0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL28413

ISL28413

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    ISL28413 - Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier - Intersil Corp...

  • 数据手册
  • 价格&库存
ISL28413 数据手册
Single, Dual, Quad General Purpose Micropower, RRIO Operational Amplifier ISL28113, ISL28213, ISL28413 The ISL28113, ISL28213, and ISL28413 are single, dual, and quad channel general purpose micropower, rail-to-rail input and output operational amplifiers with supply voltage range of 1.8V to 5.5V. Key features are a low supply current of 130µA maximum per channel at room temperature, a low bias current and a wide input voltage range, which enables the ISL28x13 devices to be excellent general purpose op-amps for a wide range of applications. The ISL28113 is available in the SC70-5 and SOT23-5 packages, the ISL28213 is in the MSOP8, SO8 packages, and the ISL28413 is in the TSSOP14, SOIC14 packages. All devices operate over the extended temperature range of -40°C to +125°C. ISL28113, ISL28213, ISL28413 Features • Low Current Consumption . . . . . . . . . . . . . 130µA • Wide Supply Range. . . . . . . . . . . . . 1.8V to 5.5V • Gain Bandwidth Product . . . . . . . . . . . . . . 2MHz • Input Bias Current . . . . . . . . . . . . . . 20pA, Max. • Operating Temperature Range . . .-40°C to +125°C • Packages - ISL28113 (Single) . . . . . . . . . SC70-5, SOT23-5 - ISL28213 (Dual) . . . . . . . . . . . . . MSOP8, SO8 - ISL28413 (Quad). . . . . . . . . SOIC14, TSSOP14 Applications*(see page 15) • Power Supply Control/Regulation • Process Control • Signal Gain/Buffers • Active Filters • Current Shunt Sensing • Trans-impedance Amps Typical Application RF LOAD RINRSENSE 10kΩ RIN+ 10kΩ RREF+ 100kΩ VREF IN+ IN100kΩ +5V V+ ISL28x13 V- - VOUT + GAIN = 10 SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER December 22, 2009 FN6728.3 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2009. All Rights Reserved All other trademarks mentioned are the property of their respective owners. ISL28113, ISL28213, ISL28413 Ordering Information PART NUMBER (Note 2) ISL28113FEZ-T7 (Note 1) ISL28113FEZ-T7A (Note 1) ISL28113FHZ-T7 (Note 1) ISL28113FHZ-T7A (Note 1) ISL28213FUZ ISL28213FUZ-T7 (Note 1) ISL28213FBZ ISL28213FBZ-T7 (Note 1) ISL28213FBZ-T13 (Note 1) ISL28413FVZ ISL28413FVZ-T7 (Note 1) ISL28413FVZ-T13 (Note 1) ISL28413FBZ ISL28413FBZ-T7 (Note 1) ISL28413FBZ-T13 (Note 1) NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28113, ISL28213, ISL28413. For more information on MSL please see techbrief TB363. BJA BJA BCYA BCYA 8213Z 8213Z 28213 FBZ 28213 FBZ 28213 FBZ 28413 FVZ 28413 FVZ 28413 FVZ 28413 FBZ 28413 FBZ 28413 FBZ PART MARKING PACKAGE (Pb-Free) 5 Ld SC-70 5 Ld SC-70 5 Ld SOT-23 5 Ld SOT-23 8 Ld MSOP 8 Ld MSOP 8 Ld SOIC 8 Ld SOIC 8 Ld SOIC 14 Ld TSSOP 14 Ld TSSOP 14 Ld TSSOP 14 Ld SOIC 14 Ld SOIC 14 Ld SOIC P5.049 P5.049 MDP0038 MDP0038 M8.118A M8.118A M8.15E M8.15E M8.15E MDP0044 MDP0044 MDP0044 MDP0027 MDP0027 MDP0027 PKG. DWG. # Pin Configurations ISL28113 (5 LD SC-70) TOP VIEW IN+ VSIN1 2 3 4 OUT 5 VS+ ISL28113 (5 LD SOT-23) TOP VIEW OUT VSIN+ 1 2 3 4 IN5 VS+ ISL28213 (8 LD MSOP, 8 LD SOIC) TOP VIEW OUT_A IN-_A IN+_A VS1 2 3 4 8 7 6 5 VS+ OUT_B IN-_B IN+_B 2 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Pin Configurations (Continued) ISL28413 (14 LD TSSOP, 14 LD