROM (holding the code) and a Monitor RAM (for work-data and Monitor-stack). The OCDS system is accessed through the JTAG1), which is an interface dedicated exclusively for testing and debugging activities and is not normally used in an application. The dedicated MBC pin is used for external configuration and debugging control. Note: All the debug functionality described here can normally be used only after XC886/888 has been started in OCDS mode. 1) The pins of the JTAG port can be assigned to either the primary port (Port 0) or either of the secondary ports (Ports 1 and 2/Port 5). User must set the JTAG pins (TCK and TDI) as input during connection with the OCDS system. Data Sheet 102 V0.9, 2006-12 XC886/888CLM Functional Description JTAG Module Debug Interface TMS TCK TDI TDO TCK TDI TDO Control Reset Memory Control Unit User Program Memory Boot/ Monitor ROM JTAG Monitor Mode Control Monitor & Bootstrap loader Control line MBC User Internal RAM Suspend Control System Control Unit Reset Clock Monitor RAM - parts of OCDS Reset Clock Debug PROG PROG Memory Interface & IRAM Data Control Addresses XC800 Core OCDS_XC886C-Block_Diagram-UM-v0.2 Figure 37 OCDS Block Diagram 3.22.1 JTAG ID Register This is a read-only register located inside the JTAG module, and is used to recognize the device(s) connected to the JTAG interface. Its content is shifted out when INSTRUCTION register contains the IDCODE command (opcode 04H), and the same is also true immediately after reset. The JTAG ID register contents for the XC886/888 Flash devices are given in Table 35. Table 35 Device Type Flash ROM JTAG ID Summary Device Name XC886/888*-8FF XC886/888*-6FF XC886/888*-8RF XC886/888*-6RF JTAG ID 1012 0083H 1012 5083H 1013 C083H 1013 D083H Note: The asterisk (*) above denotes all possible device configurations. Data Sheet 103 V0.9, 2006-12 XC886/888CLM Functional Description 3.23 Chip Identification Number The XC886/888 identity (ID) register is located at Page 1 of address B3H. The value of ID register is 09H for Flash devices and 21H for ROM devices. However, for easy identification of product variants, the Chip Identification Number, which is an unique number assigned to each product variant, is available. The differentiation is based on the product, variant type and device step information. Two methods are provided to read a device’s chip identification number: • • In-application subroutine, GET_CHIP_INFO Bootstrap loader (BSL) mode A Table 36 lists the chip identification numbers of available XC886/888 device variants. Table 36 Chip Identification Number Chip Identification Number AA-Step XC886CLM-8FFA 3V3 XC888CLM-8FFA 3V3 XC886LM-8FFA 3V3 XC888LM-8FFA 3V3 XC886CLM-6FFA 3V3 XC888CLM-6FFA 3V3 XC886LM-6FFA 3V3 XC888LM-6FFA 3V3 XC886CM-8FFA 3V3 XC888CM-8FFA 3V3 XC886C-8FFA 3V3 XC888C-8FFA 3V3 XC886-8FFA 3V3 XC888-8FFA 3V3 XC886CM-6FFA 3V3 XC888CM-6FFA 3V3 XC886C-6FFA 3V3 XC888C-6FFA 3V3 XC886-6FFA 3V3 XC888-6FFA 3V3 Data Sheet Product Variant - AB-Step 09500102H 09500103H 09500122H 09500123H 09551502H 09551503H 09551522H 09551523H 09580102H 09580103H 09580142H 09580143H 09580162H 09580163H 095D1502H 095D1503H 095D1542H 095D1543H 095D1562H 095D1563H 104 AC-Step 0A500102H 0A500103H 0A500122H 0A500123H 0A551502H 0A551503H 0A551522H 0A551523H 0A580102H 0A580103H 0A580142H 0A580143H 0A580162H 0A580163H 0A5D1502H 0A5D1503H 0A5D1542H 0A5D1543H 0A5D1562H 0A5D1563H V0.9, 2006-12 XC886/888CLM