40V Precision Single Supply Rail-Rail Output Low Power Operational Amplifiers
ISL28108, ISL28208, ISL28408
The ISL28108, ISL28208 and ISL28408 are single, dual and quad low power precision amplifiers optimized for single supply applications. These devices feature a common mode input voltage range extending to 0.5V below the V- rail, a rail-to-rail differential input voltage range for use as a comparator, and rail-to-rail output voltage swing, which make them ideal for single supply applications where input operation at ground is important. Added features include low offset voltage, and low temperature drift making them the ideal choice for applications requiring high DC accuracy. The output stage is capable of driving large capacitive loads from rail to rail for excellent ADC driving performance. The devices can operate for single or dual supply from 3V (±1.5V) to 40V (±20V) and are fully characterized at ±5V and ±15V. The combination of precision, low power, and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts. Applications for these amplifiers include precision instrumentation, data acquisition, precision power supply control, and industrial control. The ISL28108 single is offered in 8 Ld TDFN, SOIC and MSOP packages. The ISL28208 dual amplifier is offered in 8 Ld TDFN, MSOP, and SOIC packages. The ISL28408 is offered in 14 Ld SOIC package. All devices are offered in standard pin configurations and operate over the extended temperature range to -40°C to +125°C.
Features
• Single or Dual Supply, Rail-to-Rail Output and Below Ground (V-) input capability • Rail-to-rail Input Differential Voltage Range for Comparator Applications • Single Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 40V • Low Current Consumption (VS = ±5V) . . . . . . . . . . . . . . 165µA • Low Noise Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 15.8nV/√Hz • Low Noise Current . . . . . . . . . . . . . . . . . . . . . . . . . . . 80fA/√Hz • Low Input Offset Voltage (ISL28108) . . . . . . . . . . . . . . 150µV • Superb Temperature Drift - Voltage Offset TC . . . . . . . . . . . . . . . . . . . . . . 0.1µV/°C, Typ • Low Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . -13nA Typ • Operating Temperature Range. . . . . . . . . . .-40°C to +125°C • No Phase Reversal
Applications
• Precision Instruments • Medical Instrumentation • Data Acquisition • Power Supply Control • Industrial Process Control
Related Literature
• AN1658, “ISL28208SOICEVAL2Z Evaluation Board User Guide”
RF LOAD RINRSENSE 10kΩ RIN+ 10kΩ RREF+ 100kΩ VREF IN+ IN100kΩ 500 +3V to 40V 400 VOUT VOS (µV) 300 200 100 0 -100 -200 -300 -400 -500 -16 -15.5 -15 -14.5 -14 13 13.5 14 14.5 15 -40°C +25°C VS = ±15V +125°C
V+ ISL28108 V-
+
GAIN = 10
SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER
INPUT COMMON MODE VOLTAGE (V)
FIGURE 1. TYPICAL APPLICATION CIRCUIT
FIGURE 2. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, VS = ±15V
November 1, 2011 FN6935.3
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners.
ISL28108, ISL28208, ISL28408 Ordering Information
PART NUMBER (Notes 1, 2, 3) ISL28108FBZ ISL28108FRTZ Coming soon ISL28108FUZ ISL28208FBZ ISL28208FRTZ Coming soon ISL28208FUZ ISL28408FBZ ISL28208SOICEVAL2Z NOTES: 1. Add “-T*” suffix for tape and reel. Please refer to Tech Brief TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pbfree products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28108, ISL28208, ISL28408. For more information on MSL please see Tech Brief TB363. 108Z 8108Z 28208 FBZ 208F 8208Z 28408 FBZ Evaluation Board PART MARKING 28108 FBZ TEMP. RANGE (°C) -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 PACKAGE (Pb-Free) 8 Ld SOIC 8 Ld TDFN 8 Ld MSOP 8 Ld SOIC 8 Ld TDFN 8 Ld MSOP 14 Ld SOIC M8.15E L8.3x3K M8.118B M8.15E L8.3x3K M8.118B M14.15 PKG. DWG. #
Pin Configurations
ISL28108 (8 LD TDFN) TOP VIEW
NC 1 -IN 2 +IN 3 V- 4 PAD -+ 8 NC 7 V+ 6 VOUT 5 NC NC -IN +IN V-
ISL28108 (8 LD MSOP, SOIC) TOP VIEW
1 2 3 4 -+ 8 7 6 5 NC V+ VOUT NC
ISL28208 (8 LD TDFN) TOP VIEW
VOUT_A -IN_A +IN_A V1 2 3 4
ISL28208 (8 LD MSOP, SOIC) TOP VIEW
8 V+ 7 VOUT_B
PAD -+ +-
VOUT _A -IN_A +IN_A V-
1 2 3 4 -+ +-
8 V+ 7 VOUT_B 6 -IN_B 5 +IN_B
6 -IN_B 5 +IN_B
ISL28408 (14 LD SOIC) TOP VIEW
VOUT_ A 1 -IN _ A 2 +IN _ A 3 V+ 4 A -+ D +14 V OUT_ D 13 - IN _D 12 +IN _D 11 V 10 +IN _ C -+ B +C 9 -IN _ C 8 V O UT_C
+IN _B 5 - IN _B 6 V OUT_B 7
2
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Pin Descriptions
ISL28108 (8 Ld SOIC, MSOP, TDFN) 3 4 2 7 6 1, 5, 8 PAD ISL28208 (8 Ld SOIC, TDFN) 3 5 4 2 6 8 1 7 PAD ISL28408 (14 Ld SOIC) 3 5 10 12 11 2 6 9 13 4 1 7 8 14 PIN NAME +IN +IN_A +IN_B +IN_C +IN_D V-IN -IN_A -IN_B -IN_C -IN_D V+ VOUT VOUT_A VOUT_B VOUT_C VOUT_D NC PAD No internal connection Thermal Pad - TDFN and QFN packages only. Connect thermal pad to ground or most negative potential. Circuit 3 Circuit 2 Positive power supply Amplifier output Circuit 3 Circuit 1 Negative power supply Amplifier inverting input EQUIVALENT CIRCUIT Circuit 1 DESCRIPTION Amplifier non-inverting input
V+ ININ+
V+ OUT VCIRCUIT 2
V+ CAPACITIVELY TRIGGERED ESD CLAMP VCIRCUIT 3
VCIRCUIT 1
3
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Table of Contents
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Specifications, VS ±15V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Electrical Specifications, VS ±5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Operating Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Input Stage Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Output Drive Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Output Phase Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Unused Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 ISL28108, ISL28208, ISL28408 SPICE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Characterization vs Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Package Outline Drawing, M8.15E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Package Outline Drawing, L8.3x3K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Package Outline Drawing, M8.118B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Package Outline Drawing, M14.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Absolute Maximum Ratings
Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42V Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V Min/Max Input Voltage . . . . . . . . . . . . . . . . . . .42V or V- - 0.5V to V+ + 0.5V Max/Min Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20mA Output Short-Circuit Duration (1 output at a time) . . . . . . . . . . . Indefinite ESD Tolerance (ISL28208, ISL28408) Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . . . 6kV Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . . 400V Charged Device Model (Tested per JESD22-C110D) . . . . . . . . . . . . . 2kV ESD Tolerance (ISL28108) Human Body Model (Tested per JESD22-A114F) . . . . . . . . . . . . . . .5.5kV Machine Model (Tested per JESD22-A115-C) . . . . . . . . . . . . . . . . . . 300V Charged Device Model (Tested per JESD22-C110D) . . . . . . . . . . . . . 2kV
Thermal Information
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 8 Ld SOIC Package (208, Notes 4, 7). . . . . . . 120 55 8 Ld SOIC Package (108, Notes 4, 7) . . . . . . . 120 60 8 Ld TDFN Package (208, Notes 5, 6) . . . . . . 47 6 8 Ld TDFN Package (108, Notes 5, 6) . . . . . . 45 3.5 8 Ld MSOP Package (208, Notes 4, 7). . . . . . 150 50 8 Ld MSOP Package (108, Notes 4, 7). . . . . . 165 57 14 Ld SOIC Package (408, Notes 4, 7). . . . . . 71 37 Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Ambient Operating Temperature Range . . . . . . . . . . . . . . -40°C to +125°C Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . . +150°C Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V (±1.5V) to 40V (±20V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech Brief TB379. 6. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside. 7. For θJC, the “case temp” location is taken at the package top center. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization.
