0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CA3020A

CA3020A

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    CA3020A - 8MHz Power Amps For Military, Industrial and Commercial Equipment - Intersil Corporation

  • 数据手册
  • 价格&库存
CA3020A 数据手册
TM ODUCT NT ETE PR ACEME OBSOL D REPL -INTERSIL NDE COMME ations 1-888 om NO RE plic p rsil.c ntral A p@inte Call Ce mail: centap or e CA3020, CA3020A 8MHz Power Amps For Military, Industrial and Commercial Equipment Ordering Information PART NUMBER CA3020 CA3020A TEMP. RANGE ( oC) -55 to 125 -55 to 125 PACKAGE 12 Pin Metal Can 12 Pin Metal Can PKG. NO. T12.B T12.B November 2000 Features Title A30 A302 ) ubt MHz wer mps r liy, dusal d mrl uipnt) utho eyrds terrpoion, minctor, gle, wer plir, ss b plir, liy • High Power Output Class B Amplifier - CA3020 . . . . . . . . . . . . . . . . . . . . 0.5W (Typ) at VCC = 9V - CA3020A . . . . . . . . . . . . . . . . . . 1.0W (Typ) at VCC = 12V • Wide Frequency Range . . Up to 8MHz with Resistive Loads • High Power Gain. . . . . . . . . . . . . . . . . . . . . . . . . 75dB (Typ) • Single Power Supply For Class B Operation With Transformer - CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 9V - CA3020A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 12V • Built-In Temperature-Tracking Voltage Regulator Provides Stable Operation Over -55oC to 125oC Temperature Range Description The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single monolithic silicon chip. They employ a highly versatile and stable direct coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020 and CA3020A extremely useful for a wide variety of applications in military, industrial, and commercial equipment. The CA3020 and CA3020A are particularly suited for service as class B power amplifiers. The CA3020A can provide a maximum power output of 1W from a 12VDC supply with a typical power gain of 75dB. The CA3020 provides 0.5W power output from a 9V supply with the same power gain. Refer to AN5766 for application information. Applications • AF Power Amplifiers For Portable and Fixed Sound and Communications Systems • Servo-Control Amplifiers • Wide-Band Linear Mixers • Video Power Amplifiers • Transmission-Line Driver Amplifiers (Balanced and Unbalanced) • Fan-In and Fan-Out Amplifiers For Computer Logic Circuits • Lamp-Control Amplifiers • Motor-Control Amplifiers • Power Multivibrators • Power Switches Pinout CA3020 (METAL CAN) TOP VIEW VBUFFER AMP OUT DIFF IN2 DIFF IN3 OUTPUT 4 3 4 5 6 7 8 2 1 12 11 RB11 10 9 BUFFER AMP IN VCC1 RB8 Schematic Diagram 9 R10 R11 D1 Q1 D2 D3 Q2 R5 10K Q3 R5 R2 12K 0.47K 12 2 Q5 R8 0.3K 6 Q7 7 R4 R1 R3 R6 Q4 1.5K 1.5K 4 Q6 5 8 11 10 0.3K R9 1 OUTPUT 5 OUTPUT 7 3 OUTPUT 6 The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of “outboard” components of equipment designs. The values shown may vary as much as ±30%. Intersil reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device. CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000 File Number 339.6 1 CA3020, CA3020A Absolute Maximum Ratings Maximum Pin 9 Supply Voltage, V CC1 (Note 1) CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V Maximum Pin 9 Supply Current, ICC1 . . . . . . . . . . . . . . . . . . 20mA Maximum Pin 11 Sink Current, I11 . . . . . . . . . . . . . . . . . . . . . 