CE6353
Nordig Unified DVB-T COFDM Terrestrial Demodulator for PC-TV and Hand-held Digital TV (DTV)
Data Sheet Features
• • • • • • • • • • • • • Compliant with ETSI 300 744 DVB-T, Unified Nordig and DTG performance specifications High performance with fast fully blind acquisition and tracking capability Low power consumption: less than 0.32 W, and eco-friendly standby and sleep modes Digital filtering of adjacent channels Single 8 MHz SAW filter for 6, 7 & 8 MHz OFDM Superior single frequency network performance Fast AGC to track out signal fades Good Doppler tracking capability Enhanced frequency capture range to include triple offsets External 4 MHz clock or single low-cost 20.48 MHz crystal, tolerance up to +/-200 ppm Automatic mode (2 K/8 K), guard and spectral inversion detection Very low driver software overhead due to on-chip state-machine control Novel RF level detect facility via a separate ADC •
Ordering Information
DJCE6353 882077 WJCE6353 882206 DJCE6353 S L9EN 882128 WJCE6353 S L 9G5 882170 64 64 64 64 Pin Pin Pin Pin LQFP LQFP* LQFP LQFP* Trays Trays Tape and Reel Tape and Reel
February 2006
*Pb Free Matte Tin
Pre and post Viterbi-decoder bit error rates, and uncorrectable block count
Figure 1 - Block Diagram
1
Intel Corporation D55752-001
Intel and the Intel logo are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2006 Intel Corporation. All rights reserved.
CE6353 Applications
• • • • • Digital terrestrial set-top boxes Integrated digital televisions Personal video recorders PC-TV receivers Portable applications
Data Sheet
Description
The CE6353 is a superior fourth generation fully compliant ETSI ETS300 744 COFDM demodulator that exceeds, with margin, the performance requirements of all known DVB-T digital terrestrial television standards, including Unified Nordig and DTG. A high performance 10 bit on-chip ADC is used to sample the 44 or 36 MHz IF analog signal. Advanced digital filtering of the upper and lower channel enables a single 8 MHz channel SAW filter to be used for 6, 7 and 8 MHz OFDM signal reception. All sampling and other internal clocks are derived from a single 20.48 MHz crystal or a 4 MHz clock input, the tolerance of which may be relaxed as much as 200 ppm. The CE6353 has a wide frequency capture range able to automatically compensate for the combined offset introduced by the tuner xtal and broadcaster triple frequency offsets. An on-chip state machine controls all acquisition and tracking operations of the CE6353 as well as controlling the tuner via a 2-wire bus. Any frequency range can be automatically scanned for digital TV channels. This mechanism ensures minimal interaction, maximum flexibility and fast acquisition - very low software overhead. Also included in the design is a 7-bit ADC to detect the RF signal strength and thereby efficiently control the tuner RF AGC. Users have access to all the relevant signal quality information, including input signal power level, signal-to-noise ratio, pre-Viterbi BER, post-Viterbi BER, and the uncorrectable block counts. The error rate monitoring periods are programmable over a wide range. The device is packaged in a 10 x 10 mm 64-pin LQFP and is very low power.