MIN PARAMETER VOS DESCRIPTION Input Offset Voltage CONDITIONS ISL28208 SOIC, TDFN ISL28408 SOIC ISL28108 SOIC, TDFN
(Note 8)
-230 -330 -150 -270
TYP 25
MAX (Note 8) 230 330
UNIT µV µV µV µV µV/°C µV/°C
10
150 270
TCVOS
Input Offset Voltage Temperature Coefficient
ISL28208 SOIC -40°C to +125°C ISL28208 TDFN ISL28408 SOIC -40°C to +125°C ISL28108 SOIC, TDFN -40°C to +125°C
0.1 0.2
1.1 1.4
0.2 -300 -400 -43 -63 -13 5
1.2 300 400
µV/°C µV µV nA nA
ΔVOS
Input Offset Voltage Match (ISL28208 only) Input Bias Current
IB
TCIB
Input Bias Current Temperature Coefficient
0.07
nA/°C
5
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN PARAMETER IOS DESCRIPTION Input Offset Current CONDITIONS ISL28208 SOIC, TDFN
(Note 8)
-3 -4
TYP 0
MAX (Note 8) 3 4
UNIT nA nA nA nA dB dB dB dB dB
ISL28108 SOIC, TDFN
-4 -5
0
4 5
ISL28408 SOIC
CMRR Common-Mode Rejection Ratio VCM = V- -0.5V to V+ -1.8V VCM = V- -0.2V to V+ -1.8V
119 123 102
VCM = V- to V+ -1.8V
105 102
123 115 V+ - 1.8 V+ - 1.8 128 124 126
VCMIR
Common Mode Input Voltage Range Power Supply Rejection Ratio
Guaranteed by CMRR test
V- - 0.5 V-
V V dB dB dB dB
PSRR
VS = 3V to 40V, VCMIR = Valid Input Voltage
110 109
AVOL
Open-Loop Gain
VO = -13V to +13V, RL = 10kΩ to ground
117 100
VOL
Output Voltage Low, VOUT to VOutput Voltage High, V+ to VOUT Supply Current/Amplifier
RL = 10kΩ
52
85 145
mV mV mV mV µA µA mA mA
VOH
RL = 10kΩ
70
110 150
IS
RL = Open
185 270
250 350
ISC+ ISCVSUPPLY
Output Short Circuit Source Current Output Short Circuit Sink Current Supply Voltage Range
RL = 10Ω to VRL = 10Ω to V+ Guaranteed by PSRR 3
19 30 40
V
AC SPECIFICATIONS
GBWP enp-p en en en en in THD + N Gain Bandwidth Product Noise Voltage Noise Voltage Density Noise Voltage Density Noise Voltage Density Noise Voltage Density Noise Current Density ACL = 101, VO = 100mVP-P, RL = 2kΩ 0.1Hz to 10Hz; VS = +18V f = 10Hz; VS = +18V f = 100Hz; VS = +18V f = 1kHz; VS = +18V f = 10kHz; VS = +18V f = 10kHz; VS = +18V 1 .2 580 18 16 15.8 15.8 80 0.00042 MHz nVP-P nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA/√Hz %
Total Harmonic Distortion + Noise 1kHz, AV = 1, VO = 3.5VRMS, RL =10kΩ
TRANSIENT RESPONSE
SR Slew Rate, VOUT 20% to 80% AV = 1, RL = 2kΩ, VO = 10VP-P 0.45 V/µs
6
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications VS ±15V, VCM = 0, VO = 0V, RL = Open, TA= +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN PARAMETER tr, tf, Small Signal DESCRIPTION Rise Time, VOUT 10% to 90% Fall Time, VOUT 90% to 10% ts Settling Time to 0.01% 10V Step; 10% to VOUT CONDITIONS AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to VCM AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to VCM AV = -1, VOUT = 10VP-P, Rg = Rf =10k, RL = 2kΩ to VCM
(Note 8)
TYP 264 254 27
MAX (Note 8)
UNIT ns ns µs
Electrical Specifications
PARAMETER VOS
VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization.
MIN DESCRIPTION Input Offset Voltage CONDITIONS ISL28208 SOIC, TDFN ISL28408 SOIC ISL28108 SOIC, TDFN
(Note 8)
-230 -330 -150 -270
TYP 25
MAX (Note 8) 230 330
UNIT µV µV µV µV µV/°C µV/°C
10
150 270
TCVOS
Input Offset Voltage Temperature Coefficient
ISL28208 SOIC -40°C to +125°C ISL28208 TDFN ISL28408 SOIC -40°C to +125°C ISL28108 SOIC, TDFN -40°C to +125°C
0.1 0.2
1.1 1.4
0.2 -300 -400 -43 -63 -15 3
1.2 300 400
µV/°C µV µV nA nA
ΔVOS
Input Offset Voltage Match (ISL28208 only) Input Bias Current
IB
TCIB IOS
Input Bias Current Temperature Coefficient Input Offset Current
-40°C to +125°C ISL28208 SOIC, TDFN -3 -4 ISL28108 SOIC, TDFN -4 -5
-0.067 0 3 4 0 4 5 101 123 89
nA/°C nA nA nA nA dB dB dB dB dB dB dB V+ - 1.8 V+ - 1.8 V V dB dB
ISL28408 SOIC
CMRR Common-Mode Rejection Ratio VCM = V- -0.5V to V+ -1.8V VCM = V- -0.2V to V+ -1.8V VCM = V- to V+ -1.8V VCM = V- to V+ -1.8V ISL28408 SOIC VCMIR Common Mode Input Voltage Range Power Supply Rejection Ratio Guaranteed by CMRR test
105 100 105 97 V- - 0.5 V-
123 112 123 112
PSRR
VS = 3V to 10V, VCMIR = Valid Input Voltage
110 109
126 123
7
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Electrical Specifications
PARAMETER AVOL
VS ±5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)
MIN DESCRIPTION Open-Loop Gain CONDITIONS VO = -3V to +3V, RL = 10kΩ to ground
(Note 8)
117 99
TYP 124
MAX (Note 8)
UNIT dB dB
VOL
Output Voltage Low, VOUT to VOutput Voltage High, V+ to VOUT Supply Current/Amplifier
RL = 10kΩ
23
38 48
mV mV mV mV µA µA mA mA
VOH
RL = 10kΩ
30
65 70
IS
RL = Open
165 240
250 350
ISC+ ISCGBW enp-p en en en en in
Output Short Circuit Source Current RL = 10Ω to VOutput Short Circuit Sink Current RL = 10Ω to V+ ACL = 101, VO = 100mVP-P, RL = 2kΩ 0.1Hz to 10Hz f = 10Hz f = 100Hz f = 1kHz f = 10kHz f = 10kHz
14 22
AC SPECIFICATIONS
Gain Bandwidth Product Noise Voltage Noise Voltage Density Noise Voltage Density Noise Voltage Density Noise Voltage Density Noise Current Density 1.2 600 18 16 15.8 15.8 90 MHz nVP-P nV/√Hz nV/√Hz nV/√Hz nV/√Hz fA/√Hz
TRANSIENT RESPONSE
SR tr, tf, Small Signal Slew Rate, VOUT 20% to 80% Rise Time, VOUT 10% to 90% Fall Time, VOUT 90% to 10% ts Settling Time to 0.01% 4V Step; 10% to VOUT AV = 1, RL = 2kΩ, VO = 4VP-P AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to VCM AV = 1, VOUT = 100mVP-P, Rf = 0Ω, RL = 2kΩ to VCM AV = -1, VOUT = 4VP-P, Rg = Rf =10k, RL = 2kΩ to VCM 0.4 264 254 14.4 V/µs ns ns µs
NOTE: 8. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
8
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
400
NUMBER OF AMPLIFIERS
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified.
