0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
HGCE5038SL9F8882067

HGCE5038SL9F8882067

  • 厂商:

    INTEL

  • 封装:

  • 描述:

    HGCE5038SL9F8882067 - DVB-S2 Advanced Modulation Satellite Tuner - Intel Corporation

  • 数据手册
  • 价格&库存
HGCE5038SL9F8882067 数据手册
CE5038 DVB-S2 Advanced Modulation Satellite Tuner Data Sheet Features • • • • Single-chip L band to zero IF quadrature down converter compliant with 1-45 Msps DVB-S2 High dynamic range of -92 dBm to -10 dBm without RF attenuator or RSSI High total composite power handling Excellent immunity to adjacent channel interference through programmable and autocalibrated channel filters Integrated power and forget LO oscillators 2 degree integrated phase jitter enables excellent performance for 8 PSK and 16 QAM applications Less than +/- 3° and +/-0.6 dB I/Q quadrature balance Integrated RF loop through for cascaded tuner applications Power saving mode Ordering Information HGCE5038 882068 WGCE5038 882129 HGCE5038 S L9F8 882067 WGCE5038 S L9FY 882071 40-pin QFN Trays 40-pin QFN* Trays 40-pin QFN Tape & Reel 40-pin QFN* Tape & Reel February 2006 *Pb free Applications • Advanced modulation DVB-S and DSS satellite receivers requiring upgrade for DVB-S2, 8 PSK / 16 QAM • • • • • Figure 1 - Block Diagram 1 Intel Corporation D55746-001 Intel and the Intel logo are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2006 Intel Corporation. All rights reserved. CE5038 Description Data Sheet CE5038 is a fully integrated tuner for advanced modulation satellite receivers, operating over 950 - 2150 MHz and symbol rates in the range 1 - 45 MS/s. It contains a selectable RF bypass for connecting to a second receiver module. CE5038 simply requires a crystal reference and operates from a 5 V supply. It is designed as a 'simple to use' stand-alone tuner, requiring no training algorithms or user/demodulator intervention to optimize performance. The CE5038 can be used with an advanced modulation demodulator to create a highly-integrated front-end solution, operating from 1-45 MS/s. 2 Intel Corporation C1 0 47p F C3 220 nF C1 1 47p F X1 4.0 MHz 0 R2 3V3 C1 41 5VA C2 2 6n8 F C1 7 1nF 10p F SLE EP C1 26 10p F R1 10 R1 09 100 R 100 R 1K R3 2K7 C2 3 100 pF C1 220 nF R1 01 4k7 R1 02 4k7 20 19 18 17 16 15 14 13 12 11 IC1 C2 4 DA TA2 CLK2 CE5038 RF Bypass C1 3 1nF C1 4 1nF R4 75R C7 1nF C8 1nF 5VA DRIVE VccTU NE VccDig DIGDEC ADD XT ALCAP XT AL SDA SCL SL EEP I out C2 6 100 pF 3 CE5038 RF IN RF IN N/C RF AGC PT EST VccLO VccLO LOT EST P1 CNT Pad dle PAD L11 2n2 H 5VA C1 1nF 5 C1 6 12p F D1 BAR63-03W Figure 2 - Typical Application Circuit RF In 75R IMP NCE EDA 31 32 33 34 35 36 37 38 39 40 Intel Corporation 21 22 23 24 25 26 27 28 29 30 PUMP N/C Vva r P0 LOCK VccRF RFBYPASS RFBYPASS VccRF N/C IDC IDC IOUT IOUT VccBB VccBB QO UT QO UT QDC QDC nF 10 220 9 8 7 5VA 6 5 4 3 2 1 C4 0 C3 6 10n F LNB Supply C9 100 pF 10u F 75R IMP NCE EDA C1 29 100 nF C1 28 100 nF C1 31 100 nF C1 30 100 nF Q out C2 5 220 nF RF AGC Input Data Sheet CE5038 Table of Contents Data Sheet Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Conventions in this Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Pin Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Quadrature Down-Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 AGC Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Baseband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 RF Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Baseband Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Local Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 LO Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.0 User Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 LOCK - Pin 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 SLEEP - Pin 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Output Ports, P1 & P0 - Pins 39 & 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Device Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Read Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Power-On Reset Indicator (POR Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 Frequency (& Phase) Lock (FL Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 VCO Sub-Band (SB3:0 Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.4 Tune Unlock State (TU1:0 Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.1 Register Sub-Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.2 Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.3 Synthesizer Division Ratio (214:20 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.4 RF Gain (RFG Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.5 Baseband Pre-Filter Gain Adjust (BA1:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.6 Baseband Post-Filter Gain (BG1:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.7 RF Bypass Disable (LEN Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.8 Output Port Controls (P1 & P0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.9 Power Down (PD Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.10 Logic Reset (CLR Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.11 Charge Pump Control and Charge Pump Current (CC, C1 & C0 Bits) . . . . . . . . . . . . . . . . . . . . . 26 3.4.12 Reference Division Ratios (R4:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.13 Baseband Filter Resistor Switching (RSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.14 Baseband Filter Bandwidth (BF6:1 & BR4:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.15 Band Switch Algorithm (VSD Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.16 LO Main- & Sub-Band Selection (V2:0 & S3:0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.17 LO Sample Rate (LS2:0 Bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.18 LO Window Level (WS, WH2:0 & WL2:0 Bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.19 LO Window Relaxation (WRE Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.20 LO Test (TL Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.0 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.1 Power-On Software Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Intel Corporation CE5038 Table of Contents Data Sheet 4.2 Changing Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Symbol Rate and Filter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 Determining the Filter Bandwidth from the Symbol Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 Calculating the Filter Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.3 Determining the Values of BF and BR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3.4 Filter Bandwidth Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Programming Sequence for Filter Bandwidth Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.0 Application Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 Crystal Oscillator Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1 Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.5 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Intel Corporation CE5038 List of Figures Data Sheet Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 3 - Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 4 - AGC Control Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 5 - Typical First Stage RF AGC Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 6 - Variation in IIP2 with AGC Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 7 - Variation in IIP3 with