2
Intel Corporation
CE6353
Data Sheet
Table of Contents
1.0 Pin & Package Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Pin Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Pin Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Analog-to-Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 IF to Baseband Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Adjacent Channel Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Interpolation and Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 Carrier Frequency Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Symbol Timing Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.8 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.9 Common Phase Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.10 Channel Equalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.11 Impulse Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.12 Transmission Parameter Signalling (TPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.13 De-Mapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.14 Symbol and Bit De-Interleaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.15 Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.16 MPEG Frame Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.17 De-interleaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.18 Reed-Solomon Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.19 De-scrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.20 MPEG Transport Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.0 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.3 Examples of 2-Wire Bus Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1.4 Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 MPEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.1 Data Output Header Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 MPEG Data Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.3 MPEG Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.4 MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.5 MOCLKINV = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4 Crystal Specification and External Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4.1 Selection of External Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1.1 Loop Gain Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1.2 List of Equation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1.3 Calculating Crystal Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.1.4 Capacitor Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.1.5 Oscillator/Clock Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.0 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3
Intel Corporation
CE6353
Data Sheet
List of Figures
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pin Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 3 - OFDM Demodulator Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 4 - FEC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 5 - Primary 2-Wire Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 6 - DVB Transport Packet Header Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 7 - MPEG Output Data Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 8 - MPEG Timing - MOCLKINV = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 9 - MPEG Timing - MOCLKINV = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 10 - Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 11 - External Clocking via AC Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 12 - Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4
Intel Corporation
CE6353
Data Sheet
List of Tables
Table 1 - Pin Names - numeric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2 - Pin Names - alphabetical order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3 - Timing of 2-Wire Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5
Intel Corporation
CE6353 1.0
1.1
Data Sheet
Pin & Package Details
Pin Outline
Figure 2 - Pin Outline
6
Intel Corporation
CE6353
1.2
Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Vdd Vss
Data Sheet
Pin Allocation
Function Vss Vdd Vss CLK1 DATA1 IRQ CVdd Vss RESET SLEEP STATUS Pin 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Function SADD1 SADD0 CVdd Vss PLLVdd PLLGND XTI XTO Vss PLLTEST OSCMODE AVdd AGnd VIN VIN AGnd Pin 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Vdd RFLEV CLK2/GPP0 DATA2/GPP1 CVdd Vss CVdd Vss AGC2/GPP2 AGC1 GPP3 SMTEST Vdd Vss MOSTRT MOVAL Function Pin 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 Function MDO0 MDO1 MDO2 MDO3 MDO4 Vdd Vss MDO5 MDO6 MDO7 CVdd Vss MOCLK
BKERR
MICLK CVdd
Table 1 - Pin Names - numeric
Function AGC1 AGC2/GPP2 AGnd AGnd AVdd BKERR CLK1 CLK2/GPP0 CVdd CVdd CVdd CVdd
Pin 42 41 29 32 28 62 4 35 7 19 37 39
Function GPP3 IRQ MDO0 MDO1 MDO2 MDO3 MDO4 MDO5 MDO6 MDO7 MICLK MOCLK
Pin 43 6 49 50 51 52 53 56 57 58 63 61
Function PLLTEST PLLVdd RESET RFLEV SADD0 SADD1 N/C N/C N/C SLEEP SMTEST STATUS
Pin 26 21 9 34 18 17 16 15 12 10 44 11 Vdd VIN VIN Vss Vss Vss Vss Vss Vss Vss Vss Vss
Function
Pin 54 30 31 1 3 8 14 20 25 38 40 46
Table 2 - Pin Names - alphabetical order
7
Intel Corporation
CE6353
CVdd CVdd DATA1 DATA2/GPP1 59 64 5 36 MOSTRT MOVAL OSCMODE PLLGND 47 48 27 22 Vdd Vdd Vdd Vdd 2 13 33 45 Vss Vss XTI XTO
