CT RODU NT LETE P EPLACEME at OBSO DED R ter EN rt Cen /tsc COMM Suppo NO RE r Technical .intersil.com Data Sheet ww t ou contac TERSIL or w 8-IN 1-88
CA3080, CA3080A
August 2004 FN475.6
2MHz, Operational Transconductance Amplifier (OTA)
The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note AN6668, “Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers”. The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance (gM) is directly proportional to the amplifier bias current (IABC). The CA3080 and CA3080A types are notable for their excellent slew rate (50V/µs), which makes them especially useful for multiplexer and fast unity-gain voltage followers. These types are especially applicable for multiplexer applications because power is consumed only when the devices are in the “ON” channel state. The CA3080A’s characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc.
Features
• Slew Rate (Unity Gain, Compensated) . . . . . . . . . 50V/µs • Adjustable Power Consumption. . . . . . . . . . . . .10µW to 30µW • Flexible Supply Voltage Range. . . . . . . . . . . . . ±2V to ±15V • Fully Adjustable Gain . . . . . . . . . . . . . . . . .0 to gMRL Limit • Tight gM Spread: - CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1 - CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6:1 • Extended gM Linearity . . . . . . . . . . . . . . . . . . . 3 Decades
Applications
• Sample and Hold • Multiplexer • Voltage Follower • Multiplier • Comparator
Pinouts
CA3080 (PDIP, SOIC) TOP VIEW
NC INV. INPUT 1 2 3 4 8 NC V+ OUTPUT AMPLIFIER BIAS INPUT
Part Number Information
PART NUMBER (BRAND) CA3080AE CA3080AM (3080A) CA3080AM96 (3080A) CA3080E CA3080M (3080) CA3080M96 (3080) TEMP. RANGE (oC) -55 to 125 -55 to 125 -55 to 125 0 to 70 0 to 70 0 to 70 PACKAGE 8 Ld PDIP 8 Ld SOIC 8 Ld SOIC Tape and Reel 8 Ld PDIP 8 Ld SOIC 8 Ld SOIC Tape and Reel PKG. NO. E8.3 M8.15 M8.15 E8.3 M8.15 M8.15
+
7 6 5
NON-INV. INPUT V-
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2001, All Rights Reserved
CA3080, CA3080A
Absolute Maximum Ratings
Supply Voltage (Between V+ and V- Terminal) . . . . . . . . . . . . . 36V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Signal Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA Amplifier Bias Current (IABC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Thermal Information
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only)
Operating Conditions
Temperature Range CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES: 1. Short circuit may be applied to ground or to either supply. 2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
PARAMETER Input Offset Voltage
For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified CA3080 TEST CONDITIONS IABC = 5µA IABC = 500µA IABC = 500µA to 5µA IABC = 100µA IABC = 500µA IABC = 500µA IABC = 500µA TEMP 25 25 Full MIN 10 12 to -12 6700 5400 350 300 TYP 0.3 0.4 0.2 0.12 2 0.008 0.71 26 3.6 0.024 13.6 to -14.6 9600 5.6 15 5 500 MAX 5 6 150 150 0.6 5 7 13000 650 MIN 10 12 to -12 7700 4000 3 350 300 CA3080A TYP 0.3 0.4 0.1 3.0 0.12 2 0.008 0.71 26 3.6 0.024 13.6 to -14.6 9600 5.6 15 5 500 MAX 2 2 5 3 150 150 0.6 5 15 5 12000 7 650 UNITS mV mV mV mV µV/oC µV/V µV/V µΑ µA µA nA V kΩ pF pF V µS µS pF MΩ µA µA µA
