5V Ultra Low Noise, Zero Drift Rail-to-Rail Precision Op Amp
ISL28134
The ISL28134 is a single, chopper-stabilized zero-drift operational amplifier optimized for single and dual supply operation from 2.25V to 6.0V and ±1.125V and ±3.0V. The ISL28134 features very low input offset voltage and low noise with no 1/f noise corner down to 0.1Hz. The ISL28134 is designed to have ultra low offset voltage and offset temperature drift, wide gain bandwidth and rail-to-rail input/output swing while minimizing power consumption. This amplifier is ideal for amplifying the sensor signals of analog front-ends that include pressure, temperature, medical, strain gauge and inertial sensors. The ISL28134 can be used over standard amplifiers with high stability over the industrial temperature range of -40°C to +85°C. The ISL28134 is available in an industry standard pinout SOIC package.
Features
• Rail-to-Rail Inputs and Outputs - CMRR @ VCM = 0.1V beyond VS . . . . . . . . . . . . .135dB, typ. - VOH and VOL . . . . . . . . . . . . . . . . . . . . . . 10mV from VS, typ. • No 1/f Noise Corner Down to 0.1Hz - Input Noise Voltage . . . . . . . . . . . . . . . . .10 nV/√Hz @ 1kHz - 0.1Hz to 10Hz Noise Voltage . . . . . . . . . . . . . . . . 250nVP-P • Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5µV, Max • Superb Offset Drift . . . . . . . . . . . . . . . . . . . . . . . 15nV/°C, Max • Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25V to 6.0V • Dual Supply . . . . . . . . . . . . . . . . . . . . . . . . . ±1.125V to ±3.0V • Low ICC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675µA, typ. • Wide Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5MHz • Operating Temperature Range - Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C - Full Industrial (Coming Soon) . . . . . . . . . .-40°C to +125°C • Packaging - Single: SOIC, SOT-23, µTDFN (1.6mmx1.6mm)
Applications
• Medical Instrumentation • Sensor Gain Amps • Precision Low Drift, Low Frequency ADC Drivers • Precision Voltage Reference Buffers • Thermopile, Thermocouple, and other Temperature Sensors Front-end Amplifiers • Inertial Sensors • Process Control Systems • Weight Scales and Strain Gauge Sensors
Related Literature
• See AN1641, “ISL28134 Evaluation Board Manual” • See AN1560, “Making Accurate Voltage Noise and Current Noise Measurements on Operational Amplifiers Down to 0.1Hz”
3V 1MΩ
SINGLE SUPPLY HIGH GAIN AMPLIFIER AV = 10,000 V/V NUMBER OF AMPLIFIERS
1400 1200 1000 800 600 400 200
0
Vs = ±2.5V VCM = 0V T = -40°C to +85°C N = 2330
0.1µ 100 100 + ANALOG SENSOR INPUT 1MΩ GND RL VOUT
-2.5
-2.0 -1.5
-1.0 -0.5
0 0.5 VOS (µV)
1.0
1.5
2.0
2.5
FIGURE 1. TYPICAL APPLICATION
FIGURE 2. VOS HISTOGRAM VS = 5V
June 8, 2011 FN6957.1
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2011. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners.
ISL28134 Pin Configurations
ISL28134 (5 LD SOT-23) TOP VIEW
OUT VIN+ 1 2 3 5 V+ NC IN4 ININ+ V1 2 3 4 -+
ISL28134 (8 LD SOIC) TOP VIEW
8 7 6 5 NC V+ OUT NC
+-
ISL28134 (6 LD µTDFN) TOP VIEW
V- 1 IN- 2 IN+ 3 -+ 6 5 V+ NC
4 OUT
Pin Descriptions
ISL28134 (8 Ld SOIC) 2 3 ISL28134 (6Ld µTDFN) 2 3 ISL28134 (5Ld SOT-23) 4 3 PIN NAME ININ+ FUNCTION Inverting input Non-inverting input
V+ + IN+ +
EQUIVALENT CIRCUIT (See Circuit 1)
INV-
CLOCK GEN + DRIVERS
Circuit 1
4 6
1 4
2 1
VOUT
Negative supply Output
V+
OUT
VCircuit 2
7 1, 5, 8
6 5
5 -
V+ NC
Positive supply No Connect Pin is floating. No connection made to IC.