Data Sheet
55 60 23 24
Table 2 - Pin Names - alphabetical order (continued)
1.3
Pin Description
Pin Description Table Pin No MPEG pins 47 48 49-53, 56-58 61 62 63 11 6 Control pins 4 5 23 24 10 12, 15-18 44 35 36 42 41 43 9 27 26 CLK1 DATA1 XTI XTO SLEEP SADD(4:0) SMTEST CLK2/GPP0 DATA2/GPP1 AGC1 AGC2/GPP2 GPP(3) RESET OSCMODE PLLTEST Device power down Serial address set Production test (only set low) Serial clock tuner Serial data tuner Primary AGC Secondary AGC General purpose I/O Device reset Crystal oscillator mode PLL analog test Serial clock Serial data Low phase noise oscillator I I/O I O I I CMOS I I/O I/O O I/O I/O I I O CMOS CMOS (tristated) Open drain 3.3 3.3 3.3 5 5 5 5 5 5 3.3 6 6 6 6 6 CMOS Open drain 5 5 6 MOSTRT MOVAL MDO(0:4)/MDO(5:7) MOCLK BKERR MICLK STATUS IRQ MPEG packet start MPEG data valid MPEG data bus MPEG clock out Block error MPEG clock in Status output Interrupt output O O O O O I CMOS O O Open drain 3.3 5 1 6 CMOS Tristate 3.3 3.3 3.3 3.3 3.3 3.3 1 1 1 1 1 Name Pin Description I/O Type V mA
8
Intel Corporation
CE6353
Pin Description Table (continued) Pin No Analog inputs 30 31 34 Supply pins 21 22 7, 19, 37, 39, 59, 64 2, 13, 45, 54, 1, 3, 8, 14, 20, 25, 38, 40, 46, 55, 60 28 29, 32 33 PLLVdd PLLGnd CVdd Vdd Vss AVdd AGnd Vdd 2nd ADC supply Core logic power I/O ring power Core and I/O ground ADC analog supply PLL supply S S S S S S S S VIN VIN RFLEV positive input negative input RF level I I I Name Pin Description I/O Type
Data Sheet
V
mA
1.8 0 1.8 3.3 0 1.8 0 3.3
9
Intel Corporation
CE6353 2.0 Functional Description
Data Sheet
A functional block diagram of the CE6353 OFDM demodulator is shown in Figure 3. This accepts an IF analog signal and delivers a stream of demodulated soft decision data to the on-chip Viterbi decoder. Clock, timing and frequency synchronization operations are all digital and there are no analog control loops except the AGC. The frequency capture range is large enough for all practical applications. This demodulator has novel algorithms to combat impulse noise as well as co-channel and adjacent channel interference. If the modulation is hierarchical, the OFDM outputs both high and low priority data streams. Only one of these streams is FEC-decoded, but the FEC can be switched from one stream to another with minimal interruption to the transport stream.
Figure 3 - OFDM Demodulator Diagram The FEC module shown in Figure 4 consists of a concatenated convolutional (Viterbi) and Reed-Solomon decoder separated by a depth-12 convolutional de-interleaver. The Viterbi decoder operates on 5-bit soft decisions to provide the best performance over a wide range of channel conditions. The trace-back depth of 128 ensures minimum loss of performance due to inevitable survivor truncation, especially at high code rates. Both the Viterbi and Reed-Solomon decoders are equipped with bit-error monitors. The former provides the bit error rate (BER) at the OFDM output. The latter is the more useful measure as it gives the Viterbi output BER. The error collecting intervals of these are programmable over a very wide range.
10
Intel Corporation
CE6353
Data Sheet
Figure 4 - FEC Block Diagram The FSM controller shown in Figure 3 controls both the demodulator and the FEC. It also drives the 2-wire bus to the tuner. The controller facilitates the automated search of all parameters or any sub-set of parameters of the received signal. It can also be used to scan any defined frequency range searching for OFDM channels. This mechanism provides the fast channel scan and acquisition performance, whilst requiring minimal software overhead in the host driver. The algorithms and architectures used in the CE6353 have been optimized to minimize power consumption.
2.1
Analog-to-Digital Converter
The CE6353 has a high performance 10-bit analog-to-digital converter (ADC) which can sample a 6, 7 or 8 MHz bandwidth OFDM signal, with its spectrum centred at: • • • 36.17 MHz IF 43.75 MHz IF 5 - 10 MHz near-zero IF
An on-chip programmable phase locked loop (PLL) is used to generate the ADC sampling clock. The PLL is highly programmable allowing a wide choice of sampling frequencies to suit any IF frequency, and all signal bandwidths.
2.2
Automatic Gain Control
An AGC module compares the absolute value of the digitized signal with a programmable reference. The error signal is filtered and is used to control the gain of the amplifier. A sigma-delta modulated output is provided, which has to be RC low-pass filtered to obtain the voltage to control the amplifier. The programmable AGC reference has been optimized. A large value for the reference leads to excessive ADC clipping and a small value results in excessive quantization noise. Hence the optimum value has been determined assuming the input signal amplitude to be Gaussian distributed. The latter is justified by applying the central limit theorem in statistics to the OFDM signal, which consists of a large number of randomly modulated carriers. This reference or target value may have to be lowered slightly for some applications. Slope control bits have been provided for the AGCs and these have to be set correctly depending on the gain-versus-voltage slope of the gain control amplifiers.