AGC Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 8 - Variation in NF with Input Amplitude (typical) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 9 - RF Input and Output (bypass) Return Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 10 - Normalized Filter Transfer Characteristic (setting 20 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Figure 11 - Free Running LO Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 12 - Copper Dimensions for Optimum Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 13 - Paste Mask for Reduced Paste Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Figure 14 - Typical Oscillator Arrangement with Optional Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Figure 15 - Typical Arrangement for External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Intel Corporation CE5038 List of Tables Data Sheet Table 1 - Pins by Number Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2 - Pins by Name Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 3 - Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 4 - Read Data Bit Format (MSB is Transmitted First) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 5 - TU1/0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 6 - Byte Address Allocation in Write Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7 - Bit Allocations in the Write Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8 - Key to Table 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 9 - RFG Register Bit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 10 - BA1/0 Register Bits Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 11 - BG1/0 Register Bits Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 12 - Port Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 13 - Charge Pump Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 14 - Division Ratios Set with Bits R4 - R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Table 15 - Frequency Bands and VCO Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 16 - LO Sample Rate Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 17 - LO Window Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Table 18 - LO Recommended Window Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 19 - Crystal Capacitor Values for 4 MHz and 10 MHz Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Intel Corporation CE5038 1.0 1.1 Data Sheet Overview Conventions in this Manual Hexadecimal values are typically shown as 0xABCDEF. Binary values (usually of register bits) are shown as 011002. All other numbers should be considered to be decimal values unless specified otherwise. 1.2 Pin Listings Table 1 - Pins by Number Order No. 1 2 3 4 5 6 7 8 9 10 Name QDC QDC QOUT QOUT VccBB VccBB IOUT IOUT IDC IDC No. 11 12 13 14 15 16 17 18 19 20 Name SLEEP SCL SDA XTAL XTALCAP ADD DIGDEC VccDIG VccTUNE DRIVE No. 21 22 23 24 25 26 27 28 29 30 Name PUMP N/C Vvar P0 LOCK VccRF RFBYPASS RFBYPASS VccRF N/C No. 31 32 33 34 35 36 37 38 39 40 Name RFIN RFIN N/C RFAGC PTEST VccLO VccLO LOTEST P1 CNT Table 2 - Pins by Name Order Name ADD CNT DIGDEC DRIVE IDC IDC IOUT IOUT LOCK LOTEST No. 16 40 17 20 9 10 7 8 25 38 Name N/C N/C N/C P0 P1 PTEST PUMP QDC QDC QOUT No. 22 30 33 24 39 35 21 1 2 3 Name QOUT RFAGC RFIN RFIN RFBYPASS RFBYPASS SCL SDA SLEEP VccBB No. 4 34 31 32 27 28 12 13 11 5 Name VccBB VccDIG VccLO VccLO VccRF VccRF VccTUNE Vvar XTAL XTALCAP No. 6 18 36 37 26 29 19 23 14 15 7 Intel Corporation CE5038 1.3 Pin Data Sheet Pin Descriptions Symbol Direction Function Schematics 1 QDC NA Q Channel DC offset correction capacitor. Configuration and value as per application diagram (see Figure 2). Internal Baseband Signal 10μA DC Correction 2 QDC NA VccBB 3 QOUT Out Q Channel baseband differential outputs. AC couple outputs as per applications diagram (see Figure 2). Output 4 QOUT Out 1.2 mA 5 6 7 8 9 10 VccBB VccBB IOUT IOUT IDC IDC Out Out NA NA +5 v voltage supply for Baseband +5 v voltage supply for Baseband I Channel baseband differential outputs AC couple outputs as per applications diagram (Figure 2). I Channel DC offset correction capacitor. Configuration and value as per application diagram (Figure 2). Hardware power down input. Logic ‘0’ – normal mode. Logic ‘1’ - analogue sections are powered down. This function is OR’ed with the PD control function, see section 3.1.2. Same configuration as pins 3 & 4 Same configuration as pins 1 & 2 SLEEP 11 SLEEP In CMOS Digital Input DIGDEC 12 SCL In I²C serial clock input SDA/SCL Input 500k 500k 13 SDA Out I²C serial data input/output SDA only 8 Intel Corporation CE5038 Pin Symbol Direction Function Data Sheet Schematics DIGDEC 14 XTAL In Reference oscillator crystal inputs. Selected crystal frequency must be programmed in BR4 to BR0 for correct baseband filter bandwidth operation. XTAL pin is used for external reference input via 10nF capacitor. 400 Ω 100 Ω XTAL XTALCAP 15 XTALCAP Out 0.2mA DIGDEC 16 ADD In Variable I²C address selection allowing the use of more than one device per I²C bus system by the voltage on this pin. See Table 3 for programming details. ADD Input 60k 20k VccDIG 17 DIGDEC Out Decouple pin for internal digital 3.3 V regulator DIGDEC 18 19 VccDIG VccTune +5 v voltage supply for digital logic Varactor tuning +5 v supply CPDEC VccTUNE PUMP 20 DRIVE IO Loop amplifier output and input pins 3K DRIVE 21 PUMP IO 22 N/C Not connected. Ground externally. Vvar 1k 23 Vvar In LO tuning voltage input Vbias 9 Intel Corporation CE5038 Pin Symbol Direction Function Data Sheet Schematics P0/P1 24 P0 Out Switching port P0. ‘0’ = disabled (high impedance). ‘1’ = enabled. 25 LOCK Out Output which indicates that phase comparator phase and frequency lock has been obtained and that the varactor voltage is within ‘tune unlock’ window. This powers up in logic ‘0’ state. +5 v voltage supply for RF RF Bypass differential outputs. AC couple outputs. Matching circuitry as per applications diagram (Figure 2). LOCK CMOS Digital Output 26 VccRF 27 RFBYPASS Out 28 RFBYPASS Out In applications where RF Bypass is not required, pins should not be connected. +5 v voltage supply for RF Not connected. Ground externally. 29 30 VccRF N/C 31 RFIN In RF differential inputs. AC couple input. Matching circuitry as per applications diagram. 32 RFIN In 33 N/C Not connected. Ground externally. VccRF Vref 34 RFAGC In RF analogue gain control input 5k RFAGC 20k 10 Intel Corporation CE5038 Pin Symbol Direction Function Data Sheet Schematics PTEST 35 PTEST In Connected to internal circuit for monitoring die temperature 36 37 VccLO VccLO +5 v voltage supply for LO +5 v voltage supply for LO VccLO LOTEST 38 LOTEST IO Bi-directional test port for accessing internal LO AC couple input. Bias 39 P1 Out Switching port P1 ‘0’ = disabled (high impedance) ‘1’ = enabled Bonded to paddle. Production continuity test for paddle soldering Same configuration as pin 24, P0 40 CNT Note: Exposed paddle on rear of package must be connected to GND. 11 Intel Corporation CE5038 2.0 Functional Description Data Sheet Figure 3 - Detailed Block Diagram 2.1 Quadrature Down-Converter In normal applications the tuner RF input frequency of 950 - 2150 MHz is fed directly to the CE5038 RF input preamplifier stage, through an appropriate impedance match. The input preamplifier is optimized for NF, S11 and signal handling. The signal handling of the front end is designed such that no tracking filter is required to offer immunity to input composite overload. 