2
FN6957.1 June 8, 2011
ISL28134 Ordering Information
PART NUMBER (Note 5) ISL28134IBZ (Notes 1, 3) Coming Soon ISL28134FBZ (Notes 1, 3) Coming Soon ISL28134FRUZ-T7 (Notes 2, 4) Coming Soon ISL28134FHZ-T7 (Notes 2, 3) Coming Soon ISL28134FHZ-T7A (Notes 2, 3) NOTES: 1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications. 2. Please refer to TB347 for details on reel specifications. 3. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 4. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 5. For Moisture Sensitivity Level (MSL), please see device information page for ISL28134. For more information on MSL please see techbrief TB363. 6. The part marking is located on the bottom of the part. PART MARKING 28134 IBZ 28134 FBZ U8 BEEA (Note 6) BEEA (Note 6) TEMP RANGE (°C) -40°C to +85°C -40°C to +125°C -40°C to +125°C -40°C to +125°C -40°C to +125°C PACKAGE (Pb-Free) 8 Ld SOIC 8 Ld SOIC 6 Ld µTDFN 5 Ld SOT-23 5 Ld SOT-23 PKG. DWG. # M8.15E M8.15E L6.1.6x1.6 P5.064A P5.064A
3
FN6957.1 June 8, 2011
ISL28134
Absolute Maximum Ratings
Max Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5V Max Voltage VIN to GND . . . . . . . . . . . . . . . . . . . (V- - 0.3V) to (V+ + 0.3V) V Max Input Differential Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5V Max Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Max Voltage VOUT to GND (10s) . . . . . . . . . . . . . . . . . . . . . . . . . . .(V+) or (V-) Max dv/dt Supply Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/µs ESD Rating Human Body Model (Tested per JED22-A114F) . . . . . . . . . . . . . . . . . 4kV Machine Model (Tested per JED22-A115B). . . . . . . . . . . . . . . . . . . . 300V Charged Device Model (Tested per JED22-C110D) . . . . . . . . . . . . . . 2kV Latch-Up (Passed Per JESD78B). . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C
Thermal Information
Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 5 Ld SOT-23 (Notes 7, 8) . . . . . . . . . . . . . . . 225 116 8 Ld SOIC (Notes 7, 8) . . . . . . . . . . . . . . . . . 125 77 6 Ld µTDFN (Notes 7, 8) . . . . . . . . . . . . . . . 220 120 Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Operating Conditions
Ambient Operating Temperature Range . . . . . . . . . . . . . . . -40°C to +85°C Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . . .+125°C Operating Voltage Range. . . . . . . . . . . . . . . . . 2.25V (±1.125V) to 6V (±3V)
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 7. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 8. For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.
Electrical Specifications
temperature range, -40°C to +85°C. PARAMETER DC SPECIFICATIONS VOS
VS = 5V, VCM = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating MIN MAX TYP
DESCRIPTION
CONDITIONS
(Note 9)
(Note 9)
UNIT
Input Offset Voltage TA = -40°C to +85°C
-2.5 -3.4 -15 -300 TA = -40°C to +85°C -300 -600 TA = -40°C to +85°C -600 V+ = 5.0V, V- = 0V Guaranteed by CMRR TA = -40°C to +85°C -0.1
-0.2 -0.5 ±120 ±1.4 ±240 ±2.8 -
2.5 3.4 15 300 300 600 600 5.1
µV µV nV/°C pA pA pA/°C pA pA pA/°C V
TCVOS IB