400
NUMBER OF AMPLIFIERS
350 300 250 200 150 100 50
-160
VS = ±15V
350 300 250 200 150 100 50
VS = ±5V
120
140
-140
-120
-100
-160
-140
-120
-100
100
120
140
160
VOS (µV)
VOS (µV)
FIGURE 3. ISL28408 SOIC INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V
FIGURE 4. ISL28408 SOIC INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V
300 VS = ±15V
NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS
300 VS = ±5V 250 200 150 100 50 0
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
250 200 150 100 50 0 VOS (µV)
FIGURE 5. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V
FIGURE 6. ISL28208 INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V
200 VS = ±15V
NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS
200 VS = ±5V 150
150
100
100
50
50
0
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
0 VOS (µV)
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
FIGURE 7. ISL28108 SOIC INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V
FIGURE 8. ISL28108 SOIC INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V
9
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
VOS (µV)
VOS (µV)
100
FN6935.3 November 1, 2011
160
-20
20
-40
-40
-20
-60
-80
-80
-60
20
40
60
80
60
40
80
0
0
0
0
ISL28108, ISL28208, ISL28408 Typical Performance Curves
25 VS = ±15V
NUMBER OF AMPLIFIERS
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
25
NUMBER OF AMPLIFIERS
VS = ±5V
20 15 10 5 0
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
20 15 10 5 0
VOS (µV)
FIGURE 9. ISL28108 TDFN INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±15V
FIGURE 10. ISL28108 TDFN INPUT OFFSET VOLTAGE DISTRIBUTION, VS = ±5V
25 VS = ±15V
NUMBER OF AMPLIFIERS
30 VS = ±5V
NUMBER OF AMPLIFIERS
20 15 10 5 0
25 20 15 10 5 0
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
FIGURE 11. ISL28408 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±15V
FIGURE 12. ISL28408 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±5V
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
FIGURE 13. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±15V
FIGURE 14. ISL28208 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±5V
10
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
24 22 20 18 16 14 12 10 8 6 4 2 0
VS = ±15V
NUMBER OF AMPLIFIERS
24 22 20 18 16 14 12 10 8 6 4 2 0
NUMBER OF AMPLIFIERS
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-110 -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110
VOS (µV)
TCVOS (µV/C)
VS = ±5V
TCVOS (µV/C)
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
24 22 20 18 16 14 12 10 8 6 4 2 0 VS = ±15V
NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
24 22 20 18 16 14 12 10 8 6 4 2 0 VS = ±5V
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
FIGURE 15. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS, VS = ±15V
FIGURE 16. ISL28208 TDFN TCVOS vs NUMBER OF AMPLIFIERS, VS = ±5V
35
NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS
30 25 20 15 10 5 0
VS = ±15V
30 VS = ±5V 25 20 15 10 5 0
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
FIGURE 17. ISL28108 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±15V
FIGURE 18. ISL28108 SOIC TCVOS vs NUMBER OF AMPLIFIERS, VS = ±5V
14 VS = ±15V
NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS
14 VS = ±5V 12 10 8 6 4 2 0
12 10 8 6 4 2 0
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
FIGURE 19. ISL28108 TDFN TCVOS vs NUMBER OF AMPLIFIERS, VS = ±15V
FIGURE 20. ISL28108 TDFN TCVOS vs NUMBER OF AMPLIFIERS, VS = ±5V
11
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
TCVOS (µV/C)
TCVOS (µV/C)
TCVOS (µV/C)
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
70 60 50 40 30
VOS (µV)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
0
VS = ±2.25V -5 VS = ±5V IBIAS (nA) -10 -15 -20 -25 -40
VS = ±21V VS = ± 15V VS = ±5V
20 10 0 -10 -20 -30 -40 -50 -40 -20 0 20 40 60 80 100 120 VS = ±20V VS = ±15V
VS = ±2.25V -20 0
VS = ±1.5V 100 120
TEMPERATURE (°C)
20 40 60 80 TEMPERATURE (°C)
FIGURE 21. VOS vs TEMPERATURE
FIGURE 22. IBIAS vs TEMPERATURE vs SUPPLY
500 400 300 200 VOS (µV) 100 0 -100 -200 -300 -400 -500 -16
VS = ±15V +125°C VOS (µV)
500 400 300 200 100 0 -100 -200 -300 -400 -500 +25°C
VS = ±5V +125°C
-40°C
-40°C
+25°C
-15.5
-15
-14.5 -14 13
13.5
14
14.5
15
-6
-5.5
INPUT COMMON MODE VOLTAGE (V)
3.5 4 4.5 -5 -4.5 -4 3 INPUT COMMON MODE VOLTAGE (V)
5
FIGURE 23. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, VS = ±15V
FIGURE 24. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, VS = ±5V
130 125 120
VS = ±15V
130 CHANNEL-B 125 120
VS = ±5V
CHANNEL-B
CMRR (dB)
CMRR (dB)
CHANNEL-A 115 110 105 100 -40
CHANNEL-A 115 110 105 100 -40
-20
0
20 40 60 80 TEMPERATURE (°C)
100
120
-20
0
20 40 60 80 TEMPERATURE (°C)
100
120
FIGURE 25. CMRR vs TEMPERATURE, VS = ±15V
FIGURE 26. CMRR vs TEMPERATURE, V S = ±5V
12
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
150 140 130 120 110 100 90 80 70 60 50 40 30 VS = ±15V 20 SIMULATION 10 0 1m 0.01 0.1 1
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
120 110 100 90
PSRR (dB)
80 70 60 50 VS = ±5V, ±15V 40 AV = 1 30 CL = 4pF 20 RL = 10k 10 VSOURCE = 1VP-P PSRR-
PSRR+
CMRR (dB)
10 100 1k 10k 100k 1M 10M 100M 1G FREQUENCY (Hz)
0 10
100
1k 10k 100k FREQUENCY (Hz)
1M
10M
FIGURE 27. CMRR vs FREQUENCY, VS = ±15V
FIGURE 28. PSRR vs FREQUENCY, VS = ±5V & ±15V
140 VS = ±15V 135
PSRR (dB) PSRR (dB)
140 VS = ±5V 135
130
130
125
125
120 -40
-20
0
20
40
60
80
100
120
120 -40
-20
0
TEMPERATURE (°C)
20 40 60 80 TEMPERATURE (°C)
100
120
FIGURE 29. PSRR (DC) vs TEMPERATURE, VS = ±15V
FIGURE 30. PSRR (DC) vs TEMPERATURE, V S = ±5V
1
VS = ±5V and ±15V 125°C
1
VS = ±5V and ±15V 125°C
0.1
V+ - VOH (V)
VOL - V- (V)
+25°C
0.1 +25°C
0.01 -40°C
0.01 -40°C 0.001 0.001
0.001 0.001
0.01
0.1 1 LOAD CURRENT (mA)
10
0.01
0.1 1 LOAD CURRENT (mA)
10
FIGURE 31. OUTPUT OVERHEAD VOLTAGE HIGH vs LOAD CURRENT, VS = ±5V and ±15V
FIGURE 32. OUTPUT OVERHEAD VOLTAGE LOW vs LOAD CURRENT, VS = ±5V and ±15V
13
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
15 14
VOH(V) VOH(V)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
5 4 +75°C
13 12 11 10 -10 -40°C 0°C VS = ±15V AV = 2 RF = RG = 100k VIN = ±7.5V-DC 0 2 4 6 8 +75°C
125°C
3 2 1 -1 -40°C 0°C +25°C
125°C
VOL(V)
-12 -13 -14 -15
VOL(V)
-11
+25°C
-2 VS = ±5V A =2 -3 RV = R = 100k F G -4 VIN = ±2.5V-DC -5 0 2 4 6 8
10
12
14
16
18
20
22
24
10
12
14
16
18
20
22
24
I-FORCE (mA)
I-FORCE (mA)
FIGURE 33. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT VS = ±15V
FIGURE 34. ISL28208 OUTPUT VOLTAGE SWING vs LOAD CURRENT VS = ±5V
100
VS = ±15V 90 R = 10k L 80 70 60 50 40 30 20 10 0 -40 -20 0
100 VOH (V+ TO VOUT)
VOH AND VOL (mV)
VS = ±5V 90 R = 10k L 80 70 60 50 40 30 20 10 0 -40
VOH (V+ TO VOUT)
VOH AND VOL (mV)
VOL (VOUT TO V-)
VOL (VOUT TO V-)
20 40 60 80 TEMPERATURE (°C)
100
120
-20
0
20 40 60 80 TEMPERATURE (°C)
100
120
FIGURE 35. VOUT HIGH AND LOW vs TEMPERATURE, VS = ±15V, RL = 10k
FIGURE 36. VOUT HIGH AND LOW vs TEMPERATURE, VS = ±5V, RL = 10k
50
VS = ±15V 45 R = 10k L 40 35
Isc (mA)
50
ISC-SINK
Isc (mA)
VS = ±5V 45 R = 10k L 40 35 30 25 20 15 10 5 80 100 120 0 -40 -20 0 ISC-SOURCE 20 40 60 80 100 120 ISC-SINK
30 25 20 15 10 5 0 -40 -20 0 ISC-SOURCE 20 40 60