12 Intel Corporation CE5038 2.2 AGC Functions Data Sheet The CE5038 contains an analogue RF AGC combined with digitally controlled gain for RF, baseband pre-filter and post-filter, as described in Figure 4. The baseband AGC is controlled by the I²C bus and is divided into pre- and post-baseband filter stages, each of which have 12.6 dB of gain adjust in 4.2 dB steps. The RF AGC is provided as the dynamic system gain adjust under control of the baseband analogue AGC output function whereas the digitally controlled gains are provided to maximize performance under different signal conditions. The total AGC gain range will guarantee an operating dynamic range of -92 to -10 dBm. The digitally controlled RF gain adjust and the baseband pre-filter stage can be adjusted in sympathy to maintain a fixed overall conversion gain. The lower RF gain setting would be used in situations where for example there is a high degree of cable tilt or high desired to undesired ratio, whereas the higher RF gain setting would be used in situations where for example it is desirable to minimize NF. The baseband post-filter gain stage can be used to provide additional gain to maintain desired output amplitude with lower symbol rate applications. F igure 4 - AGC Control Structure Normalized gain range in dB: Gain function: Control function: 0 - 72 RF AGC Analogue voltage 0 or +4 Stepped I²C bus 0 to 12.6 in 4.2 dB steps Stepped I²C bus 0 to 12.6 in 4.2 dB steps Stepped I²C bus 2.2.1 RF The RF input amplifier feeds an AGC stage, which provides for RF gain control. 10 Conversion gain relative to max gain (dB) 0 -10 -20 -30 -40 -50 -60 -70 -80 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 AGC control voltage V F igure 5 - Typical First Stage RF AGC Response 13 Intel Corporation CE5038 Data Sheet The RF AGC is divided into two stages. The first stage is a continually variable gain control stage, which is controlled by the AGC sender and provides the main system AGC set under control of the analogue AGC signal generated by the demodulator section. The second stage is a bus programmable. two-position gain set previous to the quadrature mixer and provides for 4 dB of gain adjust under software control. The analogue RF AGC is optimized for S/N and S/I performance across the full dynamic range. The RF AGC characteristic, variation of IIP2, IIP3 and NF are contained in Figure 6, Figure 7 & Figure 8 respectively. The RF preamplifier is also coupled to the selectable RF bypass, which is described in 2.3, “RF Bypass“. The specified electrical parameters of the RF input are unaffected by the RF bypass state. 35 30 25 20 IIp2 dBm 15 10 5 0 -5 -10 10 20 30 40 50 Gain setting dB 60 70 80 Figure 6 - Variation in IIP2 with AGC Setting (RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB, baseband filter bandwidth = 22 MHz) 20 10 0 IIP3 dBm -10 -20 -30 -40 -50 20 30 40 50 Gain setting dB 60 70 80 Figure 7 - Variation in IIP3 with AGC Setting (RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB, baseband filter bandwidth = 22 MHz) 14 Intel Corporation CE5038 Data Sheet 60 RF programmable gain = 4dB, prefilter gain = 4.2dB, post filter gain = 0dB Baseband output level = 0.5Vp-p 50 40 NF (dB) 30 20 10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 Input Amplitude (dBm) Figure 8 - Variation in NF with Input Amplitude (typical) The output of the RF AGC stage is coupled to the quadrature mixer where the RF input is mixed with quadrature LO (local oscillator) signals generated by the on-board LO. Operation and control of the LO is described further in section 2.5 on page 17. 2.2.2 Baseband The mixer outputs are coupled to the baseband quadrature channel amplifier and filter stage, which is of 7th order topology. Operation and control of the baseband filter is contained in Section 2.4 on page 16. The baseband paths are DC coupled, and include a DC correction loop. The high pass characteristic for the DC correction loop is defined by the off chip capacitor connected to pins ‘IDC/IDC’ and ‘QDC/QDC’. The output of each channel stage is designed for low impedance drive capability and low intermodulation and can be loaded either differentially or single-ended; in the case of single-ended load the unused output should be unloaded. The maximum output load is defined in the Electrical Characteristics Table. 15 Intel Corporation CE5038 2.3 RF Bypass Data Sheet The CE5038 provides an independent bypass function, which can be used for driving a second receiver module. The electrical characteristics of the RF input are unchanged by the state of the RF bypass. The bypass provides a differential buffered output from the input signal with a nominal 3.5 dB gain. The unused output should be terminated as in Figure 2 on page 2. The bypass function is enabled by a single register bit and is not disabled by either the PD bit or the SLEEP pin. When disabled the bypass function is in a ‘power-down’ state. On power up the bypass function is enabled. 0 -5 Return Loss (dB) - 10 - 15 S11 RFBypass On S22 RFBypass On -20 -25 -30 9 0 0 10 0 0 110 0 12 0 0 13 0 0 14 0 0 150 0 16 0 0 170 0 18 0 0 19 0 2 0 0 2 10 2 2 0 0 0 0 0 F re que ncy ( M H z) F igure 9 - RF Input and Output (bypass) Return Losses 2.4 Baseband Filter The filter bandwidth is controlled by a Frequency Locked Loop (FLL) the timing of which is derived from the reference crystal source by a reference divider. Five control bits set the system reference division ratio and the baseband filter bandwidth can be programmed with a further six control bits for a nominal range of 4 - 40 MHz1. 1. specification compliant over the range 8 - 35 MHz. 16 Intel Corporation CE5038 Data Sheet Figure 10 - Normalized Filter Transfer Characteristic (setting 20 MHz) f xtal 1 The -3 dB bandwidth of the filter (Hz) is given by the following expression: f -3dB = --------- × ( BF + 1 ) × --BR K Where: f-3dB = Baseband filter –3 dB bandwidth (Hz) which should be within the range 8 MHz ≤ f –3dB ≤ 35MH z . fxtal = Crystal oscillator reference frequency (Hz). K = 1.257 (constant). BF = Decimal value of the register bits BF6:BF1, range 0 - 62. BR = Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4 - 27. BR Methods for determining the values of BR and BF are given in the section on software, please see sect. 4.3 on page 30. f--------l = 575 kHz to 2.5 MHz. xta - 2.5 Local Oscillator The LO on the CE5038 is fully integrated and consists of three oscillator stages, each with 16 sub-bands. These are arranged such that the regions of operation for optimum phase noise are continuous over the required tuning range of 950 to 2150 MHz and over the specified operating ambient conditions and process spread. The local oscillators operate at a harmonic of the required frequency and are divided down to the required LO conversion frequency. For each of the three oscillators, the LO prescaler ratio (NLP) is set to ÷4 or ÷2. The required divider ratio is automatically selected by the LO control logic, hence programming of the required conversion frequency across the oscillator bands is automatic and requires no intervention by the user. 17 Intel Corporation CE5038 Data Sheet -60 -70 -80 Phase noise (dBc/Hz) -90 -100 -110 -120 -130 -140 -150 10 100 1000 10000 100000 Frequency offset (log (offset in kHz)) Figure 11 - Free Running LO Phase Noise Performance The oscillators are designed to deliver good free running phase noise at 10 kHz offset, therefore the required integrated phase jitter from the LO can be achieved without the requirement for running with a high comparison frequency and hence large tuning increment and wide loop bandwidth. The LO section contains an internal tuning controller, which will automatically tune to the appropriate VCO and sub band for optimum phase noise performance. The internal LO controller function is transparent to the user and no user intervention is required. The tuning controller will automatically switch bands when required, however this function can be disabled with the ‘VSD’ bit (see “3.4.15”). This enables the user to select the appropriate VCO and sub band if required to achieve optimum phase noise performance. For QPSK, automatic mode will be adequate and should be used. In general for 8 PSK modulation, the automatic mode will also be adequate depending on the demodulator requirements. 