Functional Description Table 36 Chip Identification Number (cont’d) Chip Identification Number AA-Step XC886CLM-8FFA 5V XC888CLM-8FFA 5V XC886LM-8FFA 5V XC888LM-8FFA 5V XC886CLM-6FFA 5V XC888CLM-6FFA 5V XC886LM-6FFA 5V XC888LM-6FFA 5V XC886CM-8FFA 5V XC888CM-8FFA 5V XC886C-8FFA 5V XC888C-8FFA 5V XC886-8FFA 5V XC888-8FFA 5V XC886CM-6FFA 5V XC888CM-6FFA 5V XC886C-6FFA 5V XC888C-6FFA 5V XC886-6FFA 5V XC888-6FFA 5V XC886CLM-8RFA 3V3 XC888CLM-8RFA 3V3 XC886LM-8RFA 3V3 XC888LM-8RFA 3V3 XC886CLM-6RFA 3V3 XC888CLM-6RFA 3V3 XC886LM-6RFA 3V3 XC888LM-6RFA 3V3 XC886CM-8RFA 3V3 21400502H 21400503H 21400522H 21400523H 21411502H 21411503H 21411522H 21411523H 21480502H AB-Step 09900102H 09900103H 09900122H 09900123H 09951502H 09951503H 09951522H 09951523H 09980102H 09980103H 09980142H 09980143H 09980162H 09980163H 099D1502H 099D1503H 099D1542H 099D1543H 099D1562H 099D1563H AC-Step 0A900102H 0A900103H 0A900122H 0A900123H 0A951502H 0A951503H 0A951522H 0A951523H 0A980102H 0A980103H 0A980142H 0A980143H 0A980162H 0A980163H 0A9D1502H 0A9D1503H 0A9D1542H 0A9D1543H 0A9D1562H 0A9D1563H - Product Variant Data Sheet 105 V0.9, 2006-12 XC886/888CLM Functional Description Table 36 Chip Identification Number (cont’d) Chip Identification Number AA-Step XC888CM-8RFA 3V3 XC886C-8RFA 3V3 XC888C-8RFA 3V3 XC886-8RFA 3V3 XC888-8RFA 3V3 XC886CM-6RFA 3V3 XC888CM-6RFA 3V3 XC886C-6RFA 3V3 XC888C-6RFA 3V3 XC886-6RFA 3V3 XC888-6RFA 3V3 XC886CLM-8RFA 5V XC888CLM-8RFA 5V XC886LM-8RFA 5V XC888LM-8RFA 5V XC886CLM-6RFA 5V XC888CLM-6RFA 5V XC886LM-6RFA 5V XC888LM-6RFA 5V XC886CM-8RFA 5V XC888CM-8RFA 5V XC886C-8RFA 5V XC888C-8RFA 5V XC886-8RFA 5V XC888-8RFA 5V XC886CM-6RFA 5V XC888CM-6RFA 5V XC886C-6RFA 5V XC888C-6RFA 5V 21480503H 21480542H 21480543H 21480562H 21480563H 21491502H 21491503H 21491542H 21491543H 21491562H 21491563H 21800502H 21800503H 21800522H 21800523H 21811502H 21811503H 21811522H 21811523H 21880502H 21880503H 21880542H 21880543H 21880562H 21880563H 21891502H 21891503H 21891542H 21891543H AB-Step AC-Step - Product Variant Data Sheet 106 V0.9, 2006-12 XC886/888CLM Functional Description Table 36 Chip Identification Number (cont’d) Chip Identification Number AA-Step XC886-6RFA 5V XC888-6RFA 5V 21891562H 21891563H AB-Step AC-Step - Product Variant Data Sheet 107 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4 Electrical Parameters Chapter 4 provides the characteristics of the electrical parameters which are implementation-specific for the XC886/888. Note: The electrical parameters are valid only for the Flash variants of the XC886. The electrical parameters for the XC888 Flash and XC886/888 ROM variants will be added in later versions of the data sheet. 4.1 General Parameters The general parameters are described here to aid the users in interpreting the parameters mainly in Section 4.2 and Section 4.3. 4.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the XC886/888 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • CC These parameters indicate Controller Characteristics, which are distinctive features of the XC886/888 and must be regarded for a system design. SR These parameters indicate System Requirements, which must be provided by the microcontroller system in which the XC886/888 is designed in. • Data Sheet 108 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.1.2 Absolute Maximum Rating Maximum ratings are the extreme limits to which the XC886/888 can be subjected to without