®
HA-2640, HA-2645
Data Sheet January 3, 2006 FN2904.5
4MHz, High Supply Voltage Operational Amplifiers
HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage. For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier “off”, when the chip reaches a certain temperature level. These amplifiers deliver ±35V common mode input voltage range, ±35V output voltage swing, and up to ±40V supply range for use in such designs as regulators, power supplies, and industrial control systems. 4MHz gain bandwidth and 5V/µs slew rate make these devices excellent components for high performance signal conditioning applications. Outstanding input and output voltage swings coupled with a low 5nA offset current make these amplifiers excitation designs.
Features
• Output Voltage Swing . . . . . . . . . . . . . . . . . . . . . . . ±35V • Supply Voltage . . . . . . . . . . . . . . . . . . . . . . ±10V to ±40V • Offset Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5nA • Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4MHz • Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V/µs • Common Mode Input Voltage Range. . . . . . . . . . . . ±35V • Output Overload Protection
Applications
• Industrial Control Systems • Power Supplies • High Voltage Regulators • Resolver Excitation • Signal Conditioning
Ordering Information
PART NUMBER HA2-2640-2 HA7-2640-2 HA2-2645-5 HA7-2645-5 PART MARKING HA2-2640-2 HA7-2640-2 HA2-2645-5 HA7-2645-5 TEMP. RANGE (oC) PACKAGE PKG. DWG. #
-55 to 125 8 Pin Metal Can T8.C -55 to 125 8 Ld CERDIP 0 to 75 0 to 75 F8.3A
8 Pin Metal Can T8.C 8 Ld CERDIP F8.3A
Pinouts
HA-2640/2645 (CERDIP) TOP VIEW HA-2640/2645 (METAL CAN) TOP VIEW
COMP 8 BAL -IN 1 2 8 COMP BAL 1 7 V+
+IN 3 V- 4
+
7 V+ 6 OUT 5 BAL
-IN
2
+
3 4 V5
6
OUT
+IN
BAL
(TO-99 CASE VOLTAGE = FLOATING)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2001, 2004, 2006. All Rights Reserved All other trademarks mentioned are the property of their respective owners.
HA-2640, HA-2645
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . 100V Differential Input Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . 37V Output Current . . . . . . . . . . . . . . . . . . . . Full Short Circuit Protection
Thermal Information
Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W) CERDIP Package. . . . . . . . . . . . . . . . . 135 50 Metal Can Package . . . . . . . . . . . . . . . 165 80 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . .175oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
Operating Conditions
Temperature Range HA-2640-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC HA-2645-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
PARAMETER INPUT CHARACTERISTICS Offset Voltage
VSUPPLY = ±40V, RL = 5kΩ , Unless Otherwise Specified TEMP (oC) HA-2640-2 MIN TYP MAX MIN HA-2645-5 TYP MAX UNITS
TEST CONDITIONS
25 Full
-
2 -
4 6 25 50 12 35 -
40 ±35
2 15 12 15 200 -
6 7 30 50 30 50 -
mV mV µV/oC nA nA nA nA MΩ V
Average Offset Voltage Drift Bias Current
Full 25 Full
50 ±35
15 10 5 250 -
Offset Current
25 Full
Input Resistance (Note 2) Common Mode Range TRANSFER CHARACTERISTICS Large Signal Voltage Gain VOUT = ±30V VCM = ±20V VOUT = 90mV
25 Full
25 Full
100 75 80 1 ±35 ±12 -
200 100 4
-
100 75 74 1 ±35 ±10 -
200 100 4
-
kV/V kV/V dB V/V MHz
Common Mode Rejection Ratio Minimum Stable Gain Unity Gain Bandwidth OUTPUT CHARACTERISTICS Output Voltage Swing Output Current Output Resistance Full Power Bandwidth (Note 3)