11
Intel Corporation
CE6353
Data Sheet
The bandwidth of the AGC is set to a large value for quick acquisition then reduced to a small value for tracking. The AGC is free running during OFDM channel changes and locks to the new channel while the tuner lock is being established. This is one of the features of CE6353 used to minimize acquisition time. A robust AGC lock mechanism is provided and the other parts of the CE6353 begin to acquire only after the AGC has locked.
2.3
IF to Baseband Conversion
Sampling a 36.17 MHz IF signal at 45 MHz results in a spectrally inverted OFDM signal centred at approximately 8.9 MHz. The first step of the demodulation process is to convert this signal to a complex (in-phase and quadrature) signal in baseband. A correction for spectral inversion is implemented during this conversion process. Note also that the CE6353 has control mechanisms to search automatically for an unknown spectral inversion status.
2.4
Adjacent Channel Filtering
Adjacent channels, in particular the Nicam digital sound signal associated with analog channels, are filtered prior to the FFT.
2.5
Interpolation and Clock Synchronization
CE6353 uses digital timing recovery and this eliminates the need for an external VCXO. The ADC samples the signal at a fixed rate, for example, 45.056 MHz. Conversion of the 45.056 MHz signal to the OFDM sample rate is achieved using the time-varying interpolator. The OFDM sample rate is 64/7 MHz for 8 MHz and this is scaled by factors 6/8 and 7/8 for 6 and 7 MHz channel bandwidths. The nominal ratio of the ADC to OFDM sample rate is programmed in a CE6353 register (defaults are for 45 MHz sampling and 8 MHz OFDM). The clock recovery phase locked loop in the CE6353 compensates for inaccuracies in this ratio due to uncertainties of the frequency of the sampling clock.
2.6
Carrier Frequency Synchronization
There can be frequency offsets in the signal at the input to OFDM, partly due to tuner step size and partly due to broadcast frequency shifts, typically 1/6 MHz. These are tracked out digitally, up to 1 MHz in 2 K and 8 K modes, without the need for an analog frequency control (AFC) loop. The default frequency capture range has been set to ±286 kHz in the 2 K and 8 K mode. However, these values can be increased, if necessary, by programming an on-chip register (see 7.4.1). It is recommended that a larger capture range be used for channel scan in order to find channels with broadcast frequency shifts, without having to adjust the tuner. After the OFDM module has locked (the AFC will have been previously disabled), the frequency offset can be read from an on-chip register.
2.7
Symbol Timing Synchronization
This module computes the optimum sample position to trigger the FFT in order to eliminate or minimize intersymbol interference in the presence of multi-path distortion. Furthermore, this trigger point is continuously updated to dynamically adapt to time-variations in the transmission channel.
2.8
Fast Fourier Transform
The FFT module uses the trigger information from the timing synchronization module to set the start point for an FFT. It then uses either a 2 K or 8 K FFT to transform the data from the time domain to the frequency domain. An extremely hardware-efficient and highly accurate algorithm has been used for this purpose.
12
Intel Corporation
CE6353
2.9 Common Phase Error Correction
Data Sheet
This module subtracts the common phase offset from all the carriers of the OFDM signal to minimize the effect of the tuner phase noise on system performance.
2.10
Channel Equalization
This consists of two parts. The first part involves estimating the channel frequency response from pilot information. Efficient algorithms have been used to track time-varying channels with a minimum of hardware. The second part involves applying a correction to the data carriers based on the estimated frequency response of the channel. This module also generates dynamic channel state information (CSI) for every carrier in every symbol.
2.11
Impulse Filtering
CE6353 contains several mechanisms to reduce the impact of impulse noise on system performance.
2.12
Transmission Parameter Signalling (TPS)
An OFDM frame consists of 68 symbols and a superframe is made up of four such frames. There is a set of TPS carriers in every symbol and all these carry one bit of TPS. These bits, when combined, include information about the transmission mode, guard ratio, constellation, hierarchy and code rate, as defined in ETS 300 744. In addition, the first eight bits of the cell identifier are contained in even frames and the second eight bits of the cell identifier are in odd frames. The TPS module extracts all the TPS data, and presents these to the host processor in a structured manner.