20mA Output Voltage, V4 and V7 (Note 1) CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V Output Current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA Input Voltage Range, V2, V3 . . . . . . . . . . . . . . . . . . . . . . -2V to 2V Maximum Input Voltage, V 10 (Ref to Pin 1) . . . . . . . . . . . . . . . . -3V Maximum Source Current, V1 . . . . . . . . . . . . . . . . . . . . . . . . . 1mA Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Thermal Information Thermal Resistance (Typical, Note 2) θJA ( oC/W) θJC (oC/W) Metal Can Package . . . . . . . . . . . . . . . 165 80 Maximum Junction Temperature (Metal CanPackage) . . . . . . . 175oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . 300oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. The voltage ratings for Pin 9, Pin 4 and Pin 7 are referenced to the V- (Pin 12). A normal bias configuration for Pin 8 and Pin 11 is shown in Figure 1B. Refer to Application Note AN5766 for other options. 2. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications TA = 25oC TEST CONDITIONS CIRCUIT AND DC SUPPLY PROCEDURE VOLTAGE CA3020 MIN 18 10 140 6.3 8.0 30 200 400 TYP 5.5 9.4 21.5 1.11 2.35 75 8 300 550 35 1000 MAX 1.0 12.5 35.0 100 0.1 0.1 55 MIN 25 10 180 6.3 14.0 30 200 400 800 CA3020A TYP 5.5 9.4 21.5 1.11 2.35 75 8 300 550 1000 50 1000 MAX 1.0 12.5 30.0 100 0.1 0.1 100 MHz mW mW mW mV mV Ω UNITS V V mA mA mA mA mA V V µA µA µA PARAMETER Collector-to-Emitter Breakdown Voltage, Q6 and Q7 at 10mA Collector-to-Emitter Breakdown Voltage, Q1 at 0.1mA Idle Currents, Q6 and Q7 Peak Output Currents, Q6 and Q7 Cutoff Currents, Q6 and Q7 Differential Amplifier Current Drain Total Current Drain Differential Amplifier Input Terminal Voltages Regulator Terminal Voltage Q1 Cutoff (Leakage) Currents: Collector-to-Emitter Emitter-to-Base Collector-to-Base Forward Current Transfer Ratio, Q1 at 3mA Bandwidth at -3dB Point Maximum Power Output for R CC = 130Ω Maximum Power Output for R CC = 200Ω Sensitivity for POUT = 400mW, RCC = 130Ω Sensitivity for POUT = 800mW, R CC = 200Ω Input Resistance Terminal 3 to Ground SYMBOL V(BR)CER V(BR)CEO I4 IDLE I7 IDLE I4PK I7PK I4 CUTOFF I7 CUTOFF ICC1 ICC1 + ICC2 V2 V3 V11 ICEO IEBO ICBO hFE1 BW PO(MAX) FIGURE 1A 7 7 7 7 7 7 7 VCC1 VCC2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 10.0 3.0 3.0 6.0 6.0 6.0 9.0 9.0 9.0 9.0 6.0 2.0 2.0 2.0 9.0 9.0 2.0 2.0 6.0 6.0 9.0 12.0 9.0 12.0 6.0 - 8 9 9 9 eIN eIN RIN3 9 9 10 2 CA3020, CA3020A Typical Performance Data Power Supply Voltage (Note 3) A heat sink is recommended for high ambient temperature operation. SYMBOL VCC1 VCC2 Differential Amplifier Output Amplifier ICC1 ICC2 ICC1 ICC2 PO eIN GP RIN η S/N CA3020 9.0 9.0 15 24 16 125 550 35 75 55 45 70 3.1 1000 RCC 130 CA3020A 9.0 12.0 15 24 16.6 140 1000 45 75 55 55 66 3.3 1000 200 UNITS V V mA mA mA mA mW mV dB kΩ % dB % Hz Ω PARAMETER Zero Signal Current Maximum Signal Current Differential Amplifier Output Amplifier Maximum Power Output at THD = 10% Sensitivity Power Gain Input Resistance Efficiency Signal-to-Noise Ratio THD at 150mW Level Test Signal Frequency from 600Ω Generator Equivalent Collector-to-Collector Load Resistance NOTE: 3. Refer to Figures 7 through 11 for measurement and symbol information. Test Circuits and Waveforms VCC 510K 8 9 11 3K 4 7 CA3020 CA3020A 1 2 3 5.1K 5 VBR(CER) Q7 VBR(CER) 12 Q6 6 eIN 11 VCC1 1K 10mA 10mA 8 9 10 VCC2 - + 4 7 ~ 10 CA3020 CA3020A 1 5 µF 3V 3 +0.01 µF 5µF 3V 2 5 6 5µF 6V 12 + - FIGURE 1A. COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (Q6 AND Q 7) CIRCUIT FIGURE 1B. TYPICAL AUDIO AMPLIFIER CIRCUIT UTILIZING THE CA3020 OR CA3020A AS AN AUDIO PREAMPLIFIER AND CLASS B POWER AMPLIFIER FIGURE 1. 