16 QAM may require manual mode to optimize phase noise performance at frequencies above 1800 MHz. 2.5.1 LO Programming The controller tunes across the oscillator bands, until lock is achieved. The algorithm for tuning utilises the LO tuning voltage, Vvar, which is compared at a programmable sample rate against a ‘tune lock’ voltage window and a ‘tune unlock’ voltage window. The sampling rate default on power up is Fcomp/8 however this can be programmed into further rates through bits LS2-LS0 in byte-10, see “3.4.17” on page 29. The ‘tune lock’ and ‘tune unlock’ windows are set at default values, however, these can be adjusted by bits WS, WH2:0 and WL2:0 in byte 11, see “3.4.18” on page 29. In the event that the controller is unable to find lock the ‘tune lock’ window will be automatically widened. This facility can be disabled by setting bit WRE in byte 11 to logic ‘0’. See 3.4.19 on page 30. The device has a lock indicator flag, FL, which is derived from a time averaged phase comparison between the LO divider and reference divider inputs to the phase comparator. The FL flag is read in the status byte. See 3.3.2 on page 21. There is a further hardware lock flag (LOCK output, pin 25; see “3.1.1” on page 20) which generates a logic ‘0’ if the tuning controller detects the varactor line voltage lies within the ‘tune unlock’ window and if FL is set to logic ‘1’. In other states this output is high impedance. 18 Intel Corporation CE5038 Data Sheet The tune lock window is centralised within the tuner unlock window. The tuning controller selects the VCO and sub band so that the varactor voltage is within this window. If this is not possible the lock windows are relaxed (assuming the WRE bit is set to '1'). The tuning algorithm maintains a level of hysteresis to prevent short term drift causing switching to an adjacent band. The LO control logic has provision for master reset to restore initial set up conditions. This is controlled by bit CLR within data byte 13, see “3.4.10” on page 25. 2.6 PLL Frequency Synthesizer The PLL frequency synthesizer section contains all the elements necessary, with the exception of a frequency reference and loop filter to control a varicap tuned LO, so forming a complete PLL frequency synthesized source. The device allows for operation with a high comparison frequency and is fabricated in high speed logic, which enables the generation of a loop with good phase noise performance. The loop can also be operated up to comparison frequencies of 2 MHz enabling application of a wide loop bandwidth for maximizing the close in phase noise performance. The LO input signal is multiplexed from the selected oscillator band to an internal preamplifier, which provides gain and reverse isolation from the divider signals. The output of the preamplifier interfaces direct with the 15-bit fully programmable divider, which is of MN+A architecture. A 16/17 dual modulus prescaler is used. The output of the programmable divider is fed to the phase comparator where it is compared in both phase and frequency domain with the comparison frequency. This frequency is derived either from the on-board crystal controlled oscillator or from an external reference source. In both cases the reference frequency is divided down to the comparison frequency by the reference divider, which is programmable into one of 29 ratios as detailed in Table 14 on page 26. The typical application for the crystal oscillator is contained in Figure 2. The output of the phase detector feeds a charge pump and loop amplifier section. This combined with an external loop filter integrates the current pulses into the varactor line voltage with an output range of Vee to VccTUNE. The varactor line voltage is externally coupled to the oscillator section through the input Vvar, enabling application of a third order loop. Control of the charge pump current can be made in two ways as described in Table 13 on page 26. Either the set charge pump current can be used at all times, or the charge pump current can be scaled automatically according to the LO sub-band. The second case allows for reduced loop bandwidth variation as the VCO gain varies with subband. 2.7 Control Logic The CE5038 is controlled by an I²C data bus and can function as a slave receiver or slave transmitter compatible with 3V3 or 5 V levels. Data and Clock are input on the SDA and SCL lines respectively as defined by I²C bus standard. The device can either accept data (slave receiver, write mode), or send data (slave transmitter, read mode). The LSB of the address byte (R/W) sets the device into write mode if it is logic ‘0’, and read mode if it is logic ‘1’. Table 4 and Table 7 illustrate the format of the read and write data respectively. The device can be programmed to respond to one of four addresses, which enables the use of more than one device in an I²C bus system if required for use in PVR1 systems, for example. Table 3 shows how the address is selected by applying a voltage to the address, ‘ADD’, input. When the device receives a valid address byte, it pulls the SDA line low during the acknowledge period, and during following acknowledge periods after further data bytes are received. When the device is programmed into read mode, the controller accepting the data must pull the SDA line low during all status byte acknowledge periods to read another status byte. If the controller fails to pull the SDA line low during this period, the device generates an internal STOP condition, which inhibits further reading. 1. PVR - Personal Video Recorder where dual tuners allow the viewer to watch one channel and record another simultaneously, usually to a hard-disk recording system. 19 Intel Corporation CE5038 Data Sheet All the CE5038 functions are controlled by register bits written through the I²C bus interface. The SLEEP pin can be used to power-down the device, but it can also be put into the power-down mode with the PD register bit, the two functions being logically OR’ed. Feedback on the status of the CE5038 is provided through eight bits in the status byte register and the phase lock state is also available on the LOCK output pin (as well as the FL register bit). 3.0 3.1 User Control I/O Pins The I²C interface controls all the major functions. Apart from the various analogue functions, the only pins that either control the CE5038, or are controlled by the internal logic, are the LOCK, SLEEP, P1, P0 and ADD pins. Details follow: 3.1.1 LOCK - Pin 25 This is an output which indicates phase frequency lock on the correct VCO sub band for optimum phase noise. The CMOS output can directly drive a low power LED if required. 