2.13
De-Mapper
This module generates soft decisions for demodulated bits using the channel-equalized in-phase and quadrature components of the data carriers as well as per-carrier channel state information (CSI). The de-mapping algorithm depends on the constellation (QPSK, 16QAM or 64QAM) and the hierarchy (α = 0, 1, 2 or 4). Soft decisions for both low- and high-priority data streams are generated.
2.14
Symbol and Bit De-Interleaving
The OFDM transmitter interleaves the bits within each carrier and also the carriers within each symbol. The deinterleaver modules consist largely of memory to invert these interleaving functions and present the soft decisions to the FEC in the original order.
13
Intel Corporation
CE6353
2.15 Viterbi Decoder
Data Sheet
The Viterbi decoder accepts the soft decision data from the OFDM demodulator and outputs a decoded bit-stream. The decoder does the de-puncturing of the input data for all code rates other than 1/2. It then evaluates the branch metrics and passes these to a 64-state path-metric updating unit, which in turn outputs a 64-bit word to the survivor memory. The Viterbi decoded bits are obtained by tracing back the survivor paths in this memory. A trace-back depth of 128 is used to minimize any loss in performance, especially at high code rates. The decoder re-encodes the decoded bits and compares these with received data (delayed) to compute bit errors at its input, on the assumption that the Viterbi output BER is significantly lower than its input BER.
2.16
MPEG Frame Aligner
The Viterbi decoded bit stream is aligned into 204-byte frames. A robust synchronization algorithm is used to ensure correct lock and to prevent loss of lock due to noise impulses.
2.17
De-interleaver
Errors at the Viterbi output occur in bursts and the function of the de-interleaver is to spread these errors over a number of 204-byte frames to give the Reed-Solomon decoder a better chance of correcting these. The deinterleaver is a memory unit which implements the inverse of the convolutional interleaving function introduced by the transmitter.
2.18
Reed-Solomon Decoder
Every 188-byte transport packet is encoded by the transmitter into a 204-byte frame, using a truncated version of a systematic (255,239) Reed-Solomon code. The corresponding (204,188) Reed-Solomon decoder is capable of correcting up to eight byte errors in a 204-byte frame. It may also detect frames with more than eight byte errors. In addition to efficiently performing this decoding function, the Reed-Solomon decoder in CE6353 keeps a count of the number of bit errors corrected over a programmable period and the number of uncorrectable blocks. This information can be used to compute the post-Viterbi BER.
2.19
De-scrambler
The de-scrambler de-randomizes the Reed-Solomon decoded data by generating the exclusive-OR of this with a pseudo-random bit sequence (PRBS). This outputs 188-byte MPEG transport packets. The TEI bit of the packet header may be set if required to indicate uncorrectable packets.
2.20
MPEG Transport Interface
MPEG data can be output in parallel or serial mode. The output clock frequency is automatically chosen to present the MPEG data as uniformly spaced as possible to the transport processor. This frequency depends on the guard ratio, constellation, hierarchy and code rate. There is also an option for the data to be extracted from the CE6353 with a clock provided by the user.
14
Intel Corporation
CE6353 3.0
3.1 3.1.1
Data Sheet
Interfaces
2-Wire Bus Host
The primary 2-wire bus serial interface uses pins: • • DATA1 (pin 5) serial data, the most significant bit is sent first. CLK1 (pin 4) serial clock.