Output Voltage Temperature Coefficient Input Bias Current
TA = -40°C to +85°C
TCIB IOS
Input Bias Current Temperature Coefficient Input Offset Current
TCIOS Common Mode Input Voltage Range CMRR
Input Offset Current Temperature Coefficient
Common Mode Rejection Ratio
VCM = -0.1V to 5.1V VCM = -0.1V to 5.1V TA = -40°C to +85°C
120 115 120 120 2.25 -
135 135 675 -
6.0 900 1075
dB dB dB dB V µA µA
PSRR
Power Supply Rejection Ratio
Vs = 2.25V to 6.0V Vs = 2.25V to 6.0V TA = -40°C to +85°C
Vs IS
Supply Voltage (V+ to V-) Supply Current per Amplifier
Guaranteed by PSRR TA = -40°C to +85°C RL = OPEN RL = OPEN TA = -40°C to +85°C
4
FN6957.1 June 8, 2011
ISL28134
Electrical Specifications VS = 5V, VCM = 2.5V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued)
MIN PARAMETER ISC DESCRIPTION Short Circuit Output Source Current Short Circuit Output Sink Current VOH Output Voltage Swing, HIGH From VOUT to V+ RL = Short to VRL = Short to V+ RL = 10kΩ to VCM RL = 10kΩ to VCM TA = -40°C to +85°C RL = 10kΩ to VCM RL = 10kΩ to VCM TA = -40°C to +85°C RL = 1MΩ CONDITIONS MAX TYP 65 -65 10 10 174
(Note 9)
15 15 -
(Note 9)
15 15 -
UNIT mA mA mV mV mV mV dB
VOL
Output Voltage Swing, LOW From V- to VOUT
AOL AC SPECIFICATIONS CIN
Open Loop Gain
Input Capacitance
Differential Common Mode
-
5.2 5.6 250 8 10 200 3.5
400 -
pF pF nVP-P nV/√Hz nV/√Hz fA/√Hz MHz
eN
Input Noise Voltage
f = 0.1Hz to 10Hz f = 10Hz f = 1kHz
IN GBWP TRANSIENT RESPONSE SR
Input Noise Current Gain Bandwidth Product
f = 1kHz
Positive Slew Rate Negative Slew Rate
V+ = 5V, V- = 0V, VOUT = 1V to 3V, RL = 100kΩ, CL = 3.7pF V+ = 5V, V- = 0V, VOUT = 0.1VP-P, RF = 0Ω, RL = 100kΩ, CL = 3.7pF V+ = 5V, V- = 0V, VOUT = 2VP-P, RF = 0Ω, RL = 100kΩ, CL = 3.7pF AV = -1, RF = 1kΩ, CL = 3.7pF AV = +2, RF = 10kΩ, RL = 100k, CL = 3.7pF
-
1.5 1.0 0.07 0.17 1.3 2.0 100 3.1
-
V/µs V/µs µs µs µs µs µs µs
tr, tf, Small Signal
Rise Time, tr 10% to 90% Fall Time, tf 10% to 90%
tr, tf Large Signal
Rise Time, tr 10% to 90% Fall Time, tf 10% to 90%
ts trecover
Settling Time to 0.1%, 2VP-P Step Output Overload Recovery Time, Recovery to 90% of Output Saturation
Electrical Specifications
temperature range, -40°C to +85°C. PARAMETER DC SPECIFICATIONS VOS
VS = 2.5V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating MIN MAX TYP
DESCRIPTION
CONDITIONS
(Note 9)
(Note 9)
UNIT
Input Offset Voltage TA = -40°C to +85°C
-2.5 -3.4 -15 - 300 TA = -40°C to +85°C -300 -
-0.2 -0.5 ±120 ±1.4
2.5 3.4 15 300 300 -
µV µV nV/°C pA pA pA/°C
TCVOS IB
Output Voltage Temperature Coefficient Input Bias Current
TCIB
Input Bias Current Temperature Coefficient
5
FN6957.1 June 8, 2011
ISL28134
Electrical Specifications
PARAMETER IOS VS = 2.5V, VCM = 1.25V, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +85°C. (Continued) MIN DESCRIPTION Input Offset Current TA = -40°C to +85°C TCIOS Common Mode Input Voltage Range CMRR Common Mode Rejection Ratio Input Offset Current Temperature Coefficient V+ = 2.5V, V- = 0V Guaranteed by CMRR VCM = -0.1V to 2.6V VCM = -0.1V to 2.6V TA = -40°C to +85°C IS Supply Current per Amplifier RL = OPEN RL = OPEN VCM = -0.1V to 2.6V ISC Short Circuit Output Source Current Short Circuit Output Sink Current VOH Output Voltage Swing, HIGH From VOUT to V+ RL = Short to Ground RL = Short to V+ RL = 10kΩ to VCM RL = 10kΩ to VCM TA = -40°C to +85°C RL = 10kΩ to VCM RL = 10kΩ to VCM TA = -40°C to +85°C CONDITIONS MAX TYP ±240 ±2.8 -