SOIC) TOP VIEW OUT_A 1 IN-_A 2 IN+_A 3 VS+ 4 IN+_B 5 IN-_B 6 OUT_B 7 14 OUT_D 13 IN-_D 12 IN+_D 11 VS10 IN+_C 9 IN-_C 8 OUT_C Pin Descriptions PIN NUMBER TSSOP14, PIN NAME SC70-5 SOT23-5 MSOP8, SO8 14 LD SOIC OUT OUT_A OUT_B OUT_C OUT_D 4 1 1 7 1 7 8 14 DESCRIPTION Output V+ OUT VCIRCUIT 1 VS- 2 2 4 11 Negative supply voltage V CAPACITIVELY TRIGGERED ESD CLAMP VCIRCUIT 2 IN+ IN+_A IN+_B IN+_C IN+_D ININ-_A IN-_B IN-_C IN-_D VS+ 1 3 3 5 3 5 10 12 Positive Input V+ IN- IN+ 3 4 2 6 2 6 9 13 4 Negative Input VCIRCUIT 3 5 5 8 Positive supply voltage See Circuit 2 3 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Absolute Maximum Ratings (TA = +25°C) Supply Voltage. . . . . . . . . . . . . . Supply Turn-on Voltage Slew Rate Differential Input Current . . . . . . Differential Input Voltage . . . . . . Input Voltage. . . . . . . . . . . . . . . ESD Rating Human Body Model . . . . . . . . . Machine Model ISL28113, ISL28213 . . . . . . . ISL28413. . . . . . . . . . . . . . . Charged Device Model . . . . . . . . . . . . . . . . . ............ ............ ............ ............ . V- - 0.5V to V+ . .6.5V . 1V/µs . 20mA . 0.5V + 0.5V Thermal Information Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 5 Ld SC-70 (Notes 4, 5) . . . . . . . . 250 N/A 5 Ld SOT-23 (Notes 4, 5) . . . . . . . 225 N/A 8 Ld MSOP (Notes 4, 5) . . . . . . . . 180 100 8 Ld SO Package (Notes 4, 5) . . . . 126 90 14 Ld TSSOP Package (Notes 4, 5) 120 40 14 Ld SOIC Package (Notes 4, 5) . 90 50 Ambient Operating Temperature Range. . . . -40°C to +125°C Storage Temperature Range . . . . . . . . . . . -65°C to +150°C Operating Junction Temperature . . . . . . . . . . . . . . +125°C Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp . . . . . . . . . . . . . . 4000V . . . . . . . . . . . . . . . 350V . . . . . . . . . . . . . . . 400V . . . . . . . . . . . . . . 2000V CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 5. For θJC, the “case temp” location is the top of the package. Electrical Specifications VS+ = 5V, VS- = 0V, RL = Open, VCM = VS/2, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C, unless otherwise specified. CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT PARAMETER DC SPECIFICATIONS VOS DESCRIPTION Input Offset Voltage -5 -6 0.5 5 6 mV mV µV/°C pA pA pA pA pA V Ω pF dB dB dB dB V V TCVOS IOS IB Input Offset Voltage Temperature Coefficient Input Offset Current Input Bias Current -40°C to +125°C 2 1 10 30 20 100 ISL28113 -20 -100 3 ISL28213, ISL28413 -20 -50 3 20 50 +5.1V Common Mode Input Voltage Range ZIN CIN CMRR Input Impedance Input Capacitance Common Mode Rejection Ratio VCM = -0.1V to 5.1V - 0.1V 1012 1 72 70 PSRR Power Supply Rejection Ratio Vs =1.8V to 5.5V 71 70 VOH Output Voltage Swing, High RL = 10kΩ 4.985 4.98 4.993 VOL Output Voltage Swing, Low RL = 10kΩ 13 15 20 mV mV V V+ Supply Voltage 1.8 5.5 4 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Electrical Specifications VS+ = 5V, VS- = 0V, RL = Open, VCM = VS/2, TA = +25°C, unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C, unless otherwise specified. CONDITIONS RL = OPEN MIN (Note 6) TYP 90 MAX (Note 6) 130 170 ISC+ ISCOutput Source Short Circuit Current Output Sink Short Circuit Current RL = 10Ω to VRL = 10Ω to V+ -22 16 UNIT µA µA mA mA PARAMETER IS DESCRIPTION Supply Current per Amplifier AC SPECIFICATIONS GBWP Gain Bandwidth