3 CA3020, CA3020A Test Circuits and Waveforms (Continued) +9V POWER AMPLIFIER OUTPUT, I4, I7 (mA) 300 TA = -45oC 200 25oC 125 oC 100 +2V 10 1 + V23 3 2 3 CA3020 CA3020A I4 12 6 5 4 8 9 7 I7 -45oC 25oC 125 oC 0 75 50 -25 25 I4 “ON” 0 0 25 50 -25 I7 “ON” 75 DIFFERENTIAL AMPLIFIER INPUT, V23 (mV) FIGURE 2A. TEST SETUP FIGURE 2B. CHARACTERISTICS WITH R10 SHORTED OUT FIGURE 2. TYPICAL TRANSFER CHARACTERISTICS POWER AMPLIFIER OUTPUT, I4, I7 (mA) +9V 300 TA = -45oC o 200 25 C +2V 10 1 + V23 3 2 3 CA3020 CA3020A I4 12 6 5 4 8 9 7 I7 -45oC 25oC 125oC 100 125oC 0 75 50 -25 25 I4 “ON” 0 0 25 50 -25 I7 “ON” 75 DIFFERENTIAL AMPLIFIER INPUT, V23 (mV) FIGURE 3A. TEST SETUP FIGURE 3B. CHARACTERISTIC WITH R 10 IN CIRCUIT FIGURE 3. TYPICAL TRANSFER CHARACTERISTICS +9V V7 10 8 9 7 I7 (MAX I7 CURRENT WITH PIN 2 RETURNED TO GND THROUGH 10k Ω) POWER AMPLIFIER OUTPUT, I4, I7 (mA) 300 TA = 25oC 1 2 3 10K 12 6 5 4 I4 (MAX I4 CURRENT WITH PIN 3 RETURNED TO GND THROUGH 10k Ω) CA3020 CA3020A 200 100 0 0 1 2 3 4 POWER AMPLIFIER COLLECTOR VOLTAGE, V4, V7 (V) V4 FIGURE 4A. TEST SETUP FIGURE 4B. CHARACTERISTIC FIGURE 4. “MINIMUM DRIVE” TYPICAL CURRENT-VOLTAGE SATURATION CURVE 4 CA3020, CA3020A Test Circuits and Waveforms ICC1 VCC1 S +2V 10 8 9 7 ICC2 DIFFERENTIAL AMPLIFIER CURRENT (mA) TA = 25 oC (Continued) 15 10 S CLOSED S OPEN 1 2 3 CA3020 CA3020A 5 12 6 5 4 0 2 4 6 8 10 DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V) FIGURE 5A. TEST SETUP FIGURE 5B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF ICC1 CURRENT vs V CC1 VOLTAGE 15 ZERO SIGNAL OUTPUT AMPLIFIER CURRENT (mA) TA = 25 oC S CLOSED 10 S OPEN 5 0 2 4 6 8 10 DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V) FIGURE 5C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 C URRENT vs VCC1 VOLTAGE FIGURE 5. ZERO SIGNAL AMPLIFIER CURRENT vs DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE ICC1 VCC1 +2V 10 8 9 7 ICC2 ZERO SIGNAL DIFFERENTIAL AMPLIFIER CURRENT (mA) S 15 VCC1 = 9V 10 VCC1 = 6V VCC1 = 9V 5 VCC1 = 3V S CLOSED S CLOSED S OPEN S CLOSED 1 2 3 CA3020 CA3020A 12 6 5 4 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) FIGURE 6A. TEST SETUP FIGURE 6B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF ICC1 CURRENT vs AMBIENT TEMPERATURE FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE 5 CA3020, CA3020A Test Circuits and Waveforms (Continued) 15 ZERO SIGNAL OUTPUT AMPLIFIER CURRENT (mA) VCC1 = 9V 10 S CLOSED 5 VCC1 = 6 V VCC1 = 9 V VCC1 = 3 V 0 50 100 TEMPERATURE (oC) S CLOSED S OPEN S CLOSED 150 0 -50 FIGURE 6C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 CURRENT vs AMBIENT TEMPERATURE FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE VCC1 VCC2 ICC1 V11 8 9 11 4 10 1 V3 3 7 10K S2 V2 10K 2 12 5 6 I7 CA3020 CA3020A I4 ICC2 CURRENTS OR VOLTAGES I4 -IDLE I7 -IDLE I4 -PEAK I7 -PEAK I4 -CUTOFF I7 -CUTOFF S1 OPEN OPEN OPEN CLOSE CLOSE OPEN S2 OPEN OPEN CLOSE OPEN OPEN CLOSE CURRENTS OR VOLTAGES ICC1 ICC2 V2 V3 V11 S1 OPEN OPEN OPEN OPEN OPEN S2 OPEN OPEN OPEN OPEN OPEN S1 FIGURE 7. STATIC CURRENT AND VOLTAGE TEST CIRCUIT 6 CA3020, CA3020A +VCC1 +VCC2 PROCEDURES: 1. Apply desired value of VCC1 and VCC2 . 2. Apply 1kHz input signal and adjust for eIN = 5mVRMS . 3. Record the resulting value of eOUT in dB (reference value). 8 10 µF 3 SIGNAL SOURCE 50 Ω eIN 9 4 50 Ω CA3020 CA3020A 3 2 7 5 6 12 eOUT 50 Ω 4. Vary input-signal frequency, keeping eIN constant at 5mV, and record frequencies above and below 1kHz at which eOUT decreases 3dB below reference value. 