(Note 9)
-600 -600 -0.1
(Note 9)
600 600 2.6
UNIT pA pA pA/°C V
120 115 15 15 -
135 715 65 -65 10 10 -
940 1115 15 15
dB dB µA µA mA mA mV mV mV mV
VOL
Output Voltage Swing, LOW From V- to VOUT
AC SPECIFICATIONS CIN Input Capacitance Differential Common Mode eN Input Noise Voltage f = 0.1Hz to 10Hz f = 10Hz f = 1kHz IN GBWP Input Noise Current Gain Bandwidth Product f = 1kHz 5.2 5.6 250 8 10 200 3.5 400 pF pF nVP-P nV/√Hz nV/√Hz fA/√Hz MHz
TRANSIENT RESPONSE SR Positive Slew Rate Negative Slew Rate tr, tf, Small Signal Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% tr, tf Large Signal Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% ts trecover Settling Time to 0.1%, 2VP-P Step Output Overload Recovery Time, Recovery to 90% of Output Saturation V+ = 2.5V, V- = 0V, VOUT = 0.25V to 2.25V, RL = 100kΩ, CL = 3.7pF V+ = 2.5V, V- = 0V, VOUT = 0.1VP-P, RF = 0Ω, RL = 100kΩ, CL = 3.7pF V+ = 2.5V, V- = 0V, VOUT = 2VP-P, RF = 0Ω, RL = 100kΩ, CL = 3.7pF AV = -1, RF = 1kΩ, CL = 3.7pF AV = +2, RF = 10kΩ, RL = 100k, CL = 3.7pF 1.5 1.0 0.07 0.17 1.3 2.0 100 1.5 V/µs V/µs µs µs µs µs µs µs
NOTE: 9. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
6
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
2.0 1.5 OFFSET VOLTAGE (µV) OFFSET VOLTAGE (µV) VS = ±2.5V VCM = 0V -40 -15 10 35 60 85 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 TEMPERATURE (°C)
TA =+25°C, VCM = 0V Unless otherwise specified.
2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -40 -15 10 35 60 85 TEMPERATURE (°C) VS = ±1.125V VCM = 0V
FIGURE 3. VOS vs TEMPERATURE, VS = ±2.5V
FIGURE 4. VOS vs TEMPERATURE, VS = ±1.125V
1400 1200 NUMBER OF AMPLIFIERS 1000 800 600 400 200 0 -2.5 -2.0 Vs = ±2.5V VCM = 0V T = -40°C to +85°C N = 2330
160 140 NUMBER OF AMPLIFIERS 120 100 80 60 40 20 0 -10 Vs = ±2.5V VCM = 0V T = -40°C to +85°C N = 465
-1.5 -1.0 -0.5
0
0.5
1.0
1.5
2.0
2.5
-8
-6
-4
-2
0
2
4
6
8
10
VOS (µV)
TCVOS (nV/°C)
FIGURE 5. VOS HISTOGRAM VS = 5V
FIGURE 6. TCVOS HISTOGRAM VS = 5V
1400 1200 NUMBER OF AMPLIFIERS 1000 800 600 400 200 0 -2.5 Vs = ±1.25V VCM = 0V T = -40°C to +85°C N = 2325
120 100 80 60 40 20 0 -10 Vs = ±1.25V VCM = 0V T = -40°C to +85°C N = 310
NUMBER OF AMPLIFIERS
-2.0 -1.5 -1.0 -0.5
0
0.5
1.0
1.5
2.0
2.5
-8
-6
-4
-2
0
2
4
6
8
10
VOS (µV)
TCVOS (nV/°C)
FIGURE 7. VOS HISTOGRAM VS = 2.5V
FIGURE 8. TCVOS HISTOGRAM VS = 2.5V
7
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
4 3 OFFSET VOLTAGE (µV) OFFSET VOLTAGE (µV) 2.4 2 1 0 -1 -2 -3 -4 Vs = ±1.125V Vs = ±2.5V
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
4 3 2 1 0 -1 -2 -3 -4
-3.2
-2.4
-1.6
-0.8
0
0.8
1.6
3.2
1.0
1.5
2.0
2.5
3.0
3.5
COMMON MODE VOLTAGE (V)
SUPPLY VOLTAGE (V)
FIGURE 9. VOS vs VCM
FIGURE 10. VOS vs SUPPLY VOLTAGE