Product VS = ±2.5V AV = 100, RF = 100kΩ, RG = 1kΩ, RL = 10kΩ to VCM VS = ±2.5V f = 0.1Hz to 10Hz VS = ±2.5V f = 1kHz VS = ±2.5V f = 1kHz VS = ±2.5V f = 1MHz 2 MHz eN VP-P eN iN Cin Peak-to-Peak Input Noise Voltage Input Noise Voltage Density Input Noise Current Density Differential Input Capacitance Common Mode Input Capacitance 14 55 5 1.0 1.3 µVP-P nV/√(Hz) fA/√(Hz) pF pF TRANSIENT RESPONSE SR tr, tf, Small Signal Slew Rate 20% to 80% VOUT Rise Time, tr 10% to 90% Fall Time, tf 10% to 90% ts Settling Time to 0.1%, 4VP-P Step VOUT = 0.5V to 4.5V VS = ±2.5V AV = +1, VOUT = 0.05VP-P, RF = 0Ω, RL = 10kΩ, CL = 15pF VS = ±2.5V AV = +1, RF = 0Ω, RL = 10kΩ, CL = 1.2pF 1 100 115 V/µs ns ns 7.5 µs NOTE: 6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. 5 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Typical Performance Curves 50 40 30 20 IBIAS (pA) 10 0 -10 -20 -30 -40 -50 -40 SIMULATION -20 0 20 40 60 80 100 120 140 VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified. INPUT NOISE VOLTAGE (nV/√Hz) 10,000 V+ = ±2.5V AV = 1 1000 100 10 1 10 100 1k 10k 100k FREQUENCY (Hz) TEMPERATURE (°C) FIGURE 1. INPUT BIAS CURRENT vs TEMPERATURE FIGURE 2. INPUT NOISE VOLTAGE SPECTRAL DENSITY 120 100 OPEN LOOP GAIN (dB) 80 60 40 20 0 -20 V+ = ±0.9V RL = 100k -40 CL = 10pF -60 SIMULATION -80 0.1 1 10 100 PHASE GAIN 20 0 OPEN LOOP GAIN (dB) -20 -40 PHASE (°) -60 -80 -100 -120 -140 -160 1k 10k 100k FREQUENCY (Hz) 1M -180 10M 100M 120 100 80 60 40 20 0 -20 -40 -60 V+ = ±2.5V RL = 100k CL = 10pF SIMULATION 1 10 100 PHASE GAIN 20 0 -20 -40 -60 -80 -100 -120 -140 -160 1k 10k 100k FREQUENCY (Hz) 1M -180 10M 100M -80 0.1 FIGURE 3. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 100kΩ, CL = 10pF, VS = ±0.9V FIGURE 4. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 100kΩ, CL = 100F, VS = ±2.5V 80 70 60 80 70 60 PSRR (dB ) PSRR- VS = ±2.5V PSRR- VS = ±0.9V CMRR (dB) 50 40 30 20 10 0 0.01 SIMULATION 0.1 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M 50 40 30 PSRR+ VS = ±0.9V PSRR+ VS = ±2.5V RL = INF 20 C = 4pF L 10 AV = +1 VCM = 100mVP-P 0 100 1k 10k 100k FREQUENCY (Hz) 1M 10M FIGURE 5. CMRR vs FREQUENCY, VS = ±2.5 FIGURE 6. PSRR vs FREQUENCY, VS = ±0.9V, ±2.5V 6 FN6728.3 December 22, 2009 PHASE (°) ISL28113, ISL28213, ISL28413 Typical Performance Curves 70 60 50 GAIN (dB) 40 30 20 10 0 AV = 10 Rg = 10k, Rf = 100k AV = 1 Rg = OPEN, Rf = 0 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M AV = 100 AV = 1000 Rg = 100, Rf = 100k VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified. (Continued) 1 0 NORMALIZED GAIN (dB) Rg = 1k, Rf = 100k V+ = ±2.5V CL = 4pF RL = 10k VOUT = 50mVP-P -1 -2 -3 -4 -5 -6 -7 -8 VOUT = 10mVP-P VOUT = 50mVP-P VOUT = 100mVP-P VS = ±2.5V CL = 4pF AV = +1 RL = 10k 1k VOUT = 200mVP-P VOUT = 500mVP-P VOUT = 1VP-P 10k 100k FREQUENCY (Hz) 1M 10M -10 10 -9 100 FIGURE 7. FREQUENCY RESPONSE vs CLOSED LOOP GAIN FIGURE 8. FREQUENCY RESPONSE vs VOUT 1 0 NORMALIZED GAIN (dB) NORMALIZED GAIN (dB) -1 -2 -3 -4 -5 -6 -7 -8 V+ = ±2.5V CL = 4pF AV = +1 VOUT = 50mVP-P 1k RL = 1k RL = 499 RL = 100 1M 10M RL = 49.9k RL = 10k RL = 4.99k 6 5 4 3 2 1 0 -1 VS = ±2.5V RL = 10k -2 AV = +1 -3 VOUT = 50mVP-P -4 1k 10k CL = 104pF CL = 26pF CL = 4pF 1M 10M CL = 1004pF CL = 474pF CL = 224pF -9 100 10k 100k FREQUENCY (Hz) 100k FREQUENCY (Hz) FIGURE 9. GAIN vs FREQUENCY vs RL FIGURE 10. GAIN vs FREQUENCY