permanent damage. Table 37 Parameter Ambient temperature Absolute Maximum Rating Parameters Symbol -40 -65 -40 -0.5 -10 – Limit Values min. max. 125 150 150 6 10 50 °C °C °C V mA mA under bias under bias Unit Notes TA Storage temperature TST Junction temperature TJ Voltage on power supply pin with VDDP respect to VSS Input current on any pin during overload condition IIN Absolute sum of all input currents Σ|IIN| during overload condition Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the voltage on VDDP pin with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Data Sheet 109 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.1.3 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation of the XC886/888. All parameters mentioned in the following table refer to these operating conditions, unless otherwise noted. Table 38 Parameter Digital power supply voltage Digital ground voltage Digital core supply voltage System Clock Frequency1) Ambient temperature Operating Condition Parameters Symbol Limit Values min. max. 5.5 3.6 2.7 103.2 85 125 4.5 3.0 0 2.3 88.8 -40 -40 Unit Notes/ Conditions V V V V MHz °C °C SAFXC886/888... SAKXC886/888... 5V range 3.3V range VDDP VSS VDDC fSYS TA 1) fSYS is the PLL output clock. During normal operating mode, CPU clock is fSYS / 4. Please refer to Figure 26 for detailed description. Data Sheet 110 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.2 DC Parameters The electrical characteristics of the DC Parameters are detailed in this section. 4.2.1 Input/Output Characteristics Table 39 provides the characteristics of the input/output pins of the XC886/888. Table 39 Parameter Input/Output Characteristics (Operating Conditions apply) Symbol Limit Values min. max. 1.0 0.4 V V V V V Unit Test Conditions VDDP = 5 V Range Output low voltage Output high voltage VOL VOH CC – – CC VDDP - – 1.0 IOL = 15 mA IOL = 5 mA IOH = -15 mA IOH = -5 mA CMOS Mode VDDP - – 0.4 Input low voltage on VILP port pins (all except P0.0 & P0.1) Input low voltage on P0.0 & P0.1 Input low voltage on RESET pin Input low voltage on TMS pin SR – 0.3 × VDDP SR -0.2 SR – SR – SR 0.7 × 0.3 × V V V V CMOS Mode CMOS Mode CMOS Mode CMOS Mode VILP0 VILR VILT VDDP 0.3 × VDDP 0.3 × VDDP – Input high voltage on VIHP port pins (all except P0.0 & P0.1) Input high voltage on P0.0 & P0.1 Input high voltage on RESET pin Input high voltage on TMS pin Input Hysteresis1) VDDP SR 0.7 × VIHP0 VIHR VIHT HYS VDDP – V V V V CMOS Mode CMOS Mode CMOS Mode CMOS Mode VDDP SR 0.7 × VDDP SR 0.75 × – VDDP CC 0.07 × – VDDP Data Sheet 111 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 39 Parameter Input low voltage at XTAL1 Input high voltage at XTAL1 Pull-up current Pull-down current Input leakage current 2) Input/Output Characteristics (Operating Conditions apply) (cont’d) Symbol Limit Values min. max. 0.3 × V Unit Test Conditions VILX VIHX IPU IPD IOZ1 SR VSS 0.5 SR 0.7 × VDDC VDDC + V 0.5 -10 – 10 – 1 10 5 25 15 µA µA µA µA µA µA mA mA mA 3) VDDC SR – -150 SR – 150 CC -1 CC -10 SR -5 SR – VIH,min VIL,max VIL,max VIH,min 0 < VIN < VDDP, TA ≤ 125°C IILX Overload current on any IOV Input current at XTAL1 pin Absolute sum of overload currents Σ|IOV| Maximum current per IM SR SR – pin (excluding VDDP and VSS) Maximum current for all Σ|IM| pins (excluding VDDP and VSS) Maximum current into SR – 90 mA IMVDDP SR – SR – 120 120 mA mA VDDP Maximum current out of IMVSS VSS VDDP = 3.3 