500 400 INPUT BIAS CURRENT (pA) 300 200 100 0 -100 -200 -300 -400 -500 -3 -2 -1 0 1 2 3 IB+ Vs = ±2.5V IB- Vs = ±2.5V IB+ Vs = ±1.125V IB- Vs = ±1.125V
600 500 INPUT OFFSET CURRENT (pA) 400 300 200 100 0 -100 -200 -3 -2 -1 0 1 2 3 COMMON MODE VOLTAGE (V) COMMON MODE VOLTAGE (V) Vs = ±1.125V Vs = ±2.5V
FIGURE 11. IB vs VCM
FIGURE 12. IOS vs VCM
200 150 INPUT BIAS CURRENT (pA) 100 50 0 -50 -100 -150 -200 -40 IBVs = ±2.5V IBVs = ±1.125V
IB+ Vs = ±2.5V INPUT OFFSET CURRENT (pA)
400 350 300 250 200 150 100 50 0 Vs = ±1.125V Vs = ±2.5V
IB+ Vs = ±1.125V
-20
0
20
40
60
80
100
-50 -40
-15
10
35
60
85
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 13. IB vs TEMPERATURE
FIGURE 14. IOS vs TEMPERATURE
8
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
160 150 140 130 PSRR (dB) CMRR (dB) 120 110 100 90 80 70 60 -40 Vs = ±1.125V to ±3V VCM = 0V -15 10 35 60 85 110 100 90 80 70 60 -40 Vs = ±2.5V VCM = -2.6V to +2.6V -15 10 35 60 85
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
140 130 120
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 15. PSRR vs TEMPERATURE
FIGURE 16. CMRR vs TEMPERATURE
1000
-1000
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
900 800 T = -40°C T = +25°C
T = +85°C
-900 -800 T = -40°C T = +25°C
T = +85°C
700
-700
600
-600 -500 ±1.5 ±2.0 ±2.5 ±3.0 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 SPLIT SUPPLY VOLTAGE (V) SPLIT SUPPLY VOLTAGE (V)
500 ±1.0
FIGURE 17. POSITIVE SUPPLY CURRENT vs SUPPLY VOLTAGE
1000
FIGURE 18. NEGATIVE SUPPLY CURRENT vs SUPPLY VOLTAGE
1000
VOLTAGE FROM V+ RAIL (mV)
VOLTAGE FROM V- RAIL (mV)
100
T = -40°C
100
10 Vs = ±2.5V RL to GND T = -40°C to +85°C 1 0.1 1 10 100 LOAD CURRENT (mA)
10 Vs = ±2.5V RL to GND T = -40°C to +85°C 1 0.1 1 10 100 LOAD CURRENT (mA)
FIGURE 19. VOH vs ILOAD
FIGURE 20. VOL vs ILOAD
9
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
1000 Vs = ±2.5V T = -40°C to +85°C VOLTAGE FROM V+ RAIL (mV) VOLTAGE FROM V- RAIL (mV)
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
1000 Vs = ±2.5V T = -40°C to +85°C
100
100
10
10
1 0.001
0.01
0.1
1.0
1 0.001
0.01
0.1
1.0
LOAD CURRENT (mA)
LOAD CURRENT (mA)
FIGURE 21. OUTPUT HIGH OVERHEAD VOLTAGE vs LOAD CURRENT
FIGURE 22. OUTPUT LOW OVERHEAD VOLTAGE vs LOAD CURRENT
35 30 VOLTAGE FROM V- RAIL (mV) 25 20 15 10 5 0 RL = 12.5kΩ -40 -15 10 35 60 85 Vs = ±2.5V RL = OUT to GND RL = 1kΩ
45 40 VOLTAGE FROM V+ RAIL (mV) 35 30 25 20 15 10 5 0 -40 -15 10 35 60 85 TEMPERATURE (°C) Vs = ±2.5V RL = OUT to GND RL = 12.5kΩ RL = 1kΩ
TEMPERATURE (°C)
FIGURE 23. VOH vs TEMPERATURE
100 300 200 VOLTAGE NOISE (nV/√Hz) 100 0
FIGURE 24. VOL vs TEMPERATURE
10
VOLTAGE (nV)
-100 -200 -300 0 Vs = ±2.5V AV = 10,000 Rg = 10, Rf = 100k 1 2 3 4 5 TIME (s) 6 7 8 9 10
Vs = ±2.5V AV = 1 1 0.1 1 10 100 1000 10k 100k
FREQUENCY (Hz)
FIGURE 25. INPUT NOISE VOLTAGE DENSITY vs FREQUENCY
FIGURE 26. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz
10
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
1000 Vs = ±2.5V AV = 1 RS = 5MΩ GAIN (dB) / PHASE (°)
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
140 120 100 80 60 40 20 0 Vs = ±2.5V RL = 10MΩ SIMULATION 0.1 1 10 100 1k 10k 100k 1M 10M GAIN PHASE