vs CL 1 0 NORMALIZED GAIN (dB) -1 CROSS-TALK (dB) -2 -3 -4 -5 -6 CL = 4pF RL = 10k -7 AV = +1 -8 VOUT = 50mVP-P -9 10k VS = ±2.5V VS = ±1.75V VS = ±1.25V VS = ±0.9V 10M 140 120 100 80 60 40 20 0 10 VS = ±2.5V RL-DRIVER = INF RL-RECEIVER = 10k CL = 4pF AV = +1 VSOURCE = 1VP-P 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 100k 1M FREQUENCY (Hz) FIGURE 11. GAIN vs FREQUENCY vs SUPPLY VOLTAGE FIGURE 12. CROSSTALK, VS = ±2.5V 7 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Typical Performance Curves 30 20 10 0 -10 -20 -30 VS = ±2.5V RL = 10k CL = 15pF AV = +1 VOUT = 50mVP-P VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified. (Continued) 3 2 LARGE SIGNAL (V) 1 VS = ±0.9V 0 -1 -2 -3 RL = 10k CL = 15pF AV = +1 VOUT = RAIL VS = ±2.5V SMALL SIGNAL (mV) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 TIME (ns) 0 2 4 6 8 10 12 TIME (ms) 14 16 18 20 FIGURE 13. SMALL SIGNAL TRANSIENT RESPONSE, VS = ±2.5V FIGURE 14. LARGE SIGNAL TRANSIENT RESPONSE vs RL VS = ±0.9V, ±2.5V 0.1 0 -0.1 INPUT (V) -0.2 -0.3 -0.4 -0.5 -0.6 0 1 2 3 4 5 6 TIME (ms) 7 8 9 INPUT RL = INF CL = 15pF AV =10 Rf = 9.09k, Rg = 1k OUTPUT @ VS=±0.9V OUTPUT @ VS = ±2.5V 0.5 0 OUTPUT (V) -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 10 0.6 0.5 0.4 INPUT (V) 0.3 0.2 0.1 0 INPUT -0.1 0 1 2 3 4 5 6 TIME (ms) 7 8 9 OUTPUT @ VS = ±2.5V 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 10 OUTPUT (V) OUTPUT @ VS=±0.9V RL = INF CL = 15pF AV =10 Rf = 9.09k, Rg = 1k FIGURE 15. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±0.9V, ±2.5V FIGURE 16. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±0.9V, ±2.5V 90 OVERSHOOT (%) 60 50 40 30 20 10 0 10 O V ER O SH V ER O O SH T O + O T - VS = ±2.5V 80 RL = 10k AV = 1 70 V OUT = 50mVP-P 100 1k CAPACITANCE (pF) 10k FIGURE 17. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±2.5V 8 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Applications Information Functional Description The ISL28113, ISL28213 and ISL28413 are single, dual and quad, CMOS rail-to-rail input, output (RRIO) micropower operational amplifiers. They are designed to operate from single supply (1.8V to 5.5V) or dual supply (±0.9V to ±2.75V). The parts have an input common mode range that extends 100mV above and below the power supply voltage rails. The output stage can swing to within 15mV of the supply rails with a 10kΩ load. Power Dissipation It is possible to exceed the +125°C maximum junction temperatures under certain load, power supply conditions and ambient temperature conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1: T JMAX = T MAX + θ JA xPD MAXTOTAL (EQ. 1) Input ESD Diode Protection All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. They also contain back-to-back diodes across the input terminals (see “Pin Descriptions - Circuit 1” on page 3). For applications where the input differential voltage is expected to exceed 0.5V, an external series resistor must be used to ensure the input currents never exceed 20mA (see Figure 18). where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) • PDMAX for each amplifier can be calculated using Equation 2: V OUTMAX PD MAX = V S × I qMAX + ( V S - V OUTMAX ) × --------------------------R L (EQ. 2) where: • TMAX = Maximum ambient temperature VIN RIN + RL VOUT • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Total supply voltage • IqMAX = Maximum quiescent supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance FIGURE 18. INPUT CURRENT LIMITING Although the amplifier is fully protected, high input slew rates that exceed the amplifier slew rate (±1V/µs) may cause output distortion. Output Phase Reversal Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL28113, ISL28213 and ISL28413 are immune to output phase reversal, even when the input voltage is 1V beyond the supplies. ISL28113, ISL28213 and ISL28413 SPICE Model Figure 20 shows the SPICE model schematic and Figure 21 shows the net list for the SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain and Phase. The DC parameters are IOS, total supply current and output voltage swing. The model uses typical parameters given in the “Electrical Specifications” Table beginning on page 4. The AVOL is adjusted for 85dB with the dominate pole at 100Hz. The CMRR is set 72dB, f = 35kHz). The input stage models the actual device to present an accurate AC representation. The model is configured for ambient temperature of +25°C. Figures 22 through 31 show the characterization vs simulation results for the Noise Voltage, Closed Loop Gain vs Frequency, Large Signal 5V Step Response, CMRR and Open Loop Gain Phase. Unused Channels If the application requires less than all amplifiers one channel, the user must configure the unused channel(s) to prevent it from oscillating. The unused channel(s) will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the inverting input and ground the positive input (as shown in Figure 19). + FIGURE 19. PREVENTING OSCILLATIONS IN UNUSED CHANNELS 9 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 LICENSE STATEMENT The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as “Licensee”, a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted. The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee’s company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only. This macro-model is provided “AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.” In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice. 10 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 En Vin+ + R21 800E3 Voltage Noise Stage V++ + 28 29 DN D13 V9 - + 2 - V1 1E-6V En 0.00035V I2 5E-3 G1A R22 5E11 CinDiff R23 5E11 1.02pF + - + In+ Vc Vmid 1 M14 R2 R1 1.0004 1.0004 3 4 R3 10 7 R4 10 6 M15 + 14 RA1 1 R9 100 RA2 1 DX D1 DX D2 15 R10 1E9 Vin- Cin1 1.26pF Cin2 1.26pF I1 5E-3 IOS 25E-12 + 1E-6V V2 V-- Input Stage V++ 4 D3 DX + V3 - 0.61V 16 Vg D5 DX + V5 - 0.604V 318.329E3 R13 C2 5.0nF G1 G3 R11 1 + - 17 + - 19 5 Vc Vmid Vc Vmid G2 + 18 V4 0.61V R12 1 G4 20 D6 DX + - R14 318.329E3 V-VCM V++ D4 DX VCM 1ST Gain Stage (Cont) 2nd Gain Stage Mid Supply Ref Common Mode Gain Stage G7 V+ V+ C4 10pF + - + - E2 + - D9 DX 26 27 D10 DX V7 + - Vg Vmid V- ISY 90uA R17 5305.32 23 D7 DX 24 0.08V D8 DX V8 25 0.08V G12 D11 DY + - R18 5305.32 + + E3 V- + G8 C3 10pF + G9 + G10 D12 DY V-- Supply Isolation Stage Pole Stage Output Stage FIGURE 20. SPICE SCHEMATIC 11 + - + - 0.604V + V6 C3 5.0nF E4 + - + - + - + M16 9 R5 10 11 R7 1 8 10 R6 10 12 R8 1 M17 4 5 Vc Vmid EOS 5 G2A 13 V-VCM 1ST Gain Stage V++ G5 L1 4.5474 21 R15 1E6 + - Vg R16 1E6 22 L2 4.5474 V-Vmid G6 + - G11 + VOUT R19 50 VOUT R20 50 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 * source ISL28113_SPICEmodel * Revision C, LaFontaine