V Range Output low voltage Output high voltage VOL VOH CC – – 1.0 0.4 V V V V CC VDDP - – 1.0 IOL = 8 mA IOL = 2.5 mA IOH = -8 mA IOH = -2.5 mA VDDP - – 0.4 Data Sheet 112 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 39 Parameter Input/Output Characteristics (Operating Conditions apply) (cont’d) Symbol Limit Values min. Input low voltage on VILP port pins (all except P0.0 & P0.1) Input low voltage on P0.0 & P0.1 Input low voltage on RESET pin Input low voltage on TMS pin SR – max. 0.3 × V CMOS Mode Unit Test Conditions VDDP SR -0.2 SR – SR – SR 0.7 × 0.3 × V V V V CMOS Mode CMOS Mode CMOS Mode CMOS Mode VILP0 VILR VILT VDDP 0.3 × VDDP 0.3 × VDDP – Input high voltage on VIHP port pins (all except P0.0 & P0.1) Input high voltage on P0.0 & P0.1 Input high voltage on RESET pin Input high voltage on TMS pin Input Hysteresis1) Input low voltage at XTAL1 Input high voltage at XTAL1 Pull-up current Pull-down current Input leakage current2) Input current at XTAL1 VDDP SR 0.7 × VIHP0 VIHR VIHT HYS VILX VIHX IPU IPD IOZ1 VDDP – V V V V V CMOS Mode CMOS Mode CMOS Mode CMOS Mode VDDP SR 0.7 × VDDP SR 0.75 × – VDDP CC 0.03 × – VDDP SR VSS 0.5 SR 0.7 × 0.3 × VDDC VDDC + V 0.5 -5 – 5 – 1 10 5 µA µA µA µA µA µA mA VDDC SR – -50 SR – 50 CC -1 CC - 10 SR -5 VIH,min VIL,max VIL,max VIH,min 0 < VIN < VDDP, TA ≤ 125°C IILX Overload current on any IOV pin Data Sheet 113 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 39 Parameter Absolute sum of overload currents Input/Output Characteristics (Operating Conditions apply) (cont’d) Symbol Σ|IOV| Limit Values min. SR – max. 25 15 mA mA 3) Unit Test Conditions Maximum current per IM SR SR – pin (excluding VDDP and VSS) Maximum current for all Σ|IM| pins (excluding VDDP and VSS) Maximum current into SR – tbd mA IMVDDP SR – SR – tbd tbd mA mA VDDP Maximum current out of IMVSS VSS 1) Not subjected to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise. 2) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. TMS pin and RESET pin have internal pull devices and are not included in the input leakage current characteristic. 3) Not subjected to production test, verified by design/characterization. Data Sheet 114 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.2.2 Supply Threshold Characteristics Table 40 provides the characteristics of the supply threshold in the XC886/888. 5.0V VDDPPW VDDP 2.5V VDDC VDDCPOR VDDCPW VDDCBO VDDCRDR VDDCBOPD Figure 38 Table 40 Parameters Supply Threshold Parameters Supply Threshold Parameters (Operating Conditions apply) Symbol min. 1) Limit Values typ. 2.3 2.1 1.0 1.5 4.0 1.5 max. 2.4 2.2 1.1 1.7 4.6 1.7 CC CC 2.2 2.0 0.9 1.3 3.4 1.3 Unit V V V V V V VDDC prewarning voltage VDDC brownout voltage in active mode 1) VDDCPW VDDCBO RAM data retention voltage VDDC brownout voltage in power-down mode 2) VDDCRDR CC VDDCBOPD CC VDDPPW VDDCPOR CC CC VDDP prewarning voltage3) Power-on reset voltage 2)4) 1) Detection is disabled in power-down mode. 2) Detection is enabled in both active and power-down mode. 3) Detection is enabled for external power supply of 5.0V. Detection must be disabled for external power supply of 3.3V. 4) The reset of EVR is extended by 300 µs typically after the VDDC reaches the power-on reset voltage. Data Sheet 115 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.2.3 ADC Characteristics The values in the table below are given for an analog power supply between 4.5 V to 