3.1.2 SLEEP - Pin 11 The SLEEP pin shuts down the analogue sections of the device to give a considerable power saving, typically reducing the power to about one third of its normal level. The RF-bypass function is entirely separate and is unaffected by the state of this pin. The SLEEP pin’s function is OR’ed with the PD register bit (see “3.4.9” on page 25), so that if either is a logic one, the CE5038 will be powered down, or alternatively, both must be at logic zero for normal operation. 3.1.3 Output Ports, P1 & P0 - Pins 39 & 24 Two open-collector ports are provided for general purpose use, under control of register bits P1 and P0. The default at power-up is for the P1 & P0 register bits to be low, hence the outputs will be off, i.e., in their high-impedance states. If connected to a pull-up resistor this will therefore result in a logic high. Setting a register bit high will turn the corresponding output on and therefore pull the logic level to near 0 V giving a logic low. 3.2 Device Address Selection Two internal logic levels, MA1 and MA0, can be set to one of four possible logic states by the voltage applied to the ADD pin (#16). These four states in turn define four different read and write addresses on the I²C bus, so that as many as four separate devices can be individually addressed on one bus. This is of particular use in a multi-tuner environment as required by PVR applications. Table 3 - Address Selection Write Address ADD pin voltage Vee (0 V or Gnd) Open circuit 0.5 * DIGDEC (±20%) DIGDEC 1 Read Address Hex. 0xC1 0xC3 0xC5 0xC7 Dec. 193 195 197 199 MA1 0 0 1 1 MA0 Hex. 0 1 0 1 0xC0 0xC2 0xC4 0xC6 Dec. 192 194 196 198 1. can be programmed with a single 30 kΩ resistor to DIGDEC 20 Intel Corporation CE5038 3.3 Read Register Data Sheet The CE5038 status can be read by addressing the device in its slave transmitter mode by setting the LSB of the address byte (the R/W bit) to a one. After the master transmits the correct address byte, the CE5038 will acknowledge its address, and transmit data in response to further clocks on the SCL input. If the master responds with an acknowledge and further clocks, the status byte will be retransmitted until such time as the master fails to send an acknowledge, when the CE5038 will release the data bus, allowing the master to generate a stop condition. Table 4 - Read Data Bit Format (MSB is Transmitted First) Bit No. Address Status 7 (MSB) 1 POR 6 1 FL 5 0 SB3 4 0 SB2 3 0 SB1 2 MA1 SB0 1 MA0 TU1 0 (LSB) 1 TU0 The individual bits in the status register have the following meanings: 3.3.1 Power-On Reset Indicator (POR Bit) This bit is set to a logic ‘1’ if the VccDIG supply to the PLL section has dropped below typically 3.6 V, e.g., when the device is initially turned on. The bit is reset to ‘0’ when the read sequence is terminated by a STOP command. When the POR bit is high, this indicates that the programmed information may have been corrupted and the device reset to power up condition. 3.3.2 Frequency (& Phase) Lock (FL Bit) Bit 6 (FL) indicates whether the synthesizer is phase locked, a logic ‘1’ is present if the device is locked and a logic ‘0’ if the device is unlocked. 3.3.3 VCO Sub-Band (SB3:0 Bit) These bits indicate the vco sub-band value chosen by the LO tuning algorithm when tuning the oscillators automatically. If manual tuning is used then SB3-SB0 will match bits S3-S0 written to register byte 9 (see “3.4.16” for sub-band details). 3.3.4 Tune Unlock State (TU1:0 Bit) These bits define the ‘tune unlock’ window state as below: Table 5 - TU1/0 Functions TU1 0 0 1 1 TU0 0 1 0 1 ‘Tune unlock’ window state Vvar between lower and upper voltage thresholds Vvar above upper voltage threshold Vvar below lower voltage threshold Undefined - do not use See “LO Window Level (WS, WH2:0 & WL2:0 Bits)” on page 29 for further information on the threshold voltages. 21 Intel Corporation CE5038 3.4 Write Registers Data Sheet The CE5038 has twelve registers which can be programmed by addressing the device in its slave receiver mode, setting the LSB of the address byte (the R/W bit) to a zero. After the master transmits the correct address byte, the CE5038 will acknowledge its address, and accept data in response to further clocks on the SCL line. At the end of each byte, the CE5038 will generate the acknowledge bit. The master can at this point, generate a stop condition, or further clocks on the SCL line if further registers are to be programmed. If data is written after the twelfth register (byte-13), it will be ignored. 3.4.1 Register Sub-Addressing If some register bits require changing, but not all, it is not necessary to write to all the registers. The registers can be addressed in pairs starting with the even numbered bytes, i.e., 2 & 3, 4 & 5, etc. Table 6 below shows the protocol required to address any of the even numbered register bytes. It therefore follows that to write to register byte-7 for instance, byte-6 must also be written first. Register pairs may be written in any order, as required by the software, e.g., 10/11 may be followed by 4/5. Table 6 - Byte Address Allocation in Write Mode Data Bits 7 (MSB) 6 X 0 1 1 1 1 5 X X 0 0 1 1 4 Byte Selected X X 0 1 0 1 2 4 6 8 10 12 0 1 1 1 1 1 ‘X’ = Don’t care (content defines a register bit). 22 Intel Corporation CE5038 3.4.2 Register Mapping Table 7 - Bit Allocations in the Write Registers Bit No. 7 (MSB) Function Device address Programmable Divider 1 0 27 1 P0 1 P1 Control Data 1 VSD 1 WS 1 PD 6 5 4 3 2 1 0 (LSB) Data Sheet Reset state (hex.) Further information Byte 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 214 26 0 C1 1 BF6 1 V2 1 0 213 25 RFG C0 0 BF5 0 V1 1 0 212 24 BA1 R4 0 BF4 1 V0 0 0 211 23 BA0 R3 RSD BF3 0 S3 0 MA1 MA0 210 22 29 21 0 28 20 LEN R0 0 0 1 S0 LS0 0x00 Table 3 on page 20 See 3.4.3 on page 24 0x00 0x80 0x00 0xC0 0x20 0xDB 0x30 0xE1 “3.4.4” to “3.4.7” on p. 25 pp. 25 & 26 see “3.4.13” on page 27 pp. 25 & 27 page 26 page 28 page 29 BG1 BG0 R2 0 BF2 CC S2 LS2 R1 0 BF1 1 S1 LS1 WH2 WH1 WH0 WL2 WL1 WL0 WRE 0x75/F5 page 29 1 BR4 1 BR3 1 BR2 0 BR1 0 0 0 TL 0xF0 0x28 test function only pp. 25, 27 & 30 BR0 CLR 1. This is the power-on default register value - recommended operating values may be different, see “4.1” on page 30. Table 8 - Key to Table 7 Symbol 214-20 BA1-0 BF6-1 BG1-0 BR4-0 C1,C0 CC CLR LEN LS2-0 Definition Programmable division ratio control bits Baseband prefilter gain adjust Baseband bandwidth adjust Baseband postfilter gain adjust Symbol R4-R0 RFG RSD S3-0 Definition Reference division ratio select RF programmable gain adjust Resistor switch disable LO sub-band select Buffered LO output select Power down LO main band select LO tuning algorithm disable LO window high level adjust LO window low level adjust Tuning Window Relaxation Enable Tuning window select Baseband filter FLL reference frequency select TL Charge pump current select Charge pump control Control logic reset RF bypass enable Tuning control sampling rate adjust PD V2-0 VSD WH2-0 WL2-0 WRE WS MA1,MA0 Variable address bits P0, P1 External switching ports 23 Intel Corporation CE5038 3.4.3 Synthesizer Division Ratio (214:20 Bits) Data Sheet The PLL synthesizer interfaces with the LO multiplex output and runs at the desired frequency for down-conversion. The step size at the desired conversion frequency, is equal to the loop comparison frequency. The programmable division ratio, 214 