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 37. SHORT CIRCUIT CURRENT vs TEMPERATURE, VS = ±15V
FIGURE 38. SHORT CIRCUIT CURRENT vs TEMPERATURE, VS = ±5V
14
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 1k VS = ±15V AV = 1
INPUT AND OUTPUT (V)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 OUTPUT VS = ±5V VIN = ±5.9V INPUT
VOUT (VP-P)
10k 100k FREQUENCY (Hz)
1M
0
2
4
6
8 10 12 TIME (ms)
14
16
18
20
FIGURE 39. MAX OUTPUT VOLTAGE vs FREQUENCY
FIGURE 40. NO PHASE REVERSAL
140 VS = ± 15V 130
AVOL (dB) GAIN (dB), PHASE (°)
120
VS = ±5V
110
100 -60
-40
-20
0
20 40 60 80 100 120 140 160 TEMPERATURE (°C)
200 180 160 140 120 100 80 60 40 20 0 GAIN -20 VS = ±15V -40 -60 RL = 1MΩ -80 SIMULATION -100 1 10 100 0.1
PHASE
1k 10k 100k 1M FREQUENCY (Hz)
10M 100M 1G
FIGURE 41. AVOL vs TEMPERATURE
FIGURE 42. OPEN-LOOP GAIN, PHASE vs FREQUENCY, V S = ±15V
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 VSUPPLY (V)
70 60 50
GAIN (dB)
ACL = 1001
RF = 10kΩ, RG = 10Ω RF = 10kΩ, RG = 100Ω
ISUPPLY PER AMPLIFIER (µA)
40 30 20 10 0
ACL = 101
ACL = 10 RF = 10kΩ, RG = 1.1kΩ ACL = 1 RF = 0, R G = ∞ 1k 10k 100k
VS = ±5V, ±15V CL = 4pF R L = 2k VOUT = 100mVP-P
-10 100
1M
10M
FREQUENCY (Hz)
FIGURE 43. SUPPLY CURRENT vs SUPPLY VOLTAGE
FIGURE 44. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
15
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
1 0 NORMALIZED GAIN (dB) -1 -2 -3 -4 -5 -6 VS = ±15V -7 CL = 4pF AV = +1 -8 VOUT = 100mVP-P -9 1k 100 RL = OPEN, 100k, 10k RL = 1k RL = 499 RL = 100 RL = 49.9 10k 100k 1M 10M NORMALIZED GAIN (dB)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
1 0 -1 -2 -3 -4 -5 -6 VS = ±5V -7 CL = 4pF AV = +1 -8 VOUT = 100mVp-p -9 1k 100 RL = OPEN, 100k, 10k RL = 1 k RL = 499 RL = 100 RL = 49.9 10k 100k 1M 10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 45. GAIN vs FREQUENCY vs RL, VS = ±15V
FIGURE 46. GAIN vs FREQUENCY vs RL, VS = ±5V
1 0 NORMALIZED GAIN (dB) -2 -3 -4 -5 -6 -7 -8 -9 100 VS = ±5V CL = 4pF AV = +1 RL = INF 1k VOUT = 10mVP-P VOUT = 50mVP-P VOUT = 100mVP-P VOUT = 500mVP-P VOUT = 1VP-P 10k 100k 1M 10M FREQUENCY (Hz) NORMALIZED GAIN (dB) -1
1 0 -1 -2 -3 -4 -5 -6 CL = 4pF R = 10k -7 L AV = +1 -8 VOUT = 100mVP-P -9 100 1k VS = ±2.5V VS = ±5V VS = ±15V VS = ±20V
10k 100k FREQUENCY (Hz)
1M
10M
FIGURE 47. GAIN vs FREQUENCY vs OUTPUT VOLTAGE
FIGURE 48. GAIN vs FREQUENCY vs SUPPLY VOLTAGE
100 VS = ±15V 10 G = 100
ZOUT (Ω)
100 VS = ±5V G = 10 10 G = 100
ZOUT (Ω)
G = 10
1
1
0.10
G=1
0.10
G=1
0.01
1
10
100
1k 10k 100k FREQUENCY (Hz)
1M
10M
0.01 1
10
100
1k 10k 100k FREQUENCY (Hz)
1M
10M
FIGURE 49. OUTPUT IMPEDANCE vs FREQUENCY, VS = ±15V
FIGURE 50. OUTPUT IMPEDANCE vs FREQUENCY, V S = ±5V
16
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
100
INPUT NOISE VOLTAGE (nV/√Hz)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
100
INPUT NOISE CURRENT (pA/√Hz)
100
INPUT NOISE VOLTAGE (nV/√Hz)
100
INPUT NOISE CURRENT (pA/√Hz) OUTPUT (V)
VS = ±18V 10 INPUT NOISE VOLTAGE 1 INPUT NOISE CURRENT 0.1 0.1 1 10
VS = ±5V 10 10
INPUT NOISE VOLTAGE
1
INPUT NOISE CURRENT
1
0.1
0.1
0.01 0.1
1
10
100
1k
10k
0.01 100k
0.01
0.1
1
10
FREQUENCY (Hz)
100 1k FREQUENCY (Hz)
10k
0.01 100k
FIGURE 51. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs FREQUENCY, VS = ±18V
FIGURE 52. INPUT NOISE VOLTAGE (en) AND CURRENT (in) vs FREQUENCY, VS = ±5V
1000
INPUT NOISE VOLTAGE (nV)
1000
INPUT NOISE VOLTAGE (nV)
800 600 400 200 0 -200 -400 -600 -800 -1000 0
VS = ±18V AV = 10k
800 600 400 200 0 -200 -400 -600 -800 -1000 0
VS = ±5V AV = 10k
1
2
3
4
5 6 TIME (s)
7
8
9
10
1
2
3
4
5 6 TIME (s)
7
8
9
10
FIGURE 53. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±18V
FIGURE 54. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz, VS = ±5V
160 140
CROSSTALK (dB)
120 100 80 60 40 20 0 10 100 RL_TRANSMIT = 2k RL_RECEIVE = 10k 1k 10k 100k FREQUENCY (Hz) RL_TRANSMIT = ∞ RL_RECEIVE = 10k
VS = ±15V CL = 4pF VTX = 1VP-P
INPUT (mV)
200
INPUT
160
VS = ±15V AV = 100 RL = 10k VIN = 100mVP-P OVERDRIVE = 1V
20
16
120
OUTPUT
12
80 40
8 4
1M
10M
0
0
20
40
60
80 100 120 TIME (µs)
140
160
180
0 200
FIGURE 55. ISL28208 CHANNEL SEPARATION vs FREQUENCY, VS = ±5V, ±15V
FIGURE 56. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±15V
17
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Typical Performance Curves
0 -40
INPUT (mV)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
0 -4 -8
OUTPUT (V) INPUT (mV)
60 50 40 30 20 10 0 OUTPUT INPUT
-80 -120 -160 INPUT -200 0 20 40 60 80 100 120 TIME (µs) OUTPUT
3 2 1 0 200
-12 VS = ±15V AV = 100 RL = 10k -16 VIN = 100mVP-P OVERDRIVE = 1V -20 140 160 180 200
0
20
40
60
80 100 120 TIME (µs)
140
160
180
FIGURE 57. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±15V
FIGURE 58. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±5V
0 -10 -20 OUTPUT -30 -40 INPUT -50 -60
0 -1
OVERSHOOT (%)
60 50 40
VS = ±15V VOUT = 100mVP-P
OUTPUT (V)
INPUT (mV)
-2 -3 -4 VS = ±5V AV = 100 RL = 10k -5 VIN = 50mVP-P OVERDRIVE = 1V -6 140 160 180 200
AV = -1 30 20 10 0 0.001 AV = 1 AV = 10
0
20
40
60
80 100 120 TIME (µs)
0.010
0.100
1
10
100
LOAD CAPACITANCE (nF)
FIGURE 59. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±5V
FIGURE 60. OVERSHOOT vs CAPACITIVE LOAD, VS = ±15V
60 50
OVERSHOOT (%)
VS = ±5V VOUT = 100mVP-P
6
40 30 20 10 0 0.001 AV = -1 AV = 10
VOUT (V)
VS = ±15V AV = 1 4 R = 2k L CL = 4pF 2 0 -2 -4
AV = 1
0.010
0.100
1
10
100
-6
0
100
LOAD CAPACITANCE (nF)
200 TIME (µs)
300
400
FIGURE 61. OVERSHOOT vs CAPACITIVE LOAD, VS = ±5V
FIGURE 62. LARGE SIGNAL 10V STEP RESPONSE, VS = ±15V
18
FN6935.3 November 1, 2011
OUTPUT (V)
6 VS = ±5V AV = 100 5 RL = 10k VIN = 50mVP-P OVERDRIVE = 1V 4
ISL28108, ISL28208, ISL28408 Typical Performance Curves
2.4 2.0 VS = ±5V AV = 1 1.6 RL = 2 k 1.2 CL = 4pF 0.8
VOUT (V)
VS = ±15V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
100 80 60 40
VOUT (mV)
0.4 0 -0.4 -0.8 -1.2 -1.6 -2.0 -2.4
20 0 -20 -40 -60 -80
VS = ±15V AND VS = ±5V AV = 1 R L = 2k CL = 4pF
0
100
200 TIME (µs)
300
400
-100
0
0.5
1.0
1.5
2.0 2.5 TIME (µs)
3.0
3.5
4.0
FIGURE 63. LARGE SIGNAL 4V STEP RESPONSE, VS = ±5V
FIGURE 64. SMALL SIGNAL TRANSIENT RESPONSE VS = ±5V, ±15V
19
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Applications Information
Functional Description
The ISL28108, ISL28208, and ISL28408 are single, dual and quad, 1.2MHz, single supply rail-to-rail output amplifiers with a common mode input voltage range extending to a range of 0.5V below the V- rail. Their input stages are optimized for precision sensing of ground referenced signals in low voltage, single supply applications. The input stage has the capability of handling large input differential voltages without phase inversion making them suitable for high voltage comparator applications. Their bipolar design features high open loop gain and excellent DC input and output temperature stability. These op amps feature low quiescent current of 165µA, and a maximum temperature drift ranging from 1.1µV/°C for the ISL28208 and ISL28408 in the SOIC package to 1.4µV/°C for the ISL28208 in the TDFN package and the ISL28408 in the SOIC package (see Figures 11 through 20. All devices are fabricated in a new precision 40V complementary bipolar DI process and immune from latch-up.