The 2-wire bus address is determined by applying VDD or VSS to the SADD[4:0] pins. In TNIM evaluation applications, the 2-wire bus address is 0001 111 R/W with the pins connected as follows:
ADDR[7] ADDR[6] ADDR[5] ADDR[4] ADDR[3] ADDR[2] SADD[1] VDD VDD ADDR[1] SADD[0] VDD
Not programmable VSS VSS VSS VDD
When the CE6353 is powered up, the RESET pin 9 should be held low for at least 50 ms after VDD has reached normal operation levels. As the RESET pin goes high, the logic levels on SADD[4:0] are latched as the 2-wire bus address. ADDR[0] is the R/W bit. The circuit works as a slave transmitter with the lsb set high or as a slave receiver with the lsb set low. In receive mode, the first data byte is written to the RADD virtual register, which forms the register sub-address. The RADD register takes an 8-bit value that determines which of 256 possible register addresses is written to by the following byte. Not all addresses are valid and many are reserved registers that must not be changed from their default values. Multiple byte reads or writes will auto-increment the value in RADD, but care should be taken not to access the reserved registers accidentally. Following a valid chip address, the 2-wire bus STOP command resets the RADD register to 00. If the chip address is not recognized, the CE6353 will ignore all activity until a valid chip address is received. The 2-wire bus START command does NOT reset the RADD register to 00. This allows a combined 2-wire bus message, to point to a particular read register with a write command, followed immediately with a read data command. If required, this could next be followed with a write command to continue from the latest address. RADD would not be sent in this case. Finally, a STOP command should be sent to free the bus. When the 2-wire bus is addressed (after a recognized STOP command) with the read bit set, the first byte read out is the contents of register 00.
3.1.2
Tuner
The CE6353 has a General Purpose Port that can be configured to provide a secondary 2-wire bus. See register GPP_CTL address 0x8C. Master control mode is selected by setting register SCAN_CTL (0x62) [b3] = 1. The allocation of the pins is: GPP0 pin 35 = CLK2, GPP1 pin 36 = DATA2.
15
Intel Corporation
CE6353
3.1.3
KEY:
Data Sheet
Examples of 2-Wire Bus Messages
S P A Italics Start condition Stop condition Acknowledge CE6353 output W R NA RADD Write (= 0) Read (= 1) NOT Acknowledge Register Address
Write operation - as a slave receiver: S DEVICE ADDRESS W A RADD (n) A DATA (reg n) A DATA (reg n+1) A P
Read operation - CE6353 as a slave transmitter: S DEVICE ADDRESS R A DATA (reg 0) A DATA (reg 1) A DATA (reg 2) NA P
Write/read operation with repeated start - CE6353 as a slave transmitter:
S DEVICE ADDRESS W A RADD (n) A S DEVICE ADDRESS R A DATA (reg n) A DATA (reg n+1) NA P
3.1.4
Primary 2-Wire Bus Timing
t BUFF
DATA1
Sr
P
t LOW
CLK1 P S
tR
tF
t HD;STA
t HD;DAT
tHIGH
t SU;DAT t SU;STA
t SU;STO
Figure 5 - Primary 2-Wire Bus Timing Where: S = Start Sr = Restart, i.e., start without stopping first. P = Stop.
16
Intel Corporation
CE6353
Value Parameter CLK clock frequency (Primary) Bus free time between a STOP and START condition. Hold time (repeated) START condition. LOW period of CLK clock. HIGH period of CLK clock. Set-up time for a repeated START condition. Data hold time (when input). Data set-up time Rise time of both CLK and DATA signals. Fall time of both CLK and DATA signals, (100 pF to ground). Set-up time for a STOP condition. Symbol Min. fCLK tBUFF tHD;STA tLOW tHIGH tSU;STA tHD;DAT tSU;DAT tR tF tSU;STO Table 3 - Timing of 2-Wire Bus
1. If operating with an external 4 MHz clock, the serial clock frequency is reduced to 100 kHz maximum. 2. The rise time depends on the external bus pull up resistor. Loading prevents full speed operation.
Data Sheet
Unit Max. 400 1 kHz ns ns ns ns ns ns ns note 2 20 200 ns ns ns 0 200 200 1300 600 200 100 100
17
Intel Corporation
CE6353
3.2 3.2.1 MPEG Data Output Header Format
Data Sheet
188 byte packet output 184 Transport packet bytes
Transport Packet Header 4 bytes 0 TEI 1 0 0 0 1 1 1 1st byte 2nd byte
MDO[7]
MDO[0]
Figure 6 - DVB Transport Packet Header Byte After decoding the 188-byte MPEG packet, it is output on the MDO pins in 188 consecutive clock cycles. Additionally when the TEI_En bit in the OP_CTRL_0 register (0x5A) is set high (default), the TEI bit of any uncorrectable packet will automatically be set to ‘1’. If TEI_En bit is low then TEI bit will not be changed (but note that if this bit is already 1, for example, due to a channel error which has not been corrected, it will remain high at output).