to 20, required for a desired conversion frequency, can be calculated from the following formula: Desired conversion frequency = where: Δfstep = Fcomp Δ f step × ( 2 14 + 2 13 + 2 12 → 2 2 + 2 1 + 2 0 ) 3.4.4 RF Gain (RFG Bit) The RF gain is programmed by setting the RFG bit, bit-5 of register byte-4 as required. See also Figure 4, “AGC Control Structure” on page 13. Table 9 - RFG Register Bit Function RFG 0 1 Gain Adjust (dB) 0 +4 (reset state) 3.4.5 Baseband Pre-Filter Gain Adjust (BA1:0 Bits) The baseband pre-filter gain is programmed by setting BA1:0, bits-4 & 3 of register byte-4 as required. See also Figure 4, “AGC Control Structure” on page 13. Table 10 - BA1/0 Register Bits Function BA1 0 0 1 1 BA0 0 1 0 1 Pre-Filter Gain Adjust (dB) 0.0 +4.2 +8.4 +12.6 (reset state) 3.4.6 Baseband Post-Filter Gain (BG1:0 Bits) The baseband post-filter gain is programmed by setting BG1:0, bits-2 & 1 of register byte-4 as required. See also Figure 4, “AGC Control Structure” on page 13. Table 11 - BG1/0 Register Bits Function BG1 0 0 1 1 BG0 0 1 0 1 Post-Filter Gain Adjust (dB) 0.0 +4.2 +8.4 +12.6 (reset state) 24 Intel Corporation CE5038 3.4.7 RF Bypass Disable (LEN Bit) Data Sheet The RF bypass function is disabled by setting LEN, bit-0 of register byte-4 to a logic ‘1’. By default, this bit is at a logic ‘0’ at power-up, and therefore the function is enabled. If the function is not required, a power saving of approximately 15% can be made by setting this bit. See also section 2.3 on page 16. 3.4.8 Output Port Controls (P1 & P0 Bits) Register bits P1 and P0, bit-7 in register bytes-7 & 5 respectively, control the output port pins, P1 & P0, pin numbers 39 & 24 respectively. Table 12 - Port Control Bits Bit P1 or P0 0 1 Port state High impedance Low impedance to Vee (Gnd) Logic state (if connected to a pull-up) 1 0 (reset state) 3.4.9 Power Down (PD Bit) Bit-7 of byte-13 controls the PD register bit which is an alternative to the SLEEP pin (see “SLEEP - Pin 11” on page 20). Setting the PD bit to a logic ‘1’ shuts down the analogue sections of the CE5038 effecting a saving of about 2/3rds of the power required for normal operation. A logic ’0’ restores normal operation. With either hardware or software power-down, all register settings are unaffected. 3.4.10 Logic Reset (CLR Bit) Bit-1 of byte-13 controls the CLR register bit. When set to a logic ‘1’, this self-clearing bit resets the CE5038 control logic. Writing a logic ‘0’ has no effect. The following register numbers are reset to their power-on state: 7, 9, 10, 11, 12 & 13. All other register’s contents are unaffected. 25 Intel Corporation CE5038 3.4.11 Charge Pump Control and Charge Pump Current (CC, C1 & C0 Bits) Data Sheet Register bit CC is programmed by setting bit-2 of register byte-8 and bits C1 and C0 by setting bits-6 & 5 of register byte-5. These bits determine the charge pump current that is used on the output of the frequency synthesizer phase detector. Table 13 - Charge Pump Currents Typical current in µA CC 0 0 0 0 1 1 1 1 C1 0 0 1 1 0 0 1 1 C0 0 1 0 1 0 1 0 1 ±210 ±365 ±625 ±1065 VCO sub-bands 0 - 7 ±365 ±625 ±1065 VCO sub-bands 8 - 15 ±210 ±365 ±625 Invalid Setting (reset state) Min. ±160 ±280 ±470 ±820 Current limits Typ. ±210 ±365 ±625 ±1065 Max. ±290 ±510 ±860 ±1470 3.4.12 Reference Division Ratios (R4:0 Bits) Register bits R4:0 control the reference divider ratios as shown in Table 14. They are programmed through bit-4 to bit-0 respectively, in byte-5. Table 14 - Division Ratios Set with Bits R4 - R0 R4 R3 R2 0 0 0 0 1 1 1 1 R1 0 0 1 1 0 0 1 1 R0 0 1 0 1 0 1 0 1 2 4 8 16 32 64 128 256 5 10 20 40 80 160 320 0 0 0 1 1 0 1 1 Division Ratios Illegal states 6 12 24 48 96 192 384 7 14 28 56 112 224 448 26 Intel Corporation CE5038 3.4.13 Baseband Filter Resistor Switching (RSD) Data Sheet The baseband filters use a resistor switching technique that improves bandwidth and phase matching between the I and Q channels. The bandwidth range is effectively separated into 3 sub-ranges with different resistor values being used in each sub-range. It is possible for the filter bandwidth accuracy to be degraded if the bandwidth setting happens to coincide with one of the two transition points between these regions. This can be overcome by disabling the resistor switching using the RSD bit. For optimum filter performance the RSD bit should first be enabled so that the correct resistor value is automatically set for the selected bandwidth. The RSD bit (bit-3 of byte-6) controls the resistor switching. With the default setting of logic '0' it is enabled and the correct resistor value automatically chosen. With the RSD bit set to a logic '1' then the switching is disabled and this freezes the resistors at their chosen value. The procedure when selecting a new bandwidth setting is to enable then disable the switching; set RSD to logic '0' then to logic '1'. 3.4.14 Baseband Filter Bandwidth (BF6:1 & BR4:0 Bits) Bits 6 to 1 of byte-7 configure bits BF6 to BF1 respectively. These bits set a decimal number in the range 0 to 62 (63 is not allowed) to determine the baseband filter bandwidth in conjunction with other values. Bits 6 to 2 of byte-13 configure bits BR4 to BR0 respectively. These bits set the reference divider ratio for the baseband filter. A number in the range 4 to 27 inclusive (values outside this range are not allowed) can be set, with the proviso that the value of fxtal/BR4:0 must also be in the range 575 kHz to 2,500 kHz. For further details, please also see “Baseband Filter” Calculations” (sect. 4.3) on page 30. (sect. 2.4) on page 16 and “Symbol Rate and Filter 3.4.15 Band Switch Algorithm (VSD Bit) The controller, which tunes to the appropriate LO and sub band for optimum phase noise performance, can be disabled with the VSD bit, if required, allowing manual control. The VSD bit is programmed using byte-9, bit-7. The default is for the controller to be enabled, VSD = ‘0’, and to disable the controller a logic ‘1’ is written to this bit. 27 Intel Corporation CE5038 3.4.16 LO Main- & Sub-Band Selection (V2:0 & S3:0 Bits) Data Sheet If manual control of the LO is selected with the VSD bit, bits V2:0 (main-band) and S3:0 (sub-band) can be used to set the LO frequency band. Values of V2:0 from 1 to 6 are valid, values 0 and 7 being used for test purposes only. The prescaler ratio, NLP, is set to ‘4’ for values of V2:0 from 1 to 3 and to ‘2’ for V2:0 from 4 to 6. Table 15 shows typical minimum and maximum frequencies for each VCO and sub band for a varactor voltage (Vvar) range of 3 to 4.5 volts. This is the normal varactor operating voltage, however the VCO will operate at lower voltages if required. The VCO gain is also shown at 3.5 volts varactor voltage. Divider V2 V1 V0 S3 S2 S1 S0 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 VCO1 4 0 0 1 VCO2 4 0 1 0 VCO3 4 0 1 1 Min 690 697 706 714 725 735 746 759 769 783 798 814 834 853 874 896 Max 699 708 716 726 737 748 761 774 786 801 817 836 857 879 902 927 Kvco 6.9 7.3 7.8 8.3 8.9 9.6 10.3 11.2 12.2 13.2 14.4 15.7 17.4 19.0 20.8 23.1 Min 881 892 904 917 931 945 959 975 986 1003 1021 1041 1063 1087 1112 1141 Max 892 905 917 930 946 960 976 992 1005 1024 1044 1066 1092 1119 1148 1182 Kvco 8.9 9.3 9.7 10.1 10.9 11.6 12.4 13.4 14.5 15.8 17.2 19.0 21.7 24.4 27.5 31.6 Min 1068 1080 1093 1107 1122 1138 1154 1173 1182 1203 1224 1248 1275 1303 1334 1368 Max 1081 1094 1108 1122 1139 1156 1174 1194 1205 1227 1251 1278 1309 1341 1376 1415 