CURRENT NOISE (fA/√Hz)
CIN+ = 0pF CIN+ =100pF 100 0.1 1 10 100 1000 10k 100k
-20
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 27. INPUT NOISE CURRENT DENSITY vs FREQUENCY
FIGURE 28. OPEN LOOP GAIN AND PHASE, RL = 10M
140 GAIN 120 GAIN (dB) / PHASE (°) 100 GAIN (dB) 80 60 40 20 0 -20 0.1 Vs = ±2.5V RL = 10kΩ SIMULATION 1 10 100 1k 10k 100k 1M 10M PHASE
90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 10
AV = 10,000 AV = 1000 AV = 100 AV = 10 AV = 1
Rg = 10, Rf = 100k Rg = 100, Rf = 100k Vs = ± 2.5V CL = 3.7pF RL = 100k VOUT = 10mVP-P
Rg = 1k, Rf = 100k Rg = 10k, Rf = 100k
Rg = OPEN, Rf = 0
100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 29. OPEN LOOP GAIN AND PHASE, RL = 10k
2 1 0 1 GAIN (dB) GAIN (dB) -2 -3 -4 -5 -6 -7 -8 10k 100k 1M 10M FREQUENCY (Hz) Vs = ± 1.25V AV = 1V CL = 3.7pF VOUT = 10mVP-P RL > 10kΩ
FIGURE 30. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
4 2 0 -2 -4 -6 -8 Vs = ± 2.5V AV = 1V CL = 3.7pF VOUT = 10mVP-P 1M 10M FREQUENCY (Hz) 100M RL = 1kΩ RL > 10kΩ
RL = 1kΩ
-10 100k
FIGURE 31. GAIN vs FREQUENCY vs R L, VS = 2.5V
FIGURE 32. GAIN vs FREQUENCY vs R L, VS = 5.0V
11
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
15 Vs = ± 2.5V AV = 2V RL = 100k VOUT = 10mVP-P Rg = 100k, Rf = 100k 0 10 NORMALIZED GAIN (dB)
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
2
Rg = 10k, Rf = 10k GAIN (dB) 5
-2
-4
1VP-P 500mVP-P
0
Rg = 1k, Rf = 1k
-6 -5 -8 -10 10 Vs = ± 2.5V AV = 1V RL = OPEN CL = 3.7pF 100 1k 10k
250mVP-P 100mVP-P 10mVP-P 100k 1M 10M 100M
-10 100
1k
10k
100k
1M
10M
100M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 33. GAIN vs FREQUENCY vs FEEDBACK RESISTOR VALUES Rf/Rg
12 10 8 6 GAIN (dB) 4 2 0 -2 -4 -6 10k 100k 1M FREQUENCY (Hz) 10M 100M Vs = ± 2.5V AV = 1V RL = 100k VOUT = 10mVP-P 2
FIGURE 34. GAIN vs FREQUENCY vs VOUT
±1.5V 3.7pF 51pF GAIN (dB) 104pF 224pF 474pF 824pF 1nF -8 -10 1M FREQUENCY (Hz) 0
±3.0V
-2 -4 -6 VOUT = 10mVP-P AV = 1V RL = 100k CL = 3.7pF 10M
±0.8V
FIGURE 35. GAIN vs FREQUENCY vs C L
160 140 120 CMRR (dB) 100 80 60 40 20 1m CMRR (dB) Vs = ±2.5V VCM = 0V SIMULATION 0.1 10 1k 100k 10M
FIGURE 36. GAIN vs FREQUENCY vs SUPPLY VOLTAGE
160 140 120 100 80 60 40 20 1m
Vs = ±1.25V VCM = 0V SIMULATION 0.1 10 1k 100k 10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 37. CMRR vs FREQUENCY, V S = 5V
FIGURE 38. CMRR vs FREQUENCY, VS = 2.5V
12
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
0 -20 -40 GAIN (dB) -60 -80 -100 -120 -140 10 -PSRR Vs = ± 2.5VDC AV = 1V RL = 100k VIN = 1VP-P GAIN (dB)
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
0 -20 -40 -60 -80 -PSRR -100 -120 10 +PSRR Vs = ± 1.25VDC AV = 1V RL = 100k VIN = 1VP-P
+PSRR 100 1k 10k 100k 1M 10M
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 39. PSRR vs FREQUENCY, VS = 5V
4 3 2 VOLTAGE (V) VOLTAGE (V) 1 0 -1 -2 -3 -4 0 5 10 TIME (ms) 15 20 Vs = ±2.5V AV = 1V RL = 1MΩ VIN = -3V to 3V 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0
FIGURE 40. PSRR vs FREQUENCY, VS = 2.5V
INPUT
OUTPUT Vs = 5VDC AV = 1V RL = 100k VIN = 1V to 4V 2 4 TIME (µs) 6 8 10
