0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF530N

IRF530N

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    IRF530N - 22A, 100V, 0.064 Ohm, N-Channel Power MOSFET - Intersil Corporation

  • 数据手册
  • 价格&库存
IRF530N 数据手册
IRF530N TM Data Sheet March 2000 File Number 4843 22A, 100V, 0.064 Ohm, N-Channel Power MOSFET Packaging JEDEC TO-220AB SOURCE DRAIN GATE Features • Ultra Low On-Resistance - rDS(ON) = 0.064Ω, VGS = 10V • Simulation Models - Temperature Compensated PSPICE™ and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.intersil.com • Peak Current vs Pulse Width Curve • UIS Rating Curve DRAIN (FLANGE) Symbol D Ordering Information PART NUMBER IRF530N G PACKAGE TO-220AB BRAND IRF530N S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified IRF530N UNITS V V V A A 100 100 ±20 22 15 Figure 4 Figures 6, 14, 15 85 0.57 -55 to 175 300 260 W W/oC oC oC oC Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. 1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000 IRF530N Electrical Specifications PARAMETER OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS ID = 250µA, VGS = 0V (Figure 11) VDS = 95V, VGS = 0V VDS = 90V, VGS = 0V, TC = 150oC Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient RθJC RθJA TO-220 1.76 62 oC/W oC/W TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 100 - - 1 250 ±100 V µA µA nA IGSS VGS = ±20V VGS = VDS, ID = 250µA (Figure 10) ID = 22A, VGS = 10V (Figure 9) VGS(TH) rDS(ON) 2 - 0.054 4 0.064 V Ω SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 790 215 70 pF pF pF Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 50V, ID = 22A, Ig(REF) = 1.0mA (Figures 13, 16, 17) 43 23 1.7 3.5 8.7 52 28 2 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 50V, ID = 22A VGS = 10V, RGS = 13Ω (Figures 18, 19) 7.9 42 47 39 75 130 ns ns ns ns ns ns Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage SYMBOL VSD ISD = 22A ISD = 11A Reverse Recovery Time Reverse Recovered Charge trr QRR ISD = 22A, dISD/dt = 100A/µs ISD = 22A, dISD/dt = 100A/µs TEST CONDITIONS MIN TYP MAX 1.25 1.00 100 313 UNITS V V ns nC 2 IRF530N Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 25 ID, DRAIN CURRENT (A) 20 VGS = 10V 15 10 5 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 THERMAL IMPEDANCE ZθJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101 SINGLE PULSE 0.01 10-5 10-4 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 300 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 I = I25 VGS = 10V 175 - TC 150 IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 FIGURE 4. PEAK CURRENT CAPABILITY 3 IRF530N Typical Performance Curves 300 SINGLE PULSE TJ = MAX RATED TC = 25oC (Continued) 100 ID, DRAIN CURRENT (A) 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC STARTING TJ = 150oC 1ms 10ms 100 300 10 0.001 0.01 0.1 1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 40 ID, DRAIN CURRENT (A) 30 ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 40 VGS = 20V VGS = 10V 30 VGS = 7V VGS = 6V 20 TJ = 175oC 10 20 VGS =5V TJ = -55oC TJ = 25oC 10 0 2 3 4 5 VGS, GATE TO SOURCE VOLTAGE (V) 6 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) 4 FIGURE 7. TRANSFER CHARACTERISTICS FIGURE 8. SATURATION CHARACTERISTICS 3.0 NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 22A NORMALIZED GATE THRESHOLD VOLTAGE 1.2 VGS = VDS, ID = 250µA 2.0 1.5 1.0 0.5 0 -80 -40 160 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 