5.5 V. The ADC can be used with an analog power supply down to 3 V. But in this case, the analog parameters may show a reduced performance. All ground pins (VSS) must be externally connected to one single star point in the system. The voltage difference between the ground pins must not exceed 200mV. Table 41 Parameter Analog reference voltage Analog reference ground Analog input voltage range ADC clocks ADC Characteristics (Operating Conditions apply; VDDP = 5V Range) Symbol Limit Values min. typ . max. SR VAGND VDDP +1 SR VSS 0.05 Unit Test Conditions/ Remarks V VAREF VAGND VAIN fADC fADCI tS tC TUE1) DNL INL OFF GAIN VDDP + 0.05 VSS VAREF V -1 SR VAGND – – – 24 – VAREF V 25.8 10 MHz module clock MHz internal analog clock See Figure 35 Sample time Conversion time Total unadjusted error Differential Nonlinearity Integral Nonlinearity Offset Gain Switched capacitance at the reference voltage input CC (2 + INPCR0.STC) × µs tADCI CC See Section 4.2.3.1 CC – – CC – CC – CC – CC – – – 1 1 1 1 10 ±1 ±2 – – – – 20 µs LSB 8-bit conversion2) LSB 10-bit conversion LSB 10-bit conversion LSB 10-bit conversion LSB 10-bit conversion LSB 10-bit conversion pF 2)3) CAREFSW CC – Data Sheet 116 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 41 Parameter Switched capacitance at the analog voltage inputs ADC Characteristics (Operating Conditions apply; VDDP = 5V Range) Symbol Limit Values min. typ . 5 max. 7 CC – Unit Test Conditions/ Remarks pF 2)4) CAINSW Input resistance of RAREF the reference input Input resistance of RAIN the selected analog channel CC – CC – 1 1 2 1.5 kΩ kΩ 2) 2) 1) TUE is tested at VAREF = 5.0 V, VAGND = 0 V, VDDP = 5.0 V. 2) Not subject to production test, verified by design/characterization 3) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead of this, smaller capacitances are successively switched to the reference voltage. 4) The sampling capacity of the conversion C-Network is pre-charged to VAREF/2 before connecting the input to the C-Network. Because of the parasitic elements, the voltage measured at ANx is lower than VAREF/2. Data Sheet 117 V0.9, 2006-12 XC886/888CLM Electrical Parameters Analog Input Circuitry REXT ANx RAIN, On VAIN CEXT C AINSW VAGNDx Reference Voltage Input Circuitry VAREFx R AREF, On VAREF C AREFSW VAGNDx Figure 39 ADC Input Circuits Data Sheet 118 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.2.3.1 ADC Conversion Timing Conversion time, tC = tADC × ( 1 + r × (3 + n + STC) ) , where r = CTC + 2 for CTC = 00B, 01B or 10B, r = 32 for CTC = 11B, CTC = Conversion Time Control (GLOBCTR.CTC), STC = Sample Time Control (INPCR0.STC), n = 8 or 10 (for 8-bit and 10-bit conversion respectively), tADC = 1 / fADC Data Sheet 119 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.2.4 Power Supply Current Table 42 and Table 44 provide the characteristics of the power supply current in the XC886/888. Table 42 Parameter Power Supply Current Parameters (Operating Conditions apply; VDDP = 5V range) Symbol Limit Values typ.1) max.2) 32.8 25.3 17.0 14.4 mA mA mA mA 3) 4) 5) Unit Test Condition VDDP = 5V Range Active Mode Idle Mode Active Mode with slow-down enabled Idle Mode with slow-down enabled IDDP IDDP IDDP IDDP 27.2 21.1 14.1 11.7 6) 1) The typical IDDP values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at TA = + 25 °C and VDDP = 5.0 V. 2) The maximum IDDP values are measured under worst case conditions (TA = + 125 °C and VDDP = 5.5 V). 3) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001B), RESET = VDDP, no load on ports. 4) IDDP (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = VDDP, no load on ports. 5) IDDP (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110B, RESET = VDDP, no load on ports. 6) IDDP (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110B, RESET = VDDP, no load on ports. Data Sheet 120 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 43 Parameter Power Down Current (Operating Conditions apply; VDDP = 5V range) Symbol Limit Values typ.1) max.2) 10 30 µA µA Unit Test Condition VDDP = 5V Range Power-Down Mode3) IPDP 1 - TA = + 25 °C4) TA = + 85 °C4)5) 1) The typical IPDP values are based on preliminary measurements and are to be used as reference only. These values are measured at VDDP = 5.0 V. 2) The maximum IPDP values are measured at VDDP = 5.5 V. 3) IPDP has a maximum value of 200 µA at TA = + 125 °C. 4) IPDP is measured with: RESET = VDDP, VAGND= VSS, RXD/INT0 = VDDP; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs. 5) Not subject to production test, verified by design/characterization. Data Sheet 121 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 44 Parameter Power Supply Current Parameters (Operating Conditions apply; VDDP = 3.3V range) Symbol Limit Values typ.1) max.2) tbd tbd tbd tbd mA mA mA mA 3) 4) 5) Unit Test Condition VDDP = 3.3V Range Active Mode Idle Mode Active Mode with slow-down enabled Idle Mode with slow-down enabled IDDP IDDP IDDP IDDP 25.9 19.9 13.2 11.1 6) 1) The typical IDDP values are based on preliminary measurements and are to be used as reference only. These values are periodically measured at TA = + 25 °C and VDDP = 3.3 V. 2) The maximum IDDP values are measured under worst case conditions (TA = + 125 °C and VDDP = 3.6 V). 3) IDDP (active mode) is measured with: CPU clock and input clock to all peripherals running at 24 MHz(set by on-chip oscillator of 9.6 MHz and NDIV in PLL_CON to 1001B), RESET = VDDP, no load on ports. 4) IDDP (idle mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 24 MHz, RESET = VDDP, no load on ports. 5) IDDP (active mode with slow-down mode) is measured with: CPU clock and input clock to all peripherals running at 8 MHz by setting CLKREL in CMCON to 0110B, RESET = VDDP, no load on ports. 6) IDDP (idle mode with slow-down mode) is measured with: CPU clock disabled, watchdog timer disabled, input clock to all peripherals enabled and running at 8 MHz by setting CLKREL in CMCON to 0110B,, RESET = VDDP, no load on ports. Data Sheet 122 V0.9, 2006-12 XC886/888CLM Electrical Parameters Table 45 Parameter Power Down Current (Operating Conditions apply; VDDP = 3.3V range) Symbol Limit Values typ.1) max.2) tbd tbd µA µA Unit Test Condition VDDP = 3.3V Range Power-Down Mode3) IPDP 1 - TA = + 25 °C4) TA = + 85 °C4)5) 1) The typical IPDP values are based on preliminary measurements and are to be used as reference only. These values are measured at VDDP = 3.3 V. 2) The maximum IPDP values are measured at VDDP = 3.6 V. 3) IPDP has a maximum value of 200 µA at TA = + 125 °C. 4) IPDP is measured with: RESET = VDDP, VAGND= VSS, RXD/INT0 = VDDP; rest of the ports are programmed to be input with either internal pull devices enabled or driven externally to ensure no floating inputs. 