FIGURE 41. NO PHASE INVERSION
1.2
FIGURE 42. LARGE SIGNAL STEP RESPONSE (3V)
1.0 0.8 VOLTAGE (V) 0.6 0.4 0.2 0 OUTPUT Vs = 5VDC AV = 1V RL = 100k VIN = 0.1V to 1.1V 0 2 4 TIME (µs) 6 8 10
0.10 0.08 VOLTAGE (V) INPUT 0.06 0.04 0.02 0 -0.02 -0.04 0 2 4 TIME (µs) Vs = ±2.5VDC AV = 1V RL = 100k VIN = 0V to 0.1V 6 8 10 OUTPUT
INPUT
FIGURE 43. LARGE SIGNAL STEP RESPONSE (1V)
FIGURE 44. SMALL SIGNAL STEP RESPONSE (100mV)
13
FN6957.1 June 8, 2011
ISL28134 Typical Performance Curves
60 55 50 OVERSHOOT (%) 45 40 35 30 25 20 15 10 10 100 LOAD CAPACITANCE (pF) 1000 Vs = ±2.5V AV = 1V RL = 100k VOUT = 100mVpp +OS - OS OVERSHOOT (%)
TA =+25°C, VCM = 0V Unless otherwise specified. (Continued)
55 50 45 40 35 30 25 20 15 10 10 100 LOAD CAPACITANCE (pF) 1000 Vs = ±1.25V AV = 1V RL = 100k VOUT = 100mVpp +OS - OS
FIGURE 45. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE, Vs = ±2.5V
FIGURE 46. SMALL SIGNAL OVERSHOOT vs LOAD CAPACITANCE, Vs = ±1.25V
Applications Information
Functional Description
The ISL28134 is a single 5V rail-to-rail input/output amplifier that operates on a single or dual supply. The ISL28134 uses a proprietary chopper-stabilized technique that combines a 3.5MHz main amplifier with a very high open loop gain (174dB) chopper amplifier to achieve very low offset voltage and drift (0.2µV, 0.5nV/°C) while having a low supply current (675µA). The very low 1/f noise corner 100kΩ, the input referred noise voltage will be dominated by
Power Supply Considerations
The ISL28134 features a wide supply voltage operating range. The ISL28134 operates on single (+2.25V to +6.0V) or dual (±1.125 to ±3.0V) supplies. Power supply voltages greater than the +6.5V absolute maximum (specified in the “Absolute Maximum Ratings” on page 4) can permanently damage the device. Performance of the device is optimized for supply voltages greater than 2.5V. This makes the ISL28134 ideal for portable 3V battery applications that require the precision performance. It is highly recommended that a 14
FN6957.1 June 8, 2011
ISL28134
the input current noise. Keep source input impedances under 10kΩ for optimum performance.
TABLE 1. Part Competitor A Competitor B Competitor C ISL28134 Voltage Noise @ 100Hz 22nV/√Hz 16nV/√Hz 90nV/√Hz 8nV/√Hz 0.1Hz to 10Hz Peak to Peak Voltage Noise 600nVP-P 260nVP-P 1500nVP-P 250nVP-P
RS RG CIN+ -2.5V RI CIN+ RL CF RF +2.5V
VOUT
Reducing Input Bias Currents
The input stage of Chopper Stabilized amplifiers do not behave like conventional amplifier input stages. The ISL28134 uses switches at the chopper amplifier input that continually ‘chops’ the input signal at 100kHz to reduce input offset voltage down to 1µV. The dynamic behavior of these switches induces a charge injection current to the input terminals of the amplifier. The magnitude of the charge injection current is proportional to the input impedance of the amplifier. High input impedance cause large injection currents which results in an increase in the input bias current of the amplifier. To minimize the effect of impedance on input bias currents, an input resistor of