18
Intel Corporation
CE6353
3.2.2 MPEG Data Output Signals
Data Sheet
The MPEGEN bit in the CONFIG register must be set low to enable the MPEG data. The maximum movement in the packet synchronization byte position is limited to ±1 output clock period. MOCLK will be a continuously running clock once symbol lock has been achieved, and is derived from the symbol clock. MOCLK is shown in Figure 7 with MOCLKINV = ‘1’, the default state, see register 0x50. All output data and signals (MDO[7:0], MOSTRT, MOVAL & BKERR) change on the negative edge of MOCLK (MOCLKINV = 1) to present stable data and signals on the positive edge of the clock. A complete packet is output on MDO[7:0] on 188 consecutive clocks and the MDO[7:0] pins will remain low during the inter-packet gaps. MOSTRT goes high for the first byte clock of a packet. MOVAL goes high on the first byte of a packet and remains high until the last byte has been clocked out. BKERR goes low on the first byte of a packet where uncorrectable bytes are detected and will remain low until the last byte has been clocked out.
1st byte packet n MOCLKINV=1 MOCLK
188 byte packet n
1st byte packet n+1
MDO7:0
MOSTRT
MOVAL
BKERR
Tp
Ti
Figure 7 - MPEG Output Data Waveforms
3.2.3
MPEG Output Timing
Maximum delay conditions: VDD = 3.0V, CVDD = 1.62V, Tamb = 80oC, Output load = 10pF. Minimum delay conditions: VDD = 3.6V, CVDD = 1.98V, Tamb = -10oC, Output load = 10pF. MOCLK frequency = 45.06 MHz.
19
Intel Corporation
CE6353
3.2.4 MOCLKINV = 1
Delay conditions Parameter Maximum Data output delay tD Setup Time tSU Hold Time tH 3.0 7.0 7.0 Minimum 1.0 10.0 10.0 ns Units
Data Sheet
MOCLK MDO MOSTRT MOVAL BKERRB BKERR
}
tH Delay conditions
tD
tSU
Figure 8 - MPEG Timing - MOCLKINV = 1
3.2.5
MOCLKINV = 0
MDOSWAP = 0
Parameter Maximum Data output delay tD Setup Time tSU Hold Time tH 3.0 18.0 1.0 Minimum 1.0 20.0 0.2
Units
ns
The hold time is better when MOCLKINV = 1, therefore this should be used if possible.
MOCLK MDO MOSTRT MOVAL BKERRB BKERR
}
tD
tSU tH
F igure 9 - MPEG Timing - MOCLKINV = 0
20
Intel Corporation
CE6353 4.0
4.1
Data Sheet
Electrical Characteristics
Recommended Operating Conditions
Parameter Symbol periphery core VDD CVDD IDDP IDDC XTI fCLK
-10 16.00
Min.
3.0 1.62
Typ.
3.3 1.8 1 170 20.48
Max.
3.6 1.98
Units V V mA mA 2
Power supply voltage:
Power supply current:
periphery 1 core
Input clock frequency 3 CLK1 primary serial clock frequency 4 Ambient operating temperature
25.00 400 80
MHz kHz °C
1. Current from the 3.3 V supply will be mainly dependent on the external loads. 2. Current given is for optimum performance, lower current is possible with reduced performance. 3. The min/max frequencies given are those supported by the oscillator cell. Required system frequencies are as defined in the design manual. Frequencies outside these limits are acceptable with an external clock signal. 4. If operating with an external 4 MHz clock, the serial clock frequency is reduced to 100 kHz maximum.