October 9th 2009 * Model for Noise, supply currents, CMRR 72dB f=35kHz ,AVOL 85dB f=100Hz * SR = 1.0V/us, GBWP 2MHz, 2nd pole 3MHz Output voltage clamp and short ckt I limit *Copyright 2009 by Intersil Corporation *Refer to data sheet “LICENSE STATEMENT” Use of *this model indicates your acceptance with the *terms and provisions in the License Statement. * Connections: +input * | -input * | | +Vsupply * | | | -Vsupply * | | | | output * | | | | | .subckt ISL28113subckt Vin+ Vin- V+ VVOUT * source ISL28113_DS rev1 * *Voltage Noise E_En VIN+ EN 28 0 1 D_D13 29 28 DN V_V9 29 0 .00035 R_R21 28 0 800E3 TC=0,0 * *Input Stage M_M14 3 1 5 5 NCHANNELMOSFET M_M15 4 VIN- 6 6 NCHANNELMOSFET M_M16 11 VIN- 9 9 PMOSISIL M_M17 12 1 10 10 PMOSISIL I_I1 7 V-- DC 5e-3 I_I2 V++ 8 DC 5e-3 I_IOS VIN- 1 DC 25e-12 G_G1A V++ 14 4 3 1404 G_G2A V-- 14 11 12 1404 V_V1 V++ 2 1e-6 V_V2 13 V-- 1e-6 R_R1 3 2 1.0004 TC=0,0 R_R2 4 2 1.0004 TC=0,0 R_R3 5 7 10 TC=0,0 R_R4 7 6 10 TC=0,0 R_R5 9 8 10 TC=0,0 R_R6 8 10 10 TC=0,0 R_R7 13 11 1 TC=0,0 R_R8 13 12 1 TC=0,0 R_RA1 14 V++ 1 TC=0,0 R_RA2 V-- 14 1 TC=0,0 C_CinDif VIN- EN 1.02E-12 TC=0,0 C_Cin1 V-- EN 1.26e-12 TC=0,0 C_Cin2 V-- VIN- 1.26e-12 TC=0,0 * *1st Gain Stage G_G1 V++ 16 15 VMID 334.753e-3 G_G2 V-- 16 15 VMID 334.753e-3 V_V3 17 16 .61 V_V4 16 18 .61 D_D1 15 VMID DX D_D2 VMID 15 DX D_D3 17 V++ DX D_D4 V-- 18 DX R_R9 15 14 100 TC=0,0 R_R10 15 VMID 1e9 TC=0,0 R_R11 16 V++ 1 TC=0,0 R_R12 V-- 16 1 TC=0,0 * *2nd Gain Stage G_G3 V++ VG 16 VMID 24.893e-3 G_G4 V-- VG 16 VMID 24.893e-3 V_V5 19 VG .604 V_V6 VG 20 .604 D_D5 19 V++ DX D_D6 V-- 20 DX R_R13 VG V++ 318.329e3 TC=0,0 R_R14 V-- VG 318.329e3 TC=0,0 C_C2 VG V++ 5E-09 TC=0,0 C_C3 V-- VG 5E-09 TC=0,0 * *Mid supply Ref E_E4 VMID V-- V++ V-- 0.5 E_E2 V++ 0 V+ 0 1 E_E3 V-- 0 V- 0 1 I_ISY V+ V- DC 90e-6 * *Common Mode Gain Stage with Zero G_G5 V++ VC VCM VMID 2.5118E-10 G_G6 V-- VC VCM VMID 2.5118E-10 E_EOS 1 EN VC VMID 1 R_R15 VC 21 1e6 TC=0,0 R_R16 22 VC 1e6 TC=0,0 R_R22 EN VCM 5e11 TC=0,0 R_R23 VCM VIN- 5e11 TC=0,0 L_L1 21 V++ 4.5474 L_L2 22 V-- 4.5474 * *Pole Satge G_G7 V++ 23 VG VMID 188.49e-6 G_G8 V-- 23 VG VMID 188.49e-6 R_R17 23 V++ 5305.32 TC=0,0 R_R18 V-- 23 5305.32 TC=0,0 C_C4 23 V++ 10e-12 TC=0,0 C_C5 V-- 23 10e-12 TC=0,0 * *Output Stage with Correction Current Sources G_G9 26 V-- VOUT 23 0.02 G_G10 27 V-- 23 VOUT 0.02 G_G11 VOUT V++ V++ 23 0.02 G_G12 V-- VOUT 23 V-- 0.02 V_V7 24 VOUT .08 V_V8 VOUT 25 .08 D_D7 23 24 DX D_D8 25 23 DX D_D9 V++ 26 DX D_D10 V++ 27 DX D_D11 V-- 26 DY D_D12 V-- 27 DY R_R19 VOUT V++ 50 TC=0,0 R_R20 V-- VOUT 50 TC=0,0 .model pmosisil pmos (kp=16e-3 vto=-0.6) .model NCHANNELMOSFET nmos (kp=3e-3 vto=0.6) .model DN D(KF=6.69e-9 AF=1) .MODEL DX D(IS=1E-12 Rs=0.1) .MODEL DY D(IS=1E-15 BV=50 Rs=1) .ends ISL28113subckt FIGURE 21. SPICE NET LIST 12 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Characterization vs Simulation Results INPUT NOISE VOLTAGE (nV/√Hz) V+ = ±2.5V AV = 1 INPUT NOISE VOLTAGE (nV/√Hz) 10,000 10 (A) AC sims.dat (active) 1000 1.0 100 10 1 10 100 1k FREQUENCY (Hz) 10k 100k 100 1.0 10 100 1.0k FREQUENCY (Hz) 10k 100k FIGURE 22. CHARACTERIZED INPUT NOISE VOLTAGE FIGURE 23. SIMULATED INPUT NOISE VOLTAGE 70 60 50 GAIN (dB) 40 30 20 10 0 AV = 10 AV = 100 AV = 1000 70 Rg = 100, Rf = 100k 60 Rg = 1k, Rf = 100k GAIN (dB) V+ = ±2.5V CL = 4pF RL = 10k VOUT = 50mVP-P 40 (A) AC sims.dat (active) 20 Rg = 10k, Rf = 100k AV = 1 Rg = OPEN, Rf = 0 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M 0 -10 10 100 1.0k 10k 100k 1.0M FREQUENCY (Hz) 10M 100M -10 10 FIGURE 24. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY FIGURE 25. SIMULATED CLOSED LOOP GAIN vs FREQUENCY 3 2 LARGE SIGNAL (V) 1 VS = ±0.9V 0 -1 -2 -3 RL = 10k CL = 15pF AV = +1 VOUT = RAIL VS = ±2.5V LARGE SIGNAL (V) 3 2 1 (A) AC sims.dat (active) VOUT VS = ±2.5V VIN -0 -1 -2 -3 RL = 10k CL = 15pF AV = +10 VOUT = RAIL 0 5 10 15 TIME (µs) 20 25 30 0 2 4 6 8 10 12 14 16 18 20 TIME (ms) FIGURE 26. CHARACTERIZED LARGE SIGNAL TRANSIENT RESPONSE vs RL, VS = ±0.9V, ±2.5V FIGURE 27. SIMULATED LARGE SIGNAL TRANSIENT RESPONSE vs RL, VS = ±0.9V, ±2.5V 13 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Characterization vs Simulation Results (Continued) 100 OPEN LOOP GAIN (dB) 80 60 40 20 0 -20 V+ = ±2.5V RL = 100k -40 CL = 10pF -60 SIMULATION -80 0.1 1 10 PHASE GAIN 0 -20 -40 PHASE (°) -60 -80 OPEN LOOP GAIN (dB)/PHASE (°) 120 20 200 (A) AC sims.dat (active) 160 120 -100 -120 -140 -160 100 1k 10k 100k FREQUENCY (Hz) 1M -180 10M 100M 80 40 0 0.01 0.1 1.0 10 100 1.0k 10k 100k 1.0M 10M 100M FREQUENCY (Hz) FIGURE 28. SIMULATED (DESIGN) OPEN-LOOP GAIN, PHASE vs FREQUENCY FIGURE 29. SIMULATED (SPICE) OPEN-LOOP GAIN, PHASE vs FREQUENCY 80 70 60 CMRR (dB) 50 40 30 20 10 0 0.01 SIMULATION 0.1 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M CMRR (dB ) 80 (A) AC sims.dat (active) 60 40 20 0 0.01 0.1 1.0 10 100 1.0k 10k 100k 1.0M 10M 100M FREQUENCY (Hz) FIGURE 30. SIMULATED (DESIGN) CMRR FIGURE 31. SIMULATED (SPICE) CMRR 14 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to Web to make sure you have the latest Rev. DATE 12/16/09 REVISION FN6728.3 CHANGE Removed “Coming Soon” from MSOP package options in the “Ordering Information” on page 2. Updated the Theta JA for the MSOP package option from 170°C/W to 180°C/W on page 4. Removed “Coming Soon” from SC70 and SOT-23 package options in the “Ordering Information” on page 2. Changed theta Ja to 250 from 300. Added license statement (page 10) and reference in spice model (page 12). Initial Release 11/17/09 11/12/09 10/26/09 FN6728.2 FN6728.1 FN6728.0 Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. *For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL28113, ISL28213, ISL28413 To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php 15 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Small Outline Transistor Plastic Packages (SC70-5) D P5.049 VIEW C e1 5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE INCHES MILLIMETERS MIN 0.80 0.00 0.80 0.15 0.15 0.08 0.08 1.85 1.80 1.15 MAX 1.10 0.10 1.00 0.30 0.25 0.22 0.20 2.15 2.40 1.35 6 6 3 3 4 5 0.25 Rev. 3 7/07 NOTES SYMBOL A MIN 0.031 0.000 0.031 0.006 0.006 0.003 0.003 0.073 0.071 0.045 MAX 0.043 0.004 0.039 0.012 0.010 0.009 0.009 0.085 0.094 0.053 5 E 1 2 3 4 C L C L E1 A1 A2 b b1 c c1 C e C L 0.20 (0.008) M C L C b D E E1 A A2 A1 SEATING PLANE -C- e e1 L L1 0.0256 Ref 0.0512 Ref 0.010 0.018 0.017 Ref. 0.006 BSC 0o 5 0.004 0.004 0.010 8o 0.65 Ref 1.30 Ref 0.26 0.46 0.420 Ref. 0.15 BSC 0o 5 0.10 0.15 8o 0.10 (0.004) C L2 WITH PLATING c b b1 c1 α N R R1 NOTES: BASE METAL 1. Dimensioning and tolerances per ASME Y14.5M-1994. 2. Package conforms to EIAJ SC70 and JEDEC MO-203AA. 3. Dimensions D and E1 are exclusive of mold flash, protrusions, or gate burrs. 4X θ1 R1 R GAUGE PLANE SEATING PLANE L C 4X θ1 VIEW C 0.4mm L1 4. Footlength L measured at reference to gauge plane. 5. “N” is the number of terminal positions. 6. These Dimensions apply to the flat section of the lead between 0.08mm and 0.15mm from the lead tip. 7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only. α L2 0.75mm 2.1mm 0.65mm TYPICAL RECOMMENDED LAND PATTERN 16 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 SOT-23 Package Family e1 A N 6 4 MDP0038 D SOT-23 PACKAGE FAMILY MILLIMETERS SYMBOL A A1 SOT23-5 1.45 0.10 1.14 0.40 0.14 2.90 2.80 1.60 0.95 1.90 0.45 0.60 5 SOT23-6 1.45 0.10 1.14 0.40 0.14 2.90 2.80 1.60 0.95 1.90 0.45 0.60 6 TOLERANCE MAX ±0.05 ±0.15 ±0.05 ±0.06 Basic Basic Basic Basic Basic ±0.10 Reference Reference Rev. F 2/07 NOTES: E1 2 3 E A2 b c 0.20 C 0.15 C D 2X 5 e B b NX 1 2 3 2X 0.20 M C A-B D D E E1 e e1 L L1 N 0.15 C A-B 2X C D 1 3 A2 SEATING PLANE 0.10 C NX A1 1. Plastic or metal protrusions of 0.25mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25mm maximum per side are not included. 3. This dimension is measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 5. Index area - Pin #1 I.D. will be located within the indicated zone (SOT23-6 only). (L1) H 6. SOT23-5 version has no center lead (shown as a dashed line). A GAUGE PLANE c L 0° +3° -0° 0.25 17 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Package Outline Drawing M8.118A 8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP) Rev 0, 9/09 A 3.0±0.1 8 0.25 CAB 3.0±0.1 4.9±0.15 DETAIL "X" 1.10 Max PIN# 1 ID 1 2 0.65 BSC TOP VIEW B SIDE VIEW 2 0.18 ± 0.05 0.95 BSC 0.86±0.09 H C SEATING PLANE 0.33 +0.07/ -0.08 0.08 C A B SIDE VIEW 1 0.10 ± 0.05 0.10 C GAUGE PLANE 0.25 3°±3° 0.55 ± 0.15 DETAIL "X" 5.80 4.40 3.00 NOTES: 1. 2. 3. Dimensions are in millimeters. Dimensioning and tolerancing conform to JEDEC MO-187-AA and AMSE Y14.5m-1994. Plastic or metal protrusions of 0.15mm max per side are not included. Plastic interlead protrusions of 0.25mm max per side are not included. Dimensions “D” and “E1” are measured at Datum Plane “H”. This replaces existing drawing # MDP0043 MSOP 8L. 0.65 0.40 1.40 TYPICAL RECOMMENDED LAND PATTERN 5. 6. 4. 18 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Package Outline Drawing M8.15E 8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09 4 4.90 ± 0.10 A DETAIL "A" 0.22 ± 0.03 B 6.0 ± 0.20 3.90 ± 0.10 4 PIN NO.1 ID MARK 5 (0.35) x 45° 1.27 0.43 ± 0.076 0.25 M C A B 4° ± 4° SIDE VIEW “B” TOP VIEW 1.75 MAX 1.45 ± 0.1 0.25 0.175 ± 0.075 GAUGE PLANE C SEATING PLANE 0.10 C SIDE VIEW “A 0.63 ±0.23 DETAIL "A" (1.27) (0.60) NOTES: (1.50) 1. Dimensions are in millimeters. Dimensions in ( ) for Reference Only. Dimensioning and tolerancing conform to AMSE Y14.5m-1994. Unless otherwise specified, tolerance : Decimal ± 0.05 Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. 5. 6. The pin #1 identifier may be either a mold or mark feature. Reference to JEDEC MS-012. 2. (5.40) 3. 4. TYPICAL RECOMMENDED LAND PATTERN 19 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Small Outline Package Family (SO) A D N (N/2)+1 h X 45° A E E1 PIN #1 I.D. MARK c SEE DETAIL “X” 1 B (N/2) L1 0.010 M C A B e C H A2 GAUGE PLANE A1 0.004 C 0.010 M C A B b DETAIL X SEATING PLANE L 4° ±4° 0.010 MDP0027 SMALL OUTLINE PACKAGE FAMILY (SO) INCHES SYMBOL A A1 A2 b c