VINVIN+ RINRIN+ + V+ RF
RL
RG
V-
FIGURE 65. INPUT ESD DIODE CURRENT LIMITING
Output Drive Capability
The bipolar rail-to-rail output stage features low saturation levels that enable an output voltage swing to less than 10mV when the total output load (including feedback resistance) is held below 50µA (Figures 31 and 32). With ±15V supplies this can be achieved by using feedback resistor values >300kΩ. The low input bias and offset currents (-43nA and ±3nA +25°C max respectively) minimize DC offset errors at these high resistance values. For example, a balanced 4 resistor gain circuit (Figure 65) with 1MΩ feedback resistors (RF, RG) generates a worst case input offset error of only ±3mV. Furthermore, the low noise current reduces the added noise associated with high feedback resistance. The output stage is internally current limited. Output current limit over-temperature is shown in Figures 37 and 38. The amplifiers can withstand a short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only one amplifier at a time for the dual op amp. Continuous operation under these conditions may degrade long-term reliability. The amplifiers perform well driving capacitive loads (Figures 60 and 61). The unity gain, voltage follower (buffer) configuration provides the highest bandwidth, but is also the most sensitive to ringing produced by load capacitance found in BNC cables. Unity gain overshoot is limited to 30% at capacitance values to 0.33nF. At gains of 10 and higher, the device is capable of driving more than 10nF without significant overshoot.
Operating Voltage Range
The devices are designed to operate over the 3V (±1.5V) to 40V (±20V) range and are fully characterized at ±5V and ±15V. Both DC and AC performance remain virtually unchanged over the ±5V to ±15V operating voltage range. Parameter variation with operating voltage is shown in the “Typical Performance Curves” beginning on page 9.
Input Stage Performance
The PNP input stage has a common mode input range extending up to 0.5V below ground at +25°C (see Figures 23 and 24). Full amplifier performance is guaranteed down to ground (V-) over the 40°C to +125°C temperature range. For common mode voltages down to -0.5V the amplifiers are fully functional, but performance degrades slightly over the full temperature range. This feature provides excellent CMRR, AC performance and DC accuracy when amplifying low level ground referenced signals. The input stage has a maximum input differential voltage equal to a diode drop greater than the supply voltage (max 42V) and does not contain the back-to-back input protection diodes found on many similar amplifiers. This feature enables the device to function as a precision comparator by maintaining very high input impedance for high voltage differential input comparator voltages. The high differential input impedance also enables the device to operate reliably in large signal pulse applications without the need for anti-parallel clamp diodes required on MOSFET and most bipolar input stage op amps. Thus, input signal distortion caused by nonlinear clamps under high slew rate conditions are avoided. In applications where one or both amplifier input terminals are at risk of exposure to voltages beyond the supply rails, current limiting resistors may be needed at each input terminal (see Figure 65 RIN+, RIN-) to limit current through the power supply ESD diodes to 20mA.
Output Phase Reversal
Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. These devices are immune to output phase reversal, out to 0.5V beyond the rail (VABS MAX) limit (see Figure 40).
20
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Unused Channels
If the application requires only one channel, the user must configure any unused channel to prevent it from oscillating. Unused channels can oscillate if the input and output pins are floating. This will result in higher-than-expected supply currents and possible noise injection into the channel being used. The proper way to prevent oscillation is to short the output to the inverting input, and ground the positive input (Figure 66).
ISL28108, ISL28208, ISL28408 SPICE Model
Figure 67 shows the SPICE model schematic and Figure 68 shows the net list for the SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise voltage, Slew Rate, CMRR, Gain and Phase. The DC parameters are IOS, total supply current and output voltage swing. The model uses typical parameters given in the “Electrical Specifications” Table beginning on page 5. The AVOL is adjusted for 122dB with the dominant pole at 1Hz. The CMRR is set 128dB, f = 6kHz. The input stage models the actual device to present an accurate AC representation. The model is configured for ambient temperature of +25°C. Figures 69 through 83 show the characterization vs simulation results for the Noise Voltage, Open Loop Gain Phase, Closed Loop Gain vs Frequency, Gain vs Frequency vs RL, CMRR, Large Signal 10V Step Response, Small Signal 0.05V Step and Output Voltage Swing ±15V supplies.
+
FIGURE 66. PREVENTING OSCILLATIONS IN UNUSED CHANNELS
Power Dissipation
It is possible to exceed the +150°C maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:
T JMAX = T MAX + θ JA xPD MAXTOTAL (EQ. 1)
LICENSE STATEMENT
The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as “Licensee”, a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted. The Licensee may not sell, loan, rent, or license the macromodel, in whole, in part, or in modified form, to anyone outside the Licensee’s company. The Licensee may modify the macromodel to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only. This macro-model is provided “AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.” In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.