4.2
Absolute Maximum Ratings
Maximum Operating Conditions Parameter Power supply Symbol VDD CVDD Voltage on input pins (5 V rated) Voltage on input pins (3.3 V rated) Voltage on output pins (5 V rated) Voltage on output pins (3.3 V rated) Storage temperature Operating ambient temperature Junction temperature VI VI VO VO TSTG TOP TJ Min. -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -55 -10 Max. +3.6 +2.0 5.5 VDD + 0.3 5.5 VDD + 0.3 150 80 125 Unit V V V V V V °C °C °C
Note: Stresses exceeding these listed under absolute maximum ratings may induce failure. Exposure to absolute maximum ratings for extended periods may reduce reliability. Functionality at or above these conditions is not implied.
21
Intel Corporation
CE6353
4.3 DC Electrical Characteristics
Data Sheet
DC Electrical Characteristics Parameter Operating voltage Supply current 1 Supply current sleep mode Outputs Output levels IOH 2mA 3.0>VDD>3.6 IOL 2mA 3.0>VDD>3.6 IOL 6mA 3.0>VDD>3.6 Output capacitance MDO(7:0), MOVAL, MOSTRT, MOCLK, STATUS, BKERR GPP(3:0), DATA1, AGC1, AGC2, IRQ VOH VOL VOL 3.0 2.4 0.4 0.4 V V V pF periphery core 1.62>CVDD>1.98 Conditions Pins Symbol VDD CVDD IDDCORE Min. 3.0 1.62 Typ. 3.3 1.8 170 300 Max. 3.6 1.98 Unit V V mA μA
Not including track MDO(7:0), MOVAL, MOSTRT, MOCLK, STATUS, BKERR GPP(3:0), DATA1, AGC1, AGC2,IRQ
3.6 1
pF μA V
Output leakage (tri-state) Inputs Input levels 3.0>VDD>3.6 -0.5 ≥ Vin ≥ VDD+0.5V MICLK, SADD(4:0) SLEEP, OSCMODE VIH 2.0
Input levels Input levels Input leakage Current Input capacitance Input capacitance
3.0>VDD>3.6 GPP(3:0), CLK1, -0.5 ≥ Vin ≥ +5.5V DATA1, RESET 3.0>VDD>3.6 Capacitances do not include track All inputs SLEEP, SMTEST, MICLK, CLK1, OSCMODE SADD(4:0), DATA1, GPP(3:0)
VIH VIL
2.0 0.8 ±1 1.8 3.6
V V μA pF pF
1. Current given is for optimum performance, lower current is possible with reduced performance.
4.4
Crystal Specification and External Clocking
20.4800 MHz ± 150 ppm ± 200 ppm 27 pF 0.4 mW max > 0.5 C1
24
Intel Corporation
CE6353
4.4.1.5
•
Data Sheet
Oscillator/Clock Application Notes
On the printed circuit board, the tracks to the crystal and capacitors must be made as short as possible. Other signal tracks must not be allowed to cross through this area. The component tracks should preferably be ringed by a ground track connected to the chip ground (0 V) on adjacent pins either side of the crystal pins. It is also advisable to provide a ground plane for the circuit to reduce noise. External clock signals, applied to XTI and/or XTO, must not exceed the cell supply limits (i.e., 0V and CVDD) and current into or out of XTI and/or XTO must be limited to less than 10mA to avoid damaging the cell’s amplitude clamping circuit. An external, DC coupled, single ended square wave clock signal may be applied to XTI if OSCMODE = 0. To limit the current taken from the signal source a resistor should be placed between the clock source and XTI. The recommended value for this series resistor is 470 Ω for a clock signal switching between 0 V and CVDD. The current the clock source needs to source/sink is then 100 mV.
•
•
• •
XTI
XTO 36k
Vdd
OSCMODE
10nF External clock
100k 10nF 22k
Figure 11 - External Clocking via AC Coupling • External, differential clock signals may be applied to XTI and XTO if OSCMODE = 1. The common-mode voltage VCM for the differential clock signals must be 800 mV < VCM < CVDD, and the peak-to-peak signal amplitude Vpp must be >100 mV. It is recommended that differential clock signals have VCM = 1.0V. For Vpp > 400 mV a resistor of >390 Ω in series with XTI or XTO may be required to limit the current taken from or supplied to the clock sources.
25
Intel Corporation
CE6353 5.0 Application Circuit
Data Sheet
Figure 12 - Typical Application Circuit
26
Intel Corporation