HA-2850
Data Sheet September 1998 File Number 2844.4
470MHz, Low Power, High Slew Rate Operational Amplifier
The HA-2850 is a wideband, high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater. A 340V/µs slew rate and a 470MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.04% and 0.04 degrees respectively, making the HA-2850 ideal for video applications. A full ±10V output swing, high open loop gain, and outstanding AC parameters, make the HA-2850 an excellent choice for high speed Data Acquisition Systems. For military grade product, refer to the HA-2850/883 data sheet. Intersil AnswerFAX (321-724-7800) Document #3595.
Features
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 7.5mA • High Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 340V/µs • Open Loop Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 25kV/V • Wide Gain-Bandwidth (AV ≥ 10) . . . . . . . . . . . . . . 470MHz • Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . 5.4MHz • Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV • Input Noise Voltage . . . . . . . . . . . . . . . . . . . . 11nV / Hz • Differential Gain/Phase. . . . . . . . . . . 0.04%/0.04 Degrees • Lower Power Enhanced Replacement for AD840 and EL2040
Applications
• Pulse and Video Amplifiers • Wideband Amplifiers
Pinout
HA-2850 (SOIC) TOP VIEW
• High Speed Sample-Hold Circuits • Fast, Precise D/A Converters
8 NC V+ OUT NC
NC -IN +IN V-
1 2 3 4
Ordering Information
PART NUMBER (BRAND) HA9P2850-5 (H28505) TEMP. RANGE (oC) 0 to 75 PACKAGE 8 Ld SOIC PKG. NO. M8.15
+
7 6 5
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
HA-2850
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 35V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Thermal Information
Thermal Resistance (Typical, Note 1) θJA (oC/W) 8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 157 Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package, Note 2) . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only)
Operating Conditions
Temperature Range HA-2850-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC Recommended Supply Voltage Range . . . . . . . . . . . . ±6V To ±15V
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES: 1. θJA is measured with the component mounted on an evaluation PC board in free air. 2. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150oC for plastic packages.
Electrical Specifications
PARAMETER INPUT CHARACTERISTICS Offset Voltage (Note 9)
VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified HA-2850-5 TEST CONDITIONS TEMP. (oC) MIN TYP MAX UNITS
25 Full
±10 -
0.6 2 20 5 8 1 10 1 11 6
2 6 14.5 20 4 8 -
mV mV µV/oC µA µA µA µA kΩ pF V nV⁄ Hz pA ⁄ Hz
Average Offset Voltage Drift Bias Current (Note 9)
Full 25 Full
Offset Current
25 Full
Input Resistance Input Capacitance Common Mode Range Input Noise Voltage (Note 9) Input Noise Current (Note 9) TRANSFER CHARACTERISTICS Large Signal Voltage Gain Note 4 f = 1kHz, RSOURCE = 0Ω f = 1kHz, RSOURCE = 10kΩ
25 25 Full 25 25
25 Full
20 15 75 10 -
25 20 80 470
-
kV/V kV/V dB V/V MHz
Common-Mode Rejection Ratio (Note 9) Minimum Stable Gain Gain Bandwidth Product (Note 9) OUTPUT CHARACTERISTICS Output Voltage Swing (Note 9) Output Current (Note 9) Output Resistance Full Power Bandwidth (Note 5) Differential Gain Differential Phase Harmonic Distortion (Note 9)
VCM = ±10V
Full 25
VO = 90mV, AV = 100
25
Note 4 Note 4
Full Full 25
±10 ±10 4.8 -
±11 ±20 30 5.4 0.04 0.04 -74
-
V mA Ω MHz % Degrees dBc
Note 4 AV = +10, Note 3 AV = +10, Note 3 AV = +10, VO = 2VP-P, f = 1MHz
25 25 25 25
2
HA-2850
Electrical Specifications
PARAMETER TRANSIENT RESPONSE (Note 6) Rise Time Overshoot Slew Rate (Notes 8, 9) Settling Time POWER REQUIREMENTS Supply Current (Note 9) Power Supply Rejection Ratio (Note 9) NOTES: 3. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. 4. RL = 1kΩ, VO = ±10V, 0V to ±10V for slew rate. Slew Rate 5. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = -------------------------- ; V PEAK = 10V . 2 π V PEAK 6. Refer to Test Circuit section of data sheet. 7. VSUPPLY = ±10V to ±20V. 8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation. 9. See “Typical Performance Curves” for more information. Note 7 Full Full 75 7.5 90 8.0 mA dB Note 4 10V Step to 0.1% 25 25 25 25 300 5 25 340 200 ns % V/µs ns VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified (Continued) HA-2850-5 TEST CONDITIONS TEMP. (oC) MIN TYP MAX UNITS
Test Circuits and Waveforms
IN +
-
OUT 900Ω
NOTES: 10. VS = ±15V. 11. AV = +10. 12. CL < 10pF.
100Ω
TEST CIRCUIT
INPUT INPUT
OUTPUT
OUTPUT
Input = 1V/Div. Output = 5V/Div. 50ns/Div.
Input = 10mV/Div. Output = 100mV/Div. 50ns/Div.