5. Record bandwidth as frequency range between -3dB points. 1µF FIGURE 8. MEASUREMENT OF BANDWIDTH AT -3dB POINTS +VCC1 + I CC1 +VCC2 + ICC2 PROCEDURES: 1. Apply desired value of VCC1 and VCC2 and reduce eIN to 0V. 2. Record resulting values of ICC1 and ICC2 in mA as ZeroSignal DC Current Drain. T (NOTE) 510 kΩ 3kΩ 10 1kHz SIGNAL eIN SOURCE 5µF 3 1 5k Ω 5µF 3 0.01 µF 2 5 6 12 7 CA3020 CA3020A 8 9 4 - 3. Apply desired value of VCC1 and V CC2 and adjust eIN to the value at which the Total Harmonic Distortion in the output of the amplifier = 10%. 4. Record resulting value of ICC1 and ICC2 in mA as Maximum Signal DC Current Drain. 5. Determine resulting amplifier power output in watts and record as Maximum Power Output (POUT). 6. Calculate Circuit Efficiency (η) in % as follows: P O UT η = 100 --------------------------------------------------------------------- . VCC1 ICC1 + VCC2 I CC2 RL eOUT 5µF where POUT is in watts, VCC1 and VCC2 are in volts, and ICC1 and ICC2 are in amperes. NOTE: Push-pull output transformer; load resistance (RL) should be selected to provide indicated collector-to-collector load impedance (RCC). 7. Record value of eIN in mVRMS required in Step 3 as Sensitivity (eIN ). 8. Calculate Transducer Power Gain (Gp) in dB as follows: P OUT G p = 10log10 ---------------P IN where P NOTE: IN e IN 2 ( in mW ) = --------------------------------------------------------------3000 + R IN ( 10 ) ( Note 4 ) 4. See Figure 10 for definition of RIN(10) . FIGURE 9. MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN, MAXIMUM POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN 7 CA3020, CA3020A +VCC1 +VCC2 PROCEDURES: Input Resistance Terminal 10 to Ground (RIN10). 1. Apply desired value of VCC1 and VCC2 and set S in Position 1. 510kΩ R 5µF S 1 2 1 10 8 9 4 7 2. Adjust 1kHz input for desired signal level of measurement 3. Adjust R for e2 = e1/2. 4. Record resulting value of R as RIN10 . 1kHz SIGNAL SOURCE e1 e2 5µF 2 3 CA3020 CA3020A Input Resistance Terminal 3 to Ground (RIN3). 1. Apply desired value of VCC1 and VCC2 and set S in Position 2. 2. Adjust 1kHz input for desired signal level of measurement 12 3 1 0.01µF 5kΩ 1µF 2 5 6 3. Adjust R for e2 = e1/2. 4. Record resulting value of R as RIN3 . FIGURE 10. MEASUREMENT OF INPUT RESISTANCE +VCC1 +VCC2 DISTORTION ANALYZER 510 kΩ S1 1kHz SIGNAL eIN SOURCE 3k Ω 5µF 10 3 1 5kΩ 0.01 µF 5µF 3 8 9 4 T (NOTE) S2 S3 BAND-PASS FILTER: 50Hz TO 15kHz 600Ω CA3020 CA3020A RL 7 2 5 6 12 eOUT 5µF RMS VOLTMETER NOTE: Push-pull output transformer; load resistance (RL) should be selected to provide indicated collector-to-collector load impedance (RCC). PROCEDURES: Signal-to-Noise Ratio 1. Close S1 and S3; open S 2 . 2. Apply desired values of VCC1 and VCC2 . 3. Adjust eIN for an amplifier output of 150mW and record resulting value of EOUT in dB as eOUT1 (reference value). 4. Open S1 and record resulting value of eOUT in dB as eOUT2 5. Signal-to-Noise Ratio ( S ⁄ N ) = 20log 10 -------------------- . eOUT2 eOUT1 Total Harmonic Distortion 1. Close S1 and S2; open S3. 2. Apply desired values of VCC1 and VCC2 . 3. Adjust eIN for desired level amplifier output power. 4. Record Total Harmonic Distortion (THD) in %. FIGURE 11. MEASUREMENT OF SIGNAL-TO-NOISE RATIO AND TOTAL HARMONIC DISTORTION 8 CA3020, CA3020A All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 9
CA3020A 价格&库存

很抱歉,暂时无法提供与“CA3020A”相匹配的价格&库存,您可以联系我们找货

免费人工找货