200 1.0 0.8 0.6 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4 IRF530N Typical Performance Curves 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE (Continued) 2000 VGS = 0V, f = 1MHz 1000 C, CAPACITANCE (pF) ID = 250µA 1.1 CISS = CGS + CGD COSS ≅ CDS + CGD 1.0 100 CRSS = CGD 0.9 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) 20 0.1 1.0 10 100 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 50V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 22A ID = 11A 0 5 15 10 Qg, GATE CHARGE (nC) 20 25 2 0 NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01Ω 0 tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS 5 IRF530N Test Circuits and Waveforms (Continued) VDS RL VDD VDS VGS = 20V VGS + Qg(TOT) Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V DUT Ig(REF) FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON td(ON) RL VDS + tOFF td(OFF) tr tf 90% 90% VGS VDD DUT 0 10% 90% 10% RGS VGS VGS 0 10% 50% PULSE WIDTH 50% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. SWITCHING TIME WAVEFORM 6 IRF530N PSPICE Electrical Model .SUBCKT IRF530N 2 1 3 ; CA 12 8 1.27e-9 CB 15 14 1.27e-9 CIN 6 8 7.20e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 rev 15 Jan 2000 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6 IT 8 17 1 LDRAIN 2 5 1.0e-9 LGATE 1 9 5.53e-9 LSOURCE 3 7 4.35e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.70e-2 RGATE 9 20 2.50 RLDRAIN 2 5 10 RLGATE 1 9 55.3 RLSOURCE 3 7 43.5 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.77e-2 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3 S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17 - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*43.5),3.5))} .MODEL DBODYMOD D (IS = 6.0e-13 RS = 6.2e-3 XTI = 5.5 TRS1 = 2.1e-3 TRS2 = 2.0e-6 CJO = 8.50e-10 TT = 6.30e-8 M = 0.54) .MODEL DBREAKMOD D (RS = 5.6e-1 TRS1 = 8e-4 TRS2 = 3e-6) .MODEL DPLCAPMOD D (CJO = 9.29e-10 IS = 1e-30 M = 0.79) .MODEL MMEDMOD NMOS (VTO = 3.21 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.50) .MODEL MSTROMOD NMOS (VTO = 3.60 KP = 37 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.77 KP = 0.09 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 25.0 ) .MODEL RBREAKMOD RES (TC1 =1.05e-3 TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 3.00e-5) .MODEL RSLCMOD RES (TC1 = 3.20e-3 TC2 = 3.00e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.20e-3 TC2 = -9.00e-6) .MODEL RVTEMPMOD RES (TC1 = -2.40e-3 TC2 =1.80e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.2 VOFF= -3.1) VON = -3.1 VOFF= -6.2) VON = -1.0 VOFF= 0.5) VON = 0.5 VOFF= -1.0) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 + - EBREAK 11 7 17 18 117.8 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 21 16 DBODY MWEAK MMED RBREAK 18 RVTEMP 19 VBAT + 8 22 RVTHRES IRF530N SABER Electrical Model REV 15 Jan 2000 template IRF530N n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 6.00e-13, cjo = 8.50e-10, tt = 6.30e-8, xti = 5.5, m = 0.54) d..model dbreakmod = () d..model dplcapmod = (cjo = 9.29e-10, is = 1e-30, m = 0.79) m..model mmedmod = (type=_n, vto = 3.21, kp = 5, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.60, kp = 37, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.77, kp = 0.09, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.2, voff = -3.1) DPLCAP sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3.1, voff = -6.2) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0) c.ca n12 n8 = 1.27e-9 c.cb n15 n14 = 1.27e-9 c.cin n6 n8 = 7.20e-10 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.53e-9 l.lsource n3 n7 = 4.35e-9 GATE 1 RLGATE CIN LGATE RSLC2 ISCL LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO 8 EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51 ESG + EVTEMP RGATE + 18 22 9 20 6 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 DBODY m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5.0e-7 res.rdbody n71 n5 = 6.2e-3, tc1 = 2.10e-3, tc2 = 2.0e-6 res.rdbreak n72 n5 = 5.6e-1, tc1 = 8.0e-4, tc2 = 3.0e-6 res.rdrain n50 n16 = 2.70e-2, tc1 = 1.20e-2, tc2 = 3.00e-5 res.rgate n9 n20 = 2.50 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 55.3 res.rlsource n3 n7 = 43.5 res.rslc1 n5 n51 = 1e-6, tc1 = 3.2e-3, tc2 = 3.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.77e-2, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 1.8e-6 res.rvthres n22 n8 = 1, tc1 = -2.2e-3, tc2 = -9.0e-6 spe.ebreak n11 n7 n17 n18 = 117.8 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/43.5))** 3.5)) } } S1A 12 13 8 S1B CA 13 + EGS 6 8 S2A 14 13 S2B - LSOURCE 7 RLSOURCE SOURCE 3 RSOURCE RBREAK 17 18 RVTEMP CB + EDS 5 8 14 IT 19 15 VBAT + - - 8 RVTHRES 22 8 IRF530N SPICE Thermal Model REV 15 Jan 2000 IRF530NT CTHERM1 th 6 1.40e-3 CTHERM2 6 5 5.55e-3 CTHERM3 5 4 5.65e-3 CTHERM4 4 3 6.10e-3 CTHERM5 3 2 9.80e-3 CTHERM6 2 tl 7.70e-2 RTHERM1 th 6 1.10e-2 RTHERM2 6 5 5.80e-2 RTHERM3 5 4 1.35e-1 RTHERM4 4 3 3.60e-1 RTHERM5 3 2 4.13e-1 RTHERM6 2 tl 4.30e-1 th JUNCTION RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model IRF530NT template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.40e-3 ctherm.ctherm2 6 5 = 5.55e-3 ctherm.ctherm3 5 4 = 5.65e-3 ctherm.ctherm4 4 3 = 6.10e-3 ctherm.ctherm5 3 2 = 9.80e-3 ctherm.ctherm6 2 tl = 7.70e-2 rtherm.rtherm1 th 6 = 1.10e-2 rtherm.rtherm2 6 5 = 5.80e-2 rtherm.rtherm3 5 4 = 1.35e-1 rtherm.rtherm4 4 3 = 3.60e-1 rtherm.rtherm5 3 2 = 4.13e-1 rtherm.rtherm6 2 tl = 4.30e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE 9 IRF530N TO-220AB 3 LEAD JEDEC TO-220AB PLASTIC PACKAGE A ØP Q H1 D E1 45o D1 TERM. 4 E A1 INCHES SYMBOL A A1 b b1 c D D1 E E1 e e1 MIN 0.170 0.048 0.030 0.045 0.014 0.590 0.395 MAX 0.180 0.052 0.034 0.055 0.019 0.610 0.160 0.410 0.030 0.100 TYP 0.200 BSC 0.235 0.100 0.530 0.130 0.149 0.102 0.255 0.110 0.550 0.150 0.153 0.112 MILLIMETERS MIN 4.32 1.22 0.77 1.15 0.36 14.99 10.04 MAX 4.57 1.32 0.86 1.39 0.48 15.49 4.06 10.41 0.76 2.54 TYP 5.08 BSC 5.97 2.54 13.47 3.31 3.79 2.60 6.47 2.79 13.97 3.81 3.88 2.84 NOTES 3, 4 2, 3 2, 3, 4 5 5 6 2 - L1 b1 b c L 60o 1 2 3 e e1 J1 H1 J1 L L1 ØP Q NOTES: 1. These dimensions are within allowable dimensions of Rev. J of JEDEC TO-220AB outline dated 3-24-87. 2. Lead dimension and finish uncontrolled in L1. 3. Lead dimension (without solder). 4. Add typically 0.002 inches (0.05mm) for solder coating. 5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D. 6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D. 7. Controlling dimension: Inch. 8. Revision 2 dated 7-97. All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 10
IRF530N 价格&库存

很抱歉,暂时无法提供与“IRF530N”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IRF530NPBF
  •  国内价格
  • 1+1.76639
  • 10+1.63839
  • 30+1.61279

库存:0

IRF530NSTRLPBF
  •  国内价格
  • 1+2.178
  • 10+1.998
  • 30+1.962
  • 100+1.854

库存:163