Full 25 25
Full R L = 1k Ω Open Loop VOUT = ±35V VOUT = ±200mV VOUT = ±200mV 25 25 25
±15 500 23
-
±12 500 23
-
V mA Ω kHz
TRANSIENT RESPONSE AV = +1, CL = 50pF, RL = 5kΩ Rise Time Overshoot Slew Rate POWER SUPPLY CHARACTERISTICS Supply Current Supply Voltage Range Power Supply Rejection Ratio NOTES: 2. This parameter is based upon design calculations. 3. Full Power Bandwidth guaranteed based upon slew rate measurement: FPBW = S.R./2πVPEAK; VPEAK = 35V. VS = ±10V to ±40V 25 Full Full ±10 80 3.2 90 3.8 ±40 ±10 74 3.2 90 4.5 ±40 mA V dB 25 25 25 ±3 60 15 ±5 135 30 ±2.5 60 15 ±5 135 40 ns % V/µs
2
FN2904.5
HA-2640, HA-2645 Schematic Diagram
8 COMP R25 R1 Q1 R5 Q17 Q15 R6 R7 Q28 Q30 R25 R4 Q3 Q5 Q14 Q7 Q9 Q8 Q 13 Q10 Q4 Q6 Q12 Q61 Q18 Q29 Q31 D2 D3 Q D4 19 D5 D6 D7 D8 D9 R2 Q16 Q25 R3 Q11 3 +IN R10 R27 R11 2 -IN 5 BAL R26 1 BAL R17 R18 Q26 Q27 Q20 Q47 Q57 Q59 R23 6 R24 D16 VOUT Q35 R8 R 9 Q34 Q40 C4 C3 Q46 D13 Q53 Q55 R12 7 V+ C1 R21 R22
D17
Q21 Q22 Q23 Q24 Q32 Q33
Q36 Q37
Q38 Q39 Q41 Q43
D12 Q51 Q56
D15
Q44 Q48
D10
D11
C2 Q42
R13
Q60
Q58 R15 R14 R16 Q49 Q50 R19 R20 Q52 Q54
4 V-
Test Circuits and Waveform
COMP CAP 7
8 1 V+ IN 2 3 10kΩ 5K VV50pF 4
+
5
6
+
-
OUT
NOTE: Tested offset adjustment range is |VOS +1mV| minimum referred to output. Typical range is ±20mV with RT = 10kΩ . FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT FIGURE 2. SUGGESTED VOS ADJUSTMENT AND COMPENSATION HOOK UP
3
FN2904.5
HA-2640, HA-2645 Test Circuits and Waveform
(Continued)
Vertical = 10V/Div., Horizontal = 5µs/Div. NOTE: RL = 5kΩ , CL = 50pF, TA = 25oC, VS = ±40V FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE
Typical Performance Curves
25
VS = ±40V, TA = 25oC, Unless Otherwise Specified
1000 INPUT NOISE VOLTAGE (nV/√Hz) 10 INPUT NOISE CURRENT (pA/√Hz) PHASE ANGLE (DEGREES)
20 CURRENT (nA)
100
1
15
INPUT NOISE CURRENT 10 INPUT NOISE VOLTAGE 0.1
10 BIAS CURRENT 5 OFFSET CURRENT 0
-50
-25
0
25
50
75
100
125
1 1
10
100
1K
10K
0.01 100K
TEMPERATURE (oC)
FREQUENCY (Hz)
FIGURE 4. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE
NORMALIZED VALUE REFERRED TO 25oC
FIGURE 5. INPUT NOISE CHARACTERISTICS
0 OPEN LOOP VOLTAGE GAIN (dB) 1.4
120
45
1.2
80 GAIN
PHASE
90
40
135
1.0
SLEW RATE
0
180
BANDWIDTH 0.8
-40
225
-50
-25
0
25 50 75 TEMPERATURE (oC)
100
125
10
100
1K
10K
100K
1M
10M
270
FREQUENCY (Hz)
FIGURE 6. NORMALIZED AC PARAMETERS vs TEMPERATURE
FIGURE 7. OPEN LOOP FREQUENCY RESPONSE
4
FN2904.5
HA-2640, HA-2645 Typical Performance Curves
NORMALIZED VALUE REFERRED TO ±30V 1.2 120 1.1 OPEN LOOP GAIN (dB) AUT CCOMP CL = 100pF
VS = ±40V, TA = 25oC, Unless Otherwise Specified (Continued)
80
SLEW RATE 1.0 BANDWIDTH
40 300pF 1,000pF
0pF 30pF 100pF
0
0.9
40
0.8 10
20
30
40
10
100
1K
10K
100K
1M
10M
SUPPLY VOLTAGE (±V)
FREQUENCY (Hz)
FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT 25oC
FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND
100 OUTPUT VOLTAGE SWING (VP-P) VSUPPLY = ±40V VSUPPLY = ±20V 10.0 VSUPPLY = ±10V OUTPUT VOLTAGE (V)
AV = 1, VSUPPLY = ±20V VIN = +15V -55oC 25oC 125oC -20 -15 -10 -5 AV = 1, VSUPPLY = ±40V VIN = +35V
40 30 20 10 125oC 25oC
-55oC
1.0
-10 -55oC -20 -30 -40
5 10 15 20 125oC 25oC -55oC AV = 1, VSUPPLY = ±20V VIN = -15V
125oC 25oC
0.1 1K
10K
100K FREQUENCY (Hz)
1M
AV = 1, VSUPPLY = ±40V VIN = -35V
OUTPUT LOAD CURRENT (mA)
FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY
2.5 OUTPUT VOLTAGE SWING (±V) 2.0 SUPPLY CURRENT (mA) 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 10 15 20 25 -ICC 30 35 40 +ICC
FIGURE 11. OUTPUT CURRENT CHARACTERISTIC
40 30 20 10 0 -10 -20 -30 -40 10 -VOUT 15 20 25 30 35 40 +VOUT
SUPPLY VOLTAGE (±V)
SUPPLY VOLTAGE (±V)
FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE
FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE
5
FN2904.5
HA-2640, HA-2645 Die Characteristics
SUBSTRATE POTENTIAL (Powered Up): Unbiased TRANSISTOR COUNT: 76 PROCESS: HV200 Bipolar Dielectric Isolation
Metallization Mask Layout
HA-2640, HA-2645
BAL
COMP
-IN
V+
OUT +IN
V-
BAL
6
FN2904.5
HA-2640, HA-2645 Metal Can Packages (Can)
REFERENCE PLANE A L L2 L1 A A ØD ØD1 Øe 2 1 Øb1 F Q Øb BASE AND SEATING PLANE BASE METAL LEAD FINISH β N k1 ØD2
T8.C MIL-STD-1835 MACY1-X8 (A1)
e1 8 LEAD METAL CAN PACKAGE INCHES SYMBOL A Øb Øb1 Øb2 ØD MIN 0.165 0.016 0.016 0.016 0.335 0.305 0.110 MAX 0.185 0.019 0.021 0.024 0.375 0.335 0.160 MILLIMETERS MIN 4.19 0.41 0.41 0.41 8.51 7.75 2.79 MAX 4.70 0.48 0.53 0.61 9.40 8.51 4.06 NOTES 1 1 2 1 1 1 3 3 4 Rev. 0 5/18/94
α
k
ØD1
C L
ØD2 e e1 F k k1
0.200 BSC 0.100 BSC 0.027 0.027 0.500 0.250 0.010 45o BSC 45o BSC 8 0.040 0.034 0.045 0.750 0.050 0.045 -
5.08 BSC 2.54 BSC 1.02 0.86 1.14 19.05 1.27 1.14
0.69 0.69 12.70 6.35 0.25
Øb1
Øb2
L L1
SECTION A-A
L2 Q
NOTES: 1. (All leads) Øb applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane. 2. Measured from maximum diameter of the product. 3. α is the basic spacing from the centerline of the tab to terminal 1 and β is the basic spacing of each lead or lead position (N -1 places) from α, looking at the bottom of the package. 4. N is the maximum number of terminal positions. 5. Dimensioning and tolerancing per ANSI Y14.5M - 1982. 6. Controlling dimension: INCH.
α
β N
45o BSC 45o BSC 8
7
FN2904.5
HA-2640, HA-2645 Ceramic Dual-In-Line Frit Seal Packages (CERDIP)
c1 -A-DBASE METAL E b1 M -Bbbb S BASE PLANE SEATING PLANE S1 b2 b ccc M C A-B S AA C A-B S D Q -CA L DS M (b) SECTION A-A (c) LEAD FINISH
F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A)
8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE INCHES SYMBOL A b b1 b2 b3 c MIN 0.014 0.014 0.045 0.023 0.008 0.008 0.220 MAX 0.200 0.026 0.023 0.065 0.045 0.018 0.015 0.405 0.310 MILLIMETERS MIN 0.36 0.36 1.14 0.58 0.20 0.20 5.59 MAX 5.08 0.66 0.58 1.65 1.14 0.46 0.38 10.29 7.87 NOTES 2 3 4 2 3 5 5 6 7 2, 3 8 Rev. 0 4/94
α
eA
c1 D E e eA eA/2 L Q S1
e
DS
eA/2
c
0.100 BSC 0.300 BSC 0.150 BSC 0.125 0.015 0.005 90o 8 0.200 0.060 105o 0.015 0.030 0.010 0.0015
2.54 BSC 7.62 BSC 3.81 BSC 3.18 0.38 0.13 90o 8 5.08 1.52 105o 0.38 0.76 0.25 0.038
aaa M C A - B S D S
NOTES: 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer’s identification shall not be used as a pin one identification mark. 2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied. 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. 4. Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2. 5. This dimension allows for off-center lid, meniscus, and glass overrun. 6. Dimension Q shall be measured from the seating plane to the base plane. 7. Measure dimension S1 at all four corners. 8. N is the maximum number of terminal positions. 9. Dimensioning and tolerancing per ANSI Y14.5M - 1982. 10. Controlling dimension: INCH
α
aaa bbb ccc M N
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com 8
FN2904.5