where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) • PDMAX for each amplifier can be calculated using Equation 2:
V OUTMAX PD MAX = V S × I qMAX + ( V S - V OUTMAX ) × -----------------------RL (EQ. 2)
where: • TMAX = Maximum ambient temperature • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Total supply voltage • IqMAX = Maximum quiescent supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance
21
FN6935.3 November 1, 2011
V++ 12e-6 I2 6E-6 Vin0.1 7 V7 DN 1 D13 DN D14 R1 5e11 0 R2 5 CinDif 1.21e-12 PNP_LATERAL Q7 9 D1 DBREAK Q6 I3 6E-6 DX I1 D3 G1 + R5 13 GAIN = 0.477 V1 14 EOS ++ -E GAIN = 1 -6.76 V2 Vc Vmid
V++
1
-6.74 10 PNP_LATERAL 12
Q8 PNP_input 8 R3 6250
Q9 D2 DBREAK PNP_input 11 R4 6 V--
+ + -
Vin+ GAIN = 0.3 Cin2 4.19e-12 Cin1 4.19e-12
GAIN = 0.477 DX D4 V--
Input Stage
1st Gain Stage
0 DX D5 16 C1 R7 2.31e-11 7.62e9
V+ E2 ++ -GAIN = 1
V++ R19 R13 3.183e3 3.183e3 G15 G9 + + GAIN = 314.15e-6 GAIN = 314.15e-6 C5 10e-12 28 ISY 185e-6 23 DX D10 DX
Vmid GAIN = 261.74e-6 -6.74 V3
G3 + -
GAIN = 12.5e-3 24 V5 -0.4 26 27
D7 C3 DX 10e-12
Vg Vmid
Vc
C6 10e-12
D8 DX
-6.76 G4 + Vmid
V4 17
E4 ++ -GAIN = 0.5 C2 2.31e-11 R8 7.62e9 G6 GAIN = 0.6 + -
25
V6 -0.4 G12 + -
R10 1e-3 20 G8 L2 1.59E-08 GAIN = 0.6 V-+ -
R12 1e-3 22
G16 + -
G10 + -
C4 10e-12 DY
GAIN = 261.74e-6 DX
GAIN = 12.5e-3
GAIN = 12.5e-3
V-VE3 ++ -GAIN = 1 Output Stage Correction Current Sources
2nd Gain Stage
Mid Supply ref V
Common Mode Gain Stage with Zero 0
FIGURE 67. SPICE MODEL SCHEMATIC
+ -
GAIN = 314.15e-6 GAIN = 314.15e-6 L4 R14 1.59E-08 R20 3.183e3 3.183e3
G11 + D9 GAIN = 12.5e-3
DY
D12
G14
+ -
L1 L3 1.59E-08 1.59E-08 G5 G7 + + 18 21 GAIN = 0.6 R9 GAIN = 0.6 1e-3 R11 1e-3 19
+ -
22
FN6935.3 November 1, 2011
0
1150
2
IOS 3e-9
ISL28108, ISL28208, ISL28408
6250
15 G2
R6
1
V++ D11 G13 R15 80
VOUT
R16 80
ISL28108, ISL28208, ISL28408
*ISL28108_208 Macromodel - covers following *products *ISL28108 *ISL28208 *ISL28408 * *Revision History: * Revision A, LaFontaine March 5th 2011 * Model for Noise, supply currents, CMRR *128dB f=6kHz ,AVOL 122dB f=1Hz * SR = 0.45V/us, GBWP 1.2MHz. *Copyright 2011 by Intersil Corporation *Refer to data sheet "LICENSE STATEMENT" *Use of this model indicates your acceptance *with the terms and provisions in the License *Statement. * *Intended use: *This Pspice Macromodel is intended to give *typical DC and AC performance characteristics *under a wide range of external circuit *configurations using compatible simulation *platforms – such as iSim PE. * *Device performance features supported by this *model *Typical, room temp., nominal power supply *voltages used to produce the following *characteristics: *Open and closed loop I/O impedances, *Open loop gain and phase, *Closed loop bandwidth and frequency *response, *Loading effects on closed loop frequency *response, *Input noise terms including 1/f effects, *Slew rate, *Input and Output Headroom limits to I/O *voltage swing, *Supply current at nominal specified supply *voltages. * *Device performance features NOT supported *by this model: *Harmonic distortion effects, *Output current limiting (current will limit at *40mA), *Disable operation (if any), *Thermal effects and/or over temperature *parameter variation, *Limited performance variation vs. supply *voltage is modeled, *Part to part performance variation due to *normal process parameter spread, *Any performance difference arising from *different packaging source, *Load current reflected into the power supply *current. * * Connections: +input * | -input * | | +Vsupply * | | | -Vsupply * | | | | output * |||| .subckt ISL28108_208 Vin+ Vin-V+ V- VOUT * source ISL28118_218_subckt_check_0 * *Voltage Noise E_En VIN+ 6 2 0 0.3 D_D13 1 2 DN D_D14 1 2 DN V_V7 1 0 0.1 R_R17 2 0 1150 * *Input Stage Q_Q6 11 10 9 PNP_input Q_Q7 8 7 9 PNP_input Q_Q8 V-- VIN- 7 PNP_LATERAL Q_Q9 V-- 12 10 PNP_LATERAL I_I1 V++ 9 DC 12e-6 I_I2 V++ 7 DC 6E-6 I_I3 V++ 10 DC 6E-6 I_IOS 6 VIN- DC 3e-9 *D_D1 7 10 DBREAK *D_D2 10 7 DBREAK R_R1 5 6 5e11 R_R2 VIN- 5 5e11 R_R3 V-- 8 6250 R_R4 V-- 11 6250 C_Cin1 V-- VIN- 4.19e-12 C_Cin2 V-- 6 4.19e-12 C_CinDif 6 VIN- 1.21E-12 * *1st Gain Stage G_G1 V++ 14 8 11 0.4779867 G_G2 V-- 14 8 11 0.4779867 V_V1 13 14 -6.74 V_V2 14 15 -6.76 D_D3 13 V++ DX D_D4 V-- 15 DX R_R5 14 V++ 1 R_R6 V-- 14 1 * *2nd Gain Stage G_G3 V++ VG 14 VMID 261.748e-6 G_G4 V-- VG 14 VMID 261.748e-6 V_V3 16 VG -6.74 V_V4 VG 17 -6.76 D_D5 16 V++ DX D_D6 V-- 17 DX R_R7 VG V++ 7.62283e9 R_R8 V-- VG 7.62283e9 C_C1 VG V++ 2.31e-11 C_C2 V-- VG 2.31e-11 * *Mid supply Ref E_E2 V++ 0 V+ 0 1 E_E3 V-- 0 V- 0 1 E_E4 VMID V-- V++ V-- 0.5 I_ISY V+ V- DC 185E-6 * *Common Mode Gain Stage with Zero G_G5 V++ 19 5 VMID 0.6 G_G6 V-- 19 5 VMID 0.6 G_G7 V++ VC 19 VMID 0.6 G_G8 V-- VC 19 VMID 0.6 E_EOS 12 6 VC VMID 1 L_L1 18 V++ 1.59159E-08 L_L2 20 V-- 1.59159E-08 L_L3 21 V++ 1.59159E-08 L_L4 22 V-- 1.59159E-08 R_R9 19 18 1e-3 R_R10 20 19 1e-3 R_R11 VC 21 1e-3 R_R12 22 VC 1e-3 * *Pole Satge G_G15 V++ 28 VG VMID 314.15e-6 G_G16 V-- 28 VG VMID 314.15e-6 R_R19 28 V++ 3.18319e3 R_R20 V-- 28 3.18319e3 C_C5 28 V++ 10e-12 C_C6 V-- 28 10e-12 * G_G9 V++ 23 28 VMID 314.15e-6 G_G10 V-- 23 28 VMID 314.15e-6 R_R13 23 V++ 3.18319e3 R_R14 V-- 23 3.18319e3 C_C3 23 V++ 10e-12 C_C4 V-- 23 10e-12 * *Output Stage with Correction Current Sources G_G11 26 V-- VOUT 23 12.5e-3 G_G12 27 V-- 23 VOUT 12.5e-3 G_G13 VOUT V++ V++ 23 12.5e-3 G_G14 V-- VOUT 23 V-- 12.5e-3 D_D7 23 24 DX D_D8 25 23 DX D_D9 V-- 26 DY D_D10 V++ 26 DX D_D11 V++ 27 DX D_D12 V-- 27 DY V_V5 24 VOUT -0.4 V_V6 VOUT 25 -0.4 R_R15 VOUT V++ 80 R_R16 V-- VOUT 80 .model PNP_LATERAL pnp(is=1e-016 bf=250 va=80 + ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1) .model PNP_input pnp(is=1e-016 bf=100 va=80 + ik=0.138 rb=0.01 re=0.101 rc=180 kf=0 af=1) .model DBREAK D(bv=43 rs=1) .model DN D(KF=6.69e-9 AF=1) .MODEL DX D(IS=1E-12 Rs=0.1) .MODEL DY D(IS=1E-15 BV=50 Rs=1) .ends ISL28108_208
FIGURE 68. SPICE NET LIST
23
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Characterization vs Simulation Results
100
INPUT NOISE VOLTAGE (nV/√Hz) INPUT NOISE VOLTAGE (nV/√Hz)
100
10 0.1
1
10
100
1k
10k
100k
10 0.1
1
10
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 69. CHARACTERIZED INPUT NOISE VOLTAGE
FIGURE 70. SIMULATED INPUT NOISE VOLTAGE
200 180 160 140 120 100 80 60 40 20 0 GAIN -20 VS = ±15V -40 -60 RL = 1MΩ -80 SIMULATION -100 0.1 1 10 100
200 PHASE
GAIN (dB), PHASE (°)