Kvco 10.0 10.6 11.2 11.9 13.1 14.1 15.1 16.4 17.5 19.1 20.8 22.9 26.4 29.6 33.3 37.7 Divider V2 V1 V0 S3 S2 S1 S0 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 VCO1 2 1 0 0 VCO2 2 1 0 1 VCO3 2 1 1 0 Min 1380 1395 1411 1429 1450 1470 1493 1517 1538 1565 1595 1628 1667 1706 1747 1793 Max 1399 1415 1433 1451 1474 1496 1521 1548 1571 1601 1635 1671 1714 1758 1804 1855 Kvco 13.8 14.6 15.5 16.5 17.9 19.2 20.7 22.4 24.3 26.4 28.7 31.4 34.7 38.0 41.6 46.1 Min 1761 1785 1809 1834 1862 1889 1918 1949 1972 2006 2042 2082 2126 2174 2225 2282 Max 1785 1809 1835 1861 1891 1920 1951 1985 2011 2048 2088 2132 2183 2238 2296 2364 Kvco 17.8 18.6 19.3 20.3 21.9 23.2 24.8 26.8 29.1 31.6 34.5 38.1 43.4 48.9 55.1 63.2 Min 2136 2161 2186 2214 2244 2276 2309 2345 2365 2405 2449 2497 2550 2607 2668 2736 Max 2162 2188 2215 2245 2278 2312 2348 2388 2410 2455 2502 2555 2617 2682 2752 2830 Kvco 19.9 21.2 22.4 23.9 26.1 28.1 30.2 32.7 35.1 38.3 41.7 45.9 52.9 59.1 66.5 75.4 Table 15 - Frequency Bands and VCO Gain 28 Intel Corporation CE5038 3.4.17 LO Sample Rate (LS2:0 Bits) Data Sheet Bits LS2:0 (bit-2 to bit-0 respectively in byte-10) set the LO sample rate according to the following table: Table 16 - LO Sample Rate Data LS2 0 0 0 0 1 1 1 1 LS1 0 0 1 1 0 0 1 1 LS0 0 1 0 1 0 1 0 1 Sample Rate Fcomp/4 Fcomp/8 Fcomp/16 Fcomp/32 Fcomp/64 Fcomp/128 Fcomp/512 Fcomp/2048 (reset state) 3.4.18 LO Window Level (WS, WH2:0 & WL2:0 Bits) Byte-11 allows the user to change the lock and unlock window voltages that the tuning controller uses in comparison with the Vvar input. Setting the WS bit to ‘0’ allows the lock levels to be altered, or if set to ‘1’, the unlock levels are written. The WH2:0 bits set the upper levels and the WL2:0 bits set the lower levels in each case. Please see “Power-On Software Initialization” (sect. 4.1) on page 30 for recommended values. Table 17 - LO Window Levels Lock WS WH2 WL2 0 0 0 0 1 1 1 1 WH1 WL1 0 0 1 1 0 0 1 1 WH0 WL0 0 1 0 1 0 1 0 1 Lower 1.16 1.64 2.11 2.57 3.03 3.49 3.95 4.41 1.54 2.01 2.47 2.94 3.43 3.89 4.36 4.82 0 Upper Lower 1.08 1.56 2.03 2.50 2.95 3.42 3.88 4.34 1.61 2.08 2.55 3.01 3.51 3.97 4.43 4.89 Unlock 1 Upper Key: Reset Values 29 Intel Corporation CE5038 3.4.19 LO Window Relaxation (WRE Bit) Data Sheet In the event of the controller failing to lock due to the lock window being too narrow, the window is automatically widened when WRE (byte-11 bit-0) is ‘1’ in order to achieve lock. The WRE bit, when set to logic ‘0’, disables this facility. 3.4.20 LO Test (TL Bit) For test purposes, the LO clock divided by the prescaler ratio can be output on the LOTEST pin by setting bit TL (byte-13 bit-0) to a logic ‘1’. By default this output is off, i.e., the TL bit is at logic ‘0’. 4.0 Software In normal operation, only initialization, channel (frequency) changes and symbol rates require programming intervention. Note that the PLL comparison frequency is set by the crystal frequency divided by the PLL reference divide ratio. In the following examples of register settings, binary values are frequently used, indicated as e.g., 01102. 4.1 Power-On Software Initialization a. Bytes 2 + 3: 214 - 20 = desired channel frequency/PLL comparison frequency (VCO = 3, sub-band = 0, divider = 4 is default, means that the local oscillator frequency will be about 1.1 GHz). b. Byte 4: BA1:0 = 012 for initial baseband filter input level. c. Byte 4: BG1:0 = 012 for target baseband filter output level. d. Byte 4: LEN = 1 if the RF loop through is to be disabled. e. Byte 5: R4:0 = PLL reference divider for desired comparison frequency. f. Byte 8: PS = 0 to give a pre-scaler ratio of 16/17. Bits ‘0’ & ‘1’ should be set to 002. g. Byte 11: WL2:0 and WH2:0 may require different values from the defaults. Recommended settings are: Table 18 - LO Recommended Window Levels WS Lock Unlock 0 1 WH2 1 1 WH1 1 1 WH0 0 1 WL2 1 1 WL1 0 0 WL0 1 0 WRE 1 1 Lower V 3.49 2.95 Upper V 3.89 4.89 h. Byte 13: BR4:0 = Crystal frequency in use (see also 4.3.3.1 on page 31). 4.2 Changing Channel Bytes 2 + 3: 214 - 20 = Channel frequency/PLL comparison frequency. 4.3 4.3.1 Symbol Rate and Filter Calculations Determining the Filter Bandwidth from the Symbol Rate fbw = (α * symbol rate)/(2.0 * 0.8) + foffs where: α = 1.35 for DVB or 1.20 for DSS, and is the roll-off of the raised-root cosine filter in the transmitter, foffs is the total offset of the received signal due to all causes (LNB drift, synthesizer step size, etc) and is read back from the demodulator, 30 Intel Corporation CE5038 and fbw is the -3 dB roll-off of the filter for: 8 MHz ≤ fbw ≤ 35 MHz. Data Sheet For low symbol rates, the energy content within the bandwidth of the filters reduces significantly so incrementing the baseband post-filter gain helps recover the signal level for the demodulator. N.B. During channel acquisition or re-acquisition, the filter must be set to its maximum value. 4.3.2 Calculating the Filter Bandwidth The -3 dB bandwidth of the filter (Hz) is given by the following expression: Equation 1 Where: 1 f xtal f bw = --------- × ( BF + 1 ) × --BR K fbw = Baseband filter –3 dB bandwidth (Hz) which should be within the range 8 MHz ≤ f bw ≤ 35MH z . fxtal = Crystal oscillator reference frequency (Hz). K = 1.257 (constant). BF = Decimal value of the register bits BF6:BF1, range 0 - 62. BR = Decimal value of the bits BR4:BR0 (baseband filter reference divider ratio), range 4 - 27. where: 575 kHz ≤ --------- ≤ 2.5 MHz. BR The digital nature of the control loop means that the filter bandwidth setting is quantized: the difference between the desired filter bandwidth and the actual filter bandwidth possible due to discrete settings causes a bandwidth error. In order to minimize this bandwidth error, the maximum filter bandwidth setting resolution is needed. From the limits given above, the best resolution possible is 575 kHz/1.257 = 457.4 kHz. However if this resolution is used, the maximum bandwidth with BF = 62 is only 28.82 MHz, below the maximum of 35 MHz. Therefore for filter bandwidths greater than 28.82 MHz the resolution must be decreased. For filter bandwidths around 35 MHz the resolution is typically reduced to 698 kHz/1.257 = 555.3 kHz. f xtal 4.3.3 4.3.3.1 Determining the Values of BF and BR Calculating the Value of BR The above description can be described mathematically as: For fbw ≤ 28.82 MHz, Equation 2 f xtal BR = ------------------- . 575kHz For fbw > 28.82 MHz, Equation 3 f xtal 1 BR = ------- × ( 62 + 1 ) × --- .= f bw K These equations can give non-integer results so rounding must be performed. The values for BR should be f xtal rounded DOWN to the nearest integer this ensures that -------- will not be below 575 kHz and that the maximum BR programmable bandwidth will not be below the desired bandwidth due to rounding. 31 Intel Corporation CE5038 4.3.3.2 Calculating the Value of BF f bw BF = ⎛ ------- × BR × K⎞ – 1 = ⎝ f xtal ⎠ Data Sheet Equation 4 - For non-integer values of BF, the result should be simply rounded to the nearest integer to give the value for BF6:1. 