5) Not subject to production test, verified by design/characterization. Data Sheet 123 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.3 AC Parameters The electrical characteristics of the AC Parameters are detailed in this section. 4.3.1 Testing Waveforms The testing waveforms for rise/fall time, output delay and output high impedance are shown in Figure 40, Figure 41 and Figure 42. VDDP 90% 90% VSS 10% tR tF 10% Figure 40 Rise/Fall Time Parameters VDDP VDDE / 2 VSS Test Points VDDE / 2 Figure 41 Testing Waveform, Output Delay VLoad + 0 .1 V VLoad - 0 .1 V Timing Reference Points VOH - 0 .1 V VOL - 0 .1 V Figure 42 Testing Waveform, Output High Impedance Data Sheet 124 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.3.2 Output Rise/Fall Times Table 46 provides the characteristics of the output rise/fall times in the XC886/888. Table 46 Parameter Output Rise/Fall Times Parameters (Operating Conditions apply) Symbol Limit Values min. max. Unit Test Conditions VDDP = 5V Range Rise/fall times1) 2) t R , tF t R , tF – – 10 10 ns ns 20 pF.3) 20 pF.4) VDDP = 3.3V Range Rise/fall times 1) 2) 1) Rise/Fall time measurements are taken with 10% - 90% of pad supply. 2) Not all parameters are 100% tested, but are verified by design/characterization and test correlation. 3) Additional rise/fall time valid for CL = 20pF - 100pF @ 0.125 ns/pF. 4) Additional rise/fall time valid for CL = 20pF - 100pF @ 0.225 ns/pF. V DDP 90% 90% VSS 10% 10% tR tF Figure 43 Rise/Fall Times Parameters Data Sheet 125 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.3.3 Power-on Reset and PLL Timing Table 50 provides the characteristics of the power-on reset and PLL timing in the XC886/888. Table 47 Parameter Pad operating voltage On-Chip Oscillator start-up time RESET hold time1) Power-On Reset and PLL Timing (Operating Conditions apply) Symbol Limit Values min. typ. max. – 500 – – V ns µs µs CC 2.3 CC – CC – SR – – – 160 500 Unit Test Conditions VPAD tOSCST Flash initialization time tFINIT tRST VDDP rise time (10% – 90%) ≤ 500µs tLOCK PLL accumulated jitter DP PLL lock-in in time CC – – – – 200 0.7 µs ns 2) 1) RESET signal has to be active (low) until VDDC has reached 90% of its maximum value (typ. 2.5 V). 2) PLL lock at 96 MHz using a 4 MHz external oscillator. The PLL Divider settings are K = 2, N = 48 and P = 1. Data Sheet 126 V0.9, 2006-12 XC886/888CLM Electrical Parameters VDDP VPAD VDDC tOSCST OSC PLL PLL unlock tLOCK PLL lock Flash State tRST RESET Pads 1) 2) Reset Initialization tFINIT Ready to Read 3) 1)Pad state undefined 2)ENPS control 3)As Programmed I)until EVR is stable II)until PLL is locked III) until Flash go IV) CPU reset is released; Boot to Ready-to-Read ROM software begin execution Figure 44 Power-on Reset Timing Data Sheet 127 V0.9, 2006-12 XC886/888CLM Electrical Parameters 4.3.4 On-Chip Oscillator Characteristics Table 48 provides the characteristics of the on-chip oscillator in the XC886/888. Table 48 Parameter Nominal frequency On-chip Oscillator Characteristics (Operating Conditions apply) Symbol Limit Values min. typ. max. 9.36 9.6 9.84 Unit Test Conditions MHz under nominal conditions1) after IFX-backend trimming % % with respect to fNOM with respect to fNOM, over lifetime and temperature (-10°C to 125°C), for one given device after trimming with respect to fNOM, over lifetime and temperature (-40°C to -10°C), for one given device after trimming with respect to fNOM, within one LIN message (
XC888 价格&库存

很抱歉,暂时无法提供与“XC888”相匹配的价格&库存,您可以联系我们找货

免费人工找货