150 100 50 0 GAIN
PHASE
GAIN (dB), PHASE (°)
1k 10k 100k 1M FREQUENCY (Hz)
10M 100M 1G
V = ±15V -50 RS = 1MΩ L SIMULATION -100 1 10 100 0.1
1k 10k 100k 1M FREQUENCY (Hz)
10M 100M 1G
FIGURE 71. CHARACTERIZED OPEN-LOOP GAIN, PHASE vs FREQUENCY
FIGURE 72. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY
70 60 50
GAIN (dB)
ACL = 1001
RF = 10kΩ, RG = 10Ω RF = 10kΩ, RG = 100Ω
70 60 50
GAIN (dB)
RF = 10kΩ, RG = 10Ω RF = 10kΩ, RG = 100Ω VS = ±5V, ±15V CL = 4pF R L = 2k VOUT = 100mVP-P
40 30 20 10 0
ACL = 101
ACL = 10 RF = 10kΩ, RG = 1.1kΩ ACL = 1 RF = 0, R G = ∞ 1k 10k 100k
VS = ±5V, ±15V CL = 4pF RL = 2 k VOUT = 100mVP-P
40 30 20 10 0 RF = 10kΩ, RG = 1.1kΩ
-10 100
1M
10M
-10 100
RF = 0, R G = ∞ 1k 10k 100k 1M 10M FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 73. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY
FIGURE 74. SIMULATED CLOSED LOOP GAIN vs FREQUENCY
24
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Characterization vs Simulation Results (Continued)
1 0 NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) -1 -2 -3 -4 -5 -6 VS = ±15V -7 CL = 4pF AV = +1 -8 VOUT = 100mVP-P -9 1k 100 RL = OPEN, 100k, 10k RL = 1 k RL = 499 RL = 100 RL = 49.9 10k 100k 1M 10M 1 0 -1 -2 -3 -4 -5 -6 VS = ±15V -7 CL = 4pF AV = +1 -8 VOUT = 100mVP-P -9 1k 100 RL = OPEN, 100k, 10k RL = 1 k RL = 499 RL = 100 RL = 49.9 10k 100k 1M 10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 75. CHARACTERIZED GAIN vs FREQUENCY vs RL
FIGURE 76. SIMULATED GAIN vs FREQUENCY vs RL
150 140 130 120 110 100 90 80 70 60 50 40 30 VS = ±15V 20 SIMULATION 10 0 1m 0.01 0.1 1
150
CMRR (dB)
CMRR (dB)
100
50 VS = ±15V SIMULATION
10 100 1k 10k 100k 1M 10M 100M 1G FREQUENCY (Hz)
0 1m 0.01 0.1
1
10 100 1k 10k 100k 1M 10M 100M 1G FREQUENCY (Hz)
FIGURE 77. CHARACTERIZED CMRR vs FREQUENCY
FIGURE 78. SIMULATED CMRR vs FREQUENCY
6
VS = ±15V AV = 1 4 R = 2k L CL = 4pF 2
VOUT (V)
6 4 2
VOUT (V)
VS = ±15V AV = 1 R L = 2k CL = 4pF
0 -2 -4 -6
0 -2 -4 -6
0
100
200 TIME (µs)
300
400
0
100
200 TIME (µs)
300
400
FIGURE 79. CHARACTERIZED LARGE SIGNAL 10V STEP RESPONSE
FIGURE 80. SIMULATED LARGE SIGNAL 10V STEP RESPONSE
25
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Characterization vs Simulation Results (Continued)
100 80 60 40
VOUT (mV)
100 VS = ±15V AND VS = ±5V AV = 1 RL = 2 k CL = 4pF 80 60 40
VOUT (mV)
20 0 -20 -40 -60 -80 -100 0 0.5 1.0 1.5 2.0 2.5 TIME (µs) 3.0
20 0 -20 -40 -60 -80
VS = ±15V AND VS = ±5V AV = 1 RL = 2 k CL = 4pF
3.5
4.0
-100
0
0.5
1.0
1.5
2.0 2.5 TIME (µs)
3.0
3.5
4.0
FIGURE 81. CHARACTERIZED SMALL SIGNAL TRANSIENT RESPONSE
FIGURE 82. SIMULATED SMALL SIGNAL TRANSIENT RESPONSE
20
OUTPUT VOLTAGE SWING (V)
VOH = 14.93V 10
0
-10 VOL = -14.94V -20 0 0.5 1.0 TIME (m s) 1.5 2.0
FIGURE 83. SIMULATED OUTPUT VOLTAGE SWING
For additional products, see www.intersil.com/product_tree Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com
26
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.
DATE 10/19/11 REVISION FN6935.3 CHANGE • On page 1, Features: changed Low Input Offset Voltage from 230µV to (ISL28108)……150µV. Added Related Literature section with AN1658, "ISL28208SOICEVAL2Z Evaluation Board User Guide". • On page 2, Ordering Information: added ISL28208SOICEVAL2Z evaluation board. Removed "Coming Soon" from ISL28408FBZ. Corrected Package Dwg. # for TDFN package from L8.3x3A to L8.3x3K. Corrected Package Dwg. # for MSOP package from M8.118 to M8.118B. • On page 5, Absolute Maximum Ratings, changed “ESD Tolerance (ISL28208)” to “ESD Tolerance (ISL28208, ISL28408)”. Added ESD information for ISL28108 as follows: ESD Tolerance (ISL28108) Human Body Model (Tested per JESD22-A114F).....5.5kV Machine Model (Tested per JESD22-A115-C).....300V Charged Device Model (Tested per JESD22-C110D).....2kV • On page 5, Thermal Information, changed package temperatures from: 8 Ld SOIC Package (108, 208, Notes 4, 7), θJA = 120, θJC = 55 8 Ld TDFN Package (108, 208, Notes 5, 6), θJA = 47, θJC = 6 8 Ld MSOP Package (108, 208, Notes 4, 7), θJA = 150, θJC = 45 14 Ld SOIC Package (408, Notes 4, 7), θJA = -, θJA = To: 8 Ld SOIC Package (208, Notes 4, 7), θJA = 120, θJC = 55 8 Ld SOIC Package (108, Notes 4, 7), θJA = 120, θJC = 60 8 Ld TDFN Package (208, Notes 5, 6), θJA = 47, θJC = 6 8 Ld TDFN Package (108, Notes 5, 6), θJA = 45, θJC = 3.5 8 Ld MSOP Package (208, Notes 4, 7), θJA = 150, θJC = 50 8 Ld MSOP Package (108, Notes 4, 7), θJA = 165, θJC = 57 14 Ld SOIC Package (408, Notes 4, 7), θJA = 71, θJC = 37 On page 5, ±15V Electrical Specifications table, added the following parameters: - VOS ISL28108 SOIC, TDFN - TCVOS ISL28108 SOIC, TDFN - IOS ISL28108 SOIC, TDFN On page 5 and 6, ±15V Electrical Specifications table, changed the following in Conditions column: - VOS: changed “ISL28208 SOIC, TDFN” to “ISL28208 SOIC, TDFN; ISL28408 SOIC” - TCVOS: changed “ISL28208 TDFN” to”ISL28208 TDFN, ISL28408 SOIC” - IOS: changed “ISL28108 SOIC, TDFN” to “ISL28108 SOIC, TDFN; ISL28408 SOIC” On page 7, ±5V Electrical Specifications table, added the following: - VOS ISL28108 SOIC, TDFN - TCVOS ISL28108 SOIC, TDFN - IOS ISL28108 SOIC, TDFN On page 7, ±5V Electrical Specifications table, changed the following in Conditions column: - VOS: changed “ISL28208 SOIC, TDFN” to “ISL28208 SOIC, TDFN; ISL28408 SOIC” - TCVOS: changed “ISL28208 TDFN” to”ISL28208 TDFN, ISL28408 SOIC” - IOS: changed “ISL28108 SOIC, TDFN” to “ISL28108 SOIC, TDFN; ISL28408 SOIC” On page 9 through page 11, added the following to Typical Performance Curves: - Figures 3, 4: ISL28408 SOIC Input Offset Distribution Voltage, ±15V and ±5V - Figures 7, 8: ISL28108 SOIC ±15V VOS distribution, and ±5V VOS distribution - Figures 9, 10: ISL28108 TDFN ±15V VOS distribution, and ±5V VOS distribution - Figures 11, 12: ISL28408 SOIC TCVOS vs. number of Amplifiers ±15V and ±5V - Figures 17, 18: ISL28108 SOIC ±15V TCVOS distribution, and ±5V TCVOS distribution - Figures 19, 20: ISL28108 TDFN ±15V TCVOS distribution, and ±5V TCVOS distribution On page 20, Applications: minor edits to re-align figures with curves On page 21: changed heading from “Using Only One Amplifier to “Unused Channels” and edited for clarity. On page 30: changed Package Outline Drawing L8.3x3A to L8.3x3K On page 31: changed Package Outline Drawing M8.118 to M8.118B On page 32: added Package Outline Drawing M14.15
•
•
•
•
•
• • • • •
27
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408 Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev. (Continued)