4.3.4 Filter Bandwidth Programming Examples Example 1, conditions: fxtal = 10.111 MHz, fbw = 9 MHz Because fbw is below 28.2 MHz, the value of BR can be evaluated with equation 2: f xtal 10.111MHz BR = ------------------- = ----------------------------- = 17.583 575kHz 575kHz This result should be rounded down to 17 to ensure that the result is not below the 575 kHz limit. Using this value for BR, equation 4 can be evaluated: f bw 9MHz BF = ⎛ ------- × BR × K⎞ – 1 = ⎛ -------------------------- × 17 × 1.257⎞ – 1 = 18.02285 ⎝ f xtal ⎠ ⎝ 10.11MHz ⎠ The result can be rounded to the nearest value, i.e. BF = 18. Example 2, conditions: fxtal = 10.111 MHz, fbw = 34.6 MHz In this case, fbw is above 28.2 MHz so using equation 3 to solve for BR: f xtal 1 10.111MHz 1 BR = ------- × ( 63 ) × --- = ----------------------------- × ( 63 ) × -------------- = 14.647 f bw K 34.6MHz 1.257 Using equation 4, this time with the rounded-down value of 14 for BR: f bw 34.6MHz BF = ⎛ ------- × BR × K⎞ – 1 = ⎛ -------------------------- × 14 × 1.257⎞ – 1 = 59.227 ⎝ f xtal ⎠ ⎝ 10.11MHz ⎠ Rounding to the nearest integer thus gives a value of 59 for BF. 4.4 Programming Sequence for Filter Bandwidth Changes a. Byte 6: Set RSD = 0 to re-enable baseband filter resistor switching. b. Byte 7: Set BF6:1 to the value derived in 4.3.3.2, “Calculating the Value of BF“ on page 32. c. Byte 6: Set RSD = 1 to disable baseband filter resistor switching. This must happen no sooner than a certain time after (b.). This minimum time equals BR/(32 * fxtal) seconds, where BR is the decimal value of byte BR and fxtal is the reference crystal frequency. 32 Intel Corporation CE5038 5.0 5.1 Data Sheet Application Notes Thermal Considerations Figure 12 - Copper Dimensions for Optimum Heat Transfer Figure 13 - Paste Mask for Reduced Paste Coverage The CE5038 uses the 40-pin QFN package with a thermal ‘paddle’ in the base, which has a very high thermal conductivity to the die, as well as low electrical resistance to the Vee connections. The CE5038 has a fairly high power density, and if the excess heat is not efficiently removed, it will rapidly overheat beyond the 125°C limit, and affect the performance or could even cause permanent damage to the device. 33 Intel Corporation CE5038 Data Sheet The paddle is designed to be soldered to a size-matched pad on the PCB (see Figure 10) which is thermally connected to an efficient heat sink. The heat sink can be as simple as an area of copper ground plane on the underside of the board, thereby reducing the system cost. To transfer the heat from the paddle to the underside of the board, an array of 25 x 0·3 mmØ vias are used between the topside pad, which will be soldered to the paddle, and the ground plane on the underside of the board. It is also possible to use a smaller number of larger vias, e.g., 16 x 0·5 mmØ, but this arrangement is marginally less efficient. The area of copper in the ground plane must be at least 2,000 mm² for 1 oz copper. If 2 oz copper board is used or if multiple ground planes are available, as with a four-layer board, the area could be reduced somewhat, but in general it is better to have the maximum cooling possible, as reliability will always be enhanced if lower temperatures are maintained. While it is possible to use a paste mask that simply duplicates the aperture for the 4.15 mm sq. paddle, the quantity of solder paste under the device can cause problems and it is preferable to reduce the coverage to a level between 50% and 80% of the area. The pattern shown in Figure 11 reduces the coverage to approximately 60%, which should reduce out-gassing from under the device and improve the stand-off height of the package from the board. A very useful publication giving further details is: “Application Notes for Surface Mount Assembly of Amkorþs MicroLeadFrame (MLF) Packages” which can be found on: www.amkor.com 5.2 Crystal Oscillator Notes Table 19 - Crystal Capacitor Values for 4 MHz and 10 MHz Operation (component numbering refers to the example schematic, Figure 2) Component C10 C11 4 MHz 47 pF 47 pF 100 pF 100 pF 10 MHz Note: C12, a 10 pF (15 pF for 10 MHz) capacitor may be added between the crystal and Gnd if an oscillator output is required. Output is from the crystal/capacitor junction. Figure 14 - Typical Oscillator Arrangement with Optional Output Figure 15 - Typical Arrangement for External Oscillator 34 Intel Corporation CE5038 6.0 6.1 Data Sheet Electrical Characteristics Test Conditions The following conditions apply to all figures in this chapter, except where notes indicate other settings. Tamb = -10° to 70°C, Vee= 0 V, All Vcc supplies = 5 V±5% RF gain adjust = +0 dB, prefilter = +4.2 dB and postfilter = 4.2 dB. RFG=0, BA1=0, BA0=1, BG1=0, BG0=1 These characteristics are guaranteed by either production test or design. They apply within the specified ambient temperature and supply voltage unless otherwise stated. 6.2 Absolute Maximum Ratings Parameter Symbol VccBB, VccDIG, VccLO, VccRF, VccTUNE TSTG Tj -0.3 -0.3 -0.3 Min. -0.3 -55 5.5 150 125 6 VccTUNE+0.3 VccRF+0.3 Max. Unit V °C °C V V V Vcc = Vee to 5.25 V Notes w.r.t. Vee Supply voltage Storage temperature Junction temperature Voltage on SDA & SCL Voltage on DRIVE Voltage on RFIN, RFBYPASS and inverted equivalents Voltage on RFAGC Voltage on Vvar Voltage on LOTEST Voltage on IOUT, QOUT, IDC, QDC and inverted equivalents Voltage on P1 Voltage at DIGDEC Voltage on PUMP Voltage on SLEEP and P0 Voltage on ADD, XTAL, XTALCAP and LOCK Sink current, P0 or P1 ESD protection, pins 31 & 321 pins 1-30, 33-40 -0.3 VccLO+0.3 V -0.3 VccBB+0.3 V -0.3 -0.3 -0.3 3.6 VccDIG+0.3 DIGDEC+0.3 20 V V V mA kV kV Each output To Mil-std 883B method 3015 cat1 0.5 2.0 1. ESD protection can be increased by adding a protection diode (D1) to the input circuit as shown in the application circuit (Figure 2). 35 Intel Corporation CE5038 6.3 Recommended Operating Conditions Parameter Supply voltage Operating temperature Symbol VccBB, VccDIG, VccLO, VccRF, VccTUNE TOP Min. 4.75 -10 Max. 5.25 70 Unit V °C Data Sheet Notes w.r.t. Vee 6.4 DC Characteristics Pins Characteristic Min. Typ. Max. Units Conditions Normal operating conditions RF bypass 210 All Vcc pins: 5, 6, 18, 19, 26, 29, 36, 37 228 Supply current 243 261 82 115 QOUT, QOUT, IOUT, IOUT: 3, 4, 7, 8 QDC, QDC, IDC, IDC: 1, 2, 9, 10 Output impedance Output load 1 15 25 259 281 300 322 107 mA mA mA mA mA mA Ω kΩ pF disabled filter b.w. minimum maximum minimum maximum sleep mode enabled disabled enabled Single-ended Maximum load, which can be applied to output, singleended. If operated single ended unused output should be unloaded Bias voltage Output impedance 3.8 11 V kΩ 5.5 1 10 10 V V µA µA V 0.4 0.6 V V nA Isink = 3 mA Isink = 6 mA Vpin = 1.8V Vpin = 1.8 V. See Table 13 on page 26 Input voltage =Vee to VccDIG Input voltage = Vee to 5.5 V, VccDIG=Vee Input high voltage Input low voltage SCL, SDA: 12, 13 Input current Leakage current Hysteresis SDA: 13 Output voltage 2.3 0 -10 0.4 PUMP: 21 Charge pump leakage Charge pump current +-3 +-20 36 Intel Corporation CE5038 Pins DRIVE: 20 XTAL, XTALCAP: 14, 15 Characteristic Max. voltage Min. voltage Recommended crystal E.S.R. Input current Vvar: 23 -25 P0, P1: 24, 39 Sink current Leakage current Low output voltage LOCK: 25 High output voltage Load current ADD: 16 Input high current Input low current Input high voltage SLEEP: 11 Input low voltage Input DC current RFAGC: 34 LOTEST: 38 Leakage current Output impedance Bias voltage -150 100 3.3 2 Vee DigDec-0.5 1 1 -0.5 3.6 0.5 10 150 10 10 0.5 25 µA mA µA V V mA mA mA V V µA µA Ω V Vin=DIGDEC Vin=Vee Sleep enabled Normal mode 10 Min. VccTUNE-0.2 0.3 200 Typ. Max. Units V V Ω Data Sheet Conditions On-chip 3 kohm load resistor to VccTUNE Parallel resonant crystal -1 1 mA Vee
HGCE5038SL9F8882067 价格&库存

很抱歉,暂时无法提供与“HGCE5038SL9F8882067”相匹配的价格&库存,您可以联系我们找货

免费人工找货