Input Offset Voltage Change Input Offset Voltage Temp. Drift Input Offset Voltage Sensitivity Input Offset Current Input Bias Current Positive Negative
25 Full 25 25 25 25 Full
Differential Input Current Amplifier Bias Voltage Input Resistance Input Capacitance Input-to-Output Capacitance Common-Mode Input-Voltage Range Forward Transconductance (Large Signal) Output Capacitance Output Resistance Peak Output Current
IABC = 0, VDIFF = 4V IABC = 500µA IABC = 500µA IABC = 500µA, f = 1MHz IABC = 500µA, f = 1MHz IABC = 500µA IABC = 500µA IABC = 500µA, f = 1MHz IABC = 500µA IABC = 5µA, RL = 0Ω IABC = 500µA, RL = 0Ω
25 25 25 25 25 25 25 Full 25 25 25 25 Full
2
CA3080, CA3080A
Electrical Specifications
PARAMETER Peak Output Voltage Positive Negative Positive Negative Amplifier Supply Current Device Dissipation Magnitude of Leakage Current Propagation Delay Common-Mode Rejection Ratio Open-Loop Bandwidth Slew Rate IABC = 500µA IABC = 500µA IABC = 0, VTP = 0 IABC = 0, VTP = 36V IABC = 500µA IABC = 500µA IABC = 500µA Uncompensated Compensated IABC = 500µA, RL = ∞ For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified (Continued) CA3080 TEST CONDITIONS IABC = 5µA, RL = ∞ TEMP 25 25 25 25 25 25 25 25 25 25 25 25 25 MIN 12 -12 0.8 24 80 TYP 13.8 -14.5 13.5 -14.4 1 30 0.08 0.3 45 110 2 75 50 MAX 1.2 36 MIN 12 -12 12 -12 0.8 24 80 CA3080A TYP 13.8 -14.5 13.5 -14.4 1 30 0.08 0.3 45 110 2 75 50 MAX 1.2 36 5 5 UNITS V V V V mA mW nA nA ns dB MHz V/µs V/µs
Schematic Diagram
7 D3 Q4 D2 Q5 Q6 Q7 D4 Q9 INVERTING INPUT NONINVERTING INPUT Q8 2 3 Q10 Q3 D1 Q11 D6 V4 Q1 Q2 OUTPUT 6 D3 V+
AMPLIFIER 5 BIAS INPUT
Typical Applications
V+ = 15V 0.01µF 7 10kΩ 3 51Ω 390pF 300Ω 2 + 5 LOAD (SCOPE PROBE) 6 1MΩ 4 0.01µF 5pF OUTPUT 1V/DIV. VS = ±15V
62kΩ
CA3080, A
-
10kΩ
V- = -15V
INPUT 5V/DIV. TIME (0.1µs/DIV.)
0.001µF
FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND ASSOCIATED WAVEFORM
3
CA3080, CA3080A Typical Applications
20pF 8.2kΩ
(Continued)
+7.5V VOLTAGE-CONTROLLED CURRENT SOURCE 7 3 + CA3080A 2 2MΩ SYMMETRY 7.5V 100kΩ MAX FREQ. SET +7.5V 10kΩ 6.2kΩ 500Ω FREQ. ADJUST 500Ω +7.5V 4.7kΩ 6 4 5 -7.5V 10 - 80pF C2
BUFFER VOLTAGE FOLLOWER +7.5V 0.9 - 7pF C1 6.2kΩ 3 + 6 HIGHFREQ. SHAPE
CENTERING 100kΩ -7.5V
THRESHOLD DETECTOR +7.5V 30kΩ +7.5V
7
0.1µF
430pF 6.8MΩ 10kΩ 2
5 7
1kΩ 1kΩ
-
4 - 60pF CA3160 C3 2 4
CA3080 6 4 + -7.5V 10kΩ 50kΩ C5 15 - 115
3 0.1 µF
EXTERNAL SWEEPING INPUT -7.5V
MIN FREQ. SET -7.5V 2kΩ HIGH-FREQ. LEVEL ADJUST C4 4 - 60
2-1N914
FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz
NOTE: A Square-Wave Signal Modulates The External Sweeping Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency range of the function generator. FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE FUNCTION GENERATOR
NOTE: The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1MHz signal via delayed oscilloscope triggering of the upper swept output signal. FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR SWEEPING TO 1MHz
FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS
4
CA3080, CA3080A Typical Applications
(Continued)
2.0kΩ
V+ = +15V
7 2 INPUT 3 2.0kΩ 5 30kΩ
0.01µF 3N138 6 220Ω 4 0.01µF 300pF 3kΩ SLEW RATE (IN SAMPLE MODE) = 1.3V/µs ACQUISITION TIME = 3µs (NOTE) OUTPUT
CA3080A +
STORAGE AND PHASE COMPENSATION NETWORK SAMPLE 0V HOLD -15V
NOTE: Time required for output to settle within ±3mV of a 4V step.