LARGE SIGNAL RESPONSE
SMALL SIGNAL RESPONSE
3
HA-2850 Test Circuits and Waveforms
V+ 0.001µF
(Continued)
NOTES: 13. AV = -10.
200Ω INPUT 1µF
14. Load Capacitance should be less than 10pF.
OUTPUT
+ 0.001µF
15. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%. 16. SETTLING POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.
PROBE MONITOR
500Ω V-
1µF 2kΩ 5kΩ
SETTLING POINT
SETTLING TIME TEST CIRCUIT
Typical Performance Curves
100 80 GAIN (dB) 60 40 20 0 AVCL = 10 AVCL = 1000 AVCL = 100 OPEN LOOP
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified
475 GAIN BANDWIDTH PRODUCT (MHz)
450
PHASE (DEGREES)
AVCL= 1000 AVCL= 100 AVCL = 10 0 OPEN LOOP 90 180
425
400 5 6 7 8 9 10 11 12 13 14 15 SUPPLY VOLTAGE (±V)
1K
10K
100K 1M 10M FREQUENCY (Hz)
100M 500M
FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS
600 550 GAIN BANDWIDTH PRODUCT (MHz) 500
FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE
90 80 70 CMRR (dB)
450 400 350 300 250 200 -60
60 50 40 30 20 100
-40
-20
0
20
40
60
80
100
120
140
1K
TEMPERATURE (oC)
10K 100K FREQUENCY (Hz)
1M
10M
FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE
FIGURE 4. CMRR vs FREQUENCY
4
HA-2850 Typical Performance Curves
110 100 NOISE VOLTAGE (nV/√Hz) 90 80 PSRR (dB) 70 60 50 40 30 20 10 0 100 1K 10K 100K FREQUENCY (Hz) 1M 10M ±PSRR 60 50 40 30 20 10 0 10 100 1K FREQUENCY (Hz) 10K NOISE CURRENT NOISE VOLTAGE 30 20 10 0 100K 60 50 40 NOISE CURRENT (pA/√Hz) 15 15
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued)
FIGURE 5. PSRR vs FREQUENCY
FIGURE 6. INPUT NOISE vs FREQUENCY
350
350
325 SLEW RATE (V/µs) SLEW RATE (V/µs) -40 -20 0 20 40 60 80 100 120 140
325
300
300
275
275
250
250
225 -60
225 5 6 7 8 9 10 11 12 13 14 TEMPERATURE (oC) SUPPLY VOLTAGE (±V)
FIGURE 7. SLEW RATE vs TEMPERATURE
FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE
6.5 3.5 INPUT OFFSET VOLTAGE (mV) INPUT BIAS CURRENT (µA) SUPPLY CURRENT (mA) 6.0 2.5 5.5 BIAS CURRENT 5.0 0.5 4.5 OFFSET VOLTAGE -0.5 4.0 -60 -40 -20 0 20 40 60 80 100 120 140 1.5
8.0 7.5 7.0 6.5 6.0 5.5 5.0 125oC 25oC -55oC
5
6
7
8
TEMPERATURE (oC)
9 10 11 12 SUPPLY VOLTAGE (±V)
13
14
FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE
FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE
5
HA-2850 Typical Performance Curves
13 ±15V, 1kΩ NEGATIVE OUTPUT SWING (V)
TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued)
-3 ±8V, 75Ω -5 ±8V, 1kΩ -7 ±15V, 75Ω -9 ±15V, 150Ω -11 ±15V, 1kΩ -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (oC) ±8V, 150Ω
POSITIVE OUTPUT SWING (V)
11 ±15V, 150Ω 9 ±15V, 75Ω 7 ±8V, 1kΩ 5 ±8V, 150Ω ±8V, 75Ω 3 -60 -40 -20 0 20 40 60 80 100 120 140
-13 -60
TEMPERATURE (oC)
FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE
FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE
30 OUTPUT VOLTAGE SWING (VP-P) 25 20 15 10 5 THD (dBc) VSUPPLY = ±15V
-30 -40 -50 VSUPPLY = ±8V -60 -70 -80 VO = 0.5VP-P VO = 1VP-P 1M FREQUENCY (Hz) 10M VO = 10VP-P VO = 2VP-P
0 -90 100K
1K
10K
100K 1M FREQUENCY (Hz)
10M
100M
FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY
FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY
-30 3RD INTERMOD PRODUCT (dBc) -40 VO = 5VP-P -50 -60 -70 -80 -90 500K VO = 0.25VP-P VO = 0.5VP-P 1M FREQUENCY (Hz) 10M VO = 2VP-P VO = 1VP-P
FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)
6
HA-2850 Die Characteristics
DIE DIMENSIONS: 65 mils x 52 mils x 19 mils 1650µm x 1310µm x 483µm METALLIZATION: Type: Aluminum, 1% Copper Thickness: 16kÅ ±2kÅ SUBSTRATE POTENTIAL VPASSIVATION: Type: Nitride over Silox Silox Thickness: 12kÅ ±2kÅ Nitride Thickness: 3.5kÅ ±1kÅ TRANSISTOR COUNT: 34 PROCESS: High Frequency Bipolar Dielectric Isolation
Metallization Mask Layout
HA-2850
V+
OUT
-IN
+IN
V-
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
7