DATE 4/20/11 REVISION FN6935.2 CHANGE • Added discussion of ISL28408 throughout datasheet. • On page 2 in “Ordering Information”: Added new part, “ISL28408FBZ”. Corrected part marking for ISL28208FRTZ from 208Z to 208F. Added “ISL28408” to Note 3. Under” Pin Configurations,” added ISL28408 (14 Ld SOIC) pin configuration diagram. • On page 3: in Pin Descriptions table, added column for ISL28408 14Ld SOIC. Corrected schematic for Circuit 2. • On page 5: under “Thermal Information” added "14 Ld SOIC Package (408, Notes 4, 7)" and added ISL28108 to 8 Ld TDFN and 8 Ld MSOP. Changed θJA and θJC for 8 Ld TDFN Package from 48 and 5.5 to 47 and 6. Added Note 6 regarding θJC “case temp” measurement, and applied it to 8 Ld TDFN Package. • On page 5: in Electrical Specifications table, changed TYP spec for TCIB from 70 pA/° C to 0.07nA/° C. On page 7, changed TYP spec for TCIB from -67 pA/° C to -0.067nA/° C. These are not spec changes since the values are the same. • On page 13, Figs. 31 and 32: changed y axis units label from (mV) to (V); changed x axis units label from (µA) to (mA). • On page 20, under “Output Drive Capability,” para 2, changed "The output stage can swing at moderate levels of output current (Figures 21 and 22) and the output stage is internally current limited. Output current limit over-termperature..." to "The output stage is internally current limited. Output current limit overtemperature..." • On page 1, in the first paragraph - added the following after V-rail: "a rail-to-rail differential input voltage range for use as a comparator,…" • On page 1 in “Features: - Added bullet - “Rail-to-rail Input Differential Voltage Range for Comparator Applications” - Changed Low Noise Current from "100fA/sq.root Hz" to "80fA/sq.root Hz" • On page 2 in “Ordering Information” - Removed "coming soon" from ISL28208FRTZ part since it is releasing. • On page 5, changed “ESD Tolerance (ISL28208, ISL28408)” as follows: - Human Body Model changed from "3kV" to "6kV" - Machine Model changed from "300V" to "400V" - Added JEDEC Test information for all ESD ratings • On page 5 and page 7, added test conditions for SOIC TCVos specs. Added TCVos specs for TDFN. • On page 6 changed “Noise Current Density” Typical from "100" to "80" • On page 20, updated Applications Information Functional Description • On page 20 Updated Input Stage Performance Section • On page 20 Updated Output Drive Capability Section • On page 21 Added ISL28108 AND ISL28208 SPICE MODEL and License Agreement section • On page 22 Added SPICE NET LIST • On page 24 Added Characterization vs Simulation Results curves Initial Release
3/11/11
FN6935.1
2/16/11
FN6935.0
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28108, ISL28208, ISL28408. To report errors or suggestions for this datasheet, please go to: www.intersil.com/askourstaff FITs are available from our website at: http://rel.intersil.com/reports/search.php
28
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M8.15E
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09
4 4.90 ± 0.10 A DETAIL "A" 0.22 ± 0.03
B
6.0 ± 0.20 3.90 ± 0.10 4 PIN NO.1 ID MARK 5 (0.35) x 45° 1.27 0.43 ± 0.076 0.25 M C A B 4° ± 4°
TOP VIEW
SIDE VIEW “B”
1.75 MAX
1.45 ± 0.1 0.25 0.175 ± 0.075 GAUGE PLANE C SEATING PLANE 0.10 C
SIDE VIEW “A
0.63 ±0.23
DETAIL "A"
(1.27) (0.60)
NOTES: (1.50) 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. Unless otherwise specified, tolerance : Decimal ± 0.05 Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. 5. 6. The pin #1 identifier may be either a mold or mark feature. Reference to JEDEC MS-012.
2. (5.40) 3. 4.
TYPICAL RECOMMENDED LAND PATTERN
29
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
L8.3x3K
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 1, 9/11
2X 1.95 3.00 A B PIN #1 INDEX AREA 6 6 PIN 1 INDEX AREA (4X) 0.15 8 TOP VIEW 0.40 ± 0.05 2.30 ±0.10 BOTTOM VIEW 8X 0.25 ±0.05 4 3.00 1.50 ±0.10 1 6X 0.65
0.10 M C A B
SEE DETAIL "X" C 0.75 ±0.05 0.10 C C 0.08 C SIDE VIEW 0 . 02 NOM. 0 . 05 MAX. DETAIL "X" 0 . 203 REF 5
( 2.30) ( 1.95)
NOTES: ( 8X 0.50) (1.50) ( 2.90 ) 2. 3. 4. PIN 1 (6x 0.65) ( 8 X 0.25) TYPICAL RECOMMENDED LAND PATTERN 7. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. Compliant to JEDEC MO-229 WEEC-2 except for the foot length. 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. Unless otherwise specified, tolerance : Decimal ± 0.05 Dimension applies to the metallized terminal and is measured between 0.15mm and 0.20mm from the terminal tip. 5. Tiebar shown (if present) is a non-functional feature.
30
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M8.118B
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE Rev 0, 7/11
3.0±0.10mm A 8 D 5
4.9±0.20mm 3.0±0.10mm 5 1.10 MAX
DETAIL "X"
PIN# 1 ID SIDE VIEW 2 1 2 B 0.65mm BSC TOP VIEW 0.95 REF
0.15 - 0.05mm
H
0.86±0.05mm C SEATING PLANE
GAUGE PLANE
0.25
0.23 - 0.36mm 0.08 M C A-B D SIDE VIEW 1
0.10 ± 0.05mm
0.10 C
3°±3° 0.53 ± 0.10mm DETAIL "X"
(5.80) (4.40) (3.00)
NOTES: 1. Dimensions are in millimeters. 2. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSEY14.5m-1994. 3. Plastic or metal protrusions of 0.15mm max per side are not included. 4. Plastic interlead protrusions of 0.15mm max per side are not included. 5. Dimensions are measured at Datum Plane "H". 6. Dimensions in ( ) are for reference only.
(0.65) (0.40) (1.40) TYPICAL RECOMMENDED LAND PATTERN
31
FN6935.3 November 1, 2011
ISL28108, ISL28208, ISL28408
Package Outline Drawing
M14.15
14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 1, 10/09
8.65 A3 14
4 6 8
0.10 C A-B 2X DETAIL"A" D 0.22±0.03
6.0 3.9 4 0.10 C D 2X PIN NO.1 ID MARK 5 0.31-0.51 0.25 M C A-B D TOP VIEW B3 6 7 0.20 C 2X (0.35) x 45° 4° ± 4°
0.10 C 1.75 MAX 1.25 MIN
H 0.25 GAUGE PLANE C SEATING PLANE 0.10 C DETAIL "A"
1.27 SIDE VIEW
0.10-0.25
(1.27)
(0.6) NOTES: 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. 2. Dimensioning and tolerancing conform to AMSEY14.5m-1994. 3. Datums A and B to be determined at Datum H.
(5.40)
4. Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. 5. The pin #1 indentifier may be either a mold or mark feature. (1.50) 6. Does not include dambar protrusion. Allowable dambar protrusion shall be 0.10mm total in excess of lead width at maximum condition. 7. Reference to JEDEC MS-012-AB. TYPICAL RECOMMENDED LAND PATTERN
32
FN6935.3 November 1, 2011