V- = -15V
FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION
30kΩ STROBE 1N914 0 -15 SAMPLE +15V HOLD 2kΩ INPUT 3 + CA3080A 2 6 1N914 5 7 2kΩ 3 + CA3140 4 2 6 4 0.1µF 2kΩ -15V 1 5 100kΩ 2kΩ 200pF 200pF 400Ω 0.1µF SIMULATED LOAD NOT REQUIRED 30pF 2kΩ -15V 0.1 µF 7 0.1µF +15V 0.1µF 3.6kΩ
-
-
FIGURE 5. SAMPLE AND HOLD CIRCUIT
5
CA3080, CA3080A Typical Applications
(Continued)
Top Trace: Bottom Trace: Center Trace:
Output Signal 5V/Div., 2µs/Div. Input Signal 5V/Div., 2µs/Div. Difference of Input and Output Signals Through Tektronix Amplifier 7A13 5mV/Div., 2µs/Div.
FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 5
Top Trace: Bottom Trace:
System Output; 100mV/Div., 500ns/Div. Sampling Signal; 20V/Div., 500ns/Div.
Top Trace: Bottom Trace:
Output; 50mV/Div., 200ns/Div. Input; 50mV/Div., 200ns/Div.
FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN FIGURE 5
FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT SHOWN IN FIGURE 5
THERMOCOUPLE 6.2K 8 2K 2 2K 3 20K 150K 6.2K 1N914 1N914 7 5
50K
+ 100µF
LOAD 5K 4W 2 5 MT2
-
CA3080A + 4 RF 8 6 6 13
G CA3079 11 4 9
120V AC MT1 60Hz
7
10
NOTE: All resistors 1/2 watt, unless otherwise specified. FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER
6
CA3080, CA3080A Typical Applications
(Continued)
SAMPLE CONTROL AMPLIFIER R1 3 INPUT 2K 2 + CA3080A (OTA) 7
+7.5V SAMPLE READ-OUT AMPLIFIER R4 6 2K 2 3 + CA3130 7
+7.5V C3 0.1µF 6 4 8 1 5 C5 156 pF R6 100K C4 0.1 µF OUTPUT R7 2K CL
4 5 R2 2K C2 0.1µF C1 200pF R3 400 -7.5V
-
e.g. 30pF (TYP)
SAMPLE 0V HOLD -7.5 STROBE
R2 15K
NULLING STORAGE AND PHASE COMPENSATION -7.5V
R5 2K
C6 0.1µF
FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER
0
0
0 0 0
Top Trace: Center Trace: Bottom Trace:
Output; 5V/Div., 2µs/Div. Differential Comparison of Input and Output 2mV/Div., 2µs/Div. Input; 5V/Div., 2µs/Div.
Top Trace: Bottom Trace:
Output 20mV/Div., 100ns/Div. Input 200mV/Div., 100ns/Div.
FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 10
FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 10
7
CA3080, CA3080A Typical Applications
(Continued)
V+ = 15V 56kΩ 7 50mV 0 -50mV IN 51Ω 3 + 5 IABC = 500µA 6 OUT 1.2MΩ 4 V- = -15V 1N914
CA3080,A 2
-
0
INPUT tPLH tPHL
OUTPUT
FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS
Typical Performance Curves
5 4 INPUT OFFSET VOLTAGE (mV) 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 0.1 1 10 100 1000 0.01 0.1 1 10 100 1000 125oC 90oC 25oC -55oC -55oC 70oC 25oC 70oC SUPPLY VOLTS: VS = ±15V 90oC 125oC INPUT OFFSET CURRENT (nA) 103 102 SUPPLY VOLTS: VS = ±15V
10 -55oC 25oC 0.1 125oC
1
AMPLIFIER BIAS CURRENT (µA)
AMPLIFIER BIAS CURRENT (µA)
FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT
104 SUPPLY VOLTS: VS = ±15V
FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT
104 PEAK OUTPUT CURRENT (µA) SUPPLY VOLTS: VS = ±15V LOAD RESISTANCE = 0Ω 125oC 25oC
INPUT BIAS CURRENT (nA)
103
103
102 -55oC 25oC 1 125oC
102
-55oC
10
10
1
0.1 0.1
0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000
FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT
FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS CURRENT
8
CA3080, CA3080A Typical Performance Curves
15 PEAK OUTPUT VOLTAGE (V) COMMON MODE INPUT VOLTAGE (V) 14.5 14 13.5 13 0 -13 -13.5 -14 -14.5 -15 0.1 V-CMR 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 V-OM V+OM SUPPLY VOLTS: VS = ±15V TA = 25oC LOAD RESISTANCE = ∞ V+CMR
(Continued)
104 AMPLIFIER SUPPLY CURRENT (µA) 25oC 125oC -55oC 102
SUPPLY VOLTS: VS = ±15V
103
10 125oC 1 -55oC, 25oC 0.1 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000
FIGURE 18. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS CURRENT
FIGURE 19. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT
FORWARD TRANSCONDUCTANCE (µS)
DEVICE POWER DISSIPATION (µW)
105 104
TA = 25oC
105 SUPPLY VOLTS: V = ±15V S 104 -55oC 103 125oC 102 25oC
103 102
VS = ±15V
VS = ±6V VS = ±3V
10
10
1 0.1 1 10 100 1000 AMPLIFIER BIAS CURRENT (µA)
1
0.1
1
10
100
1000
AMPLIFIER BIAS CURRENT (µA)
FIGURE 20. TOTAL POWER DISSIPATION vs AMPLIFIER BIAS CURRENT
FIGURE 21. TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT
MAGNITUDE OF LEAKAGE CURRENT (nA) 100 SUPPLY VOLTS: VS = ±15V
+36V
10 V2 = V3 = V6 = 36V 1 0V 0.1
36V 0V 1 TEST POINT (VTP) 2
7
CA3080, A 3 5 4
6
0.01 -50
-25
0
50 25 75 TEMPERATURE (oC)
100
125
FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT
FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE
9
CA3080, CA3080A Typical Performance Curves
(Continued)
SUPPLY VOLTS: VS = ±15V DIFFERENTIAL INPUT CURRENT (pA) V+ = 15V 104
7 1 VDIFF = ±4V 3 5 4 2 CA3080, A 6
103 125oC 102
10
25oC
1 0 1 2 3 4 5 INPUT DIFFERENTIAL VOLTAGE (V) 6 7
V- = -15V
FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT
SUPPLY VOLTS: VS = ±15V TA = 25oC
FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE
900 AMPLIFIER BIAS VOLTAGE (mV) 800 700 600 500 400 300 200 100
SUPPLY VOLTS: VS = ±15V
100 INPUT RESISTANCE (MΩ)
-55oC
10
25oC
1
125oC
0.1
0.01 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000
0 0.1
1 10 100 AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT
FIGURE 27. AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS CURRENT
7 INPUT AND OUTPUT CAPACITANCE (pF) 6 5 4 3 2 1
OUTPUT RESISTANCE (MΩ)
SUPPLY VOLTS: VS = ±15V f = 1 MHz TA = 25oC CO CI
105
SUPPLY VOLTS: VS = ±15V TA = 25oC
104
103
102
10
0 0.1
1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000
FIGURE 28. INPUT AND OUTPUT CAPACITANCE vs AMPLIFIER BIAS CURRENT
FIGURE 29. OUTPUT RESISTANCE vs AMPLIFIER BIAS CURRENT
10
CA3080, CA3080A Typical Performance Curves
(Continued)
V+
INPUT - TO - OUTPUT CAPACITANCE (pF)
f = 1 MHz o 0.06 TA = 25 C
0.01µF 7 2 CA3080, A 3 5 4 0.01µF V6
0.05 0.04 0.03 0.02
0.01
0
2 4 6 8 10 12 14 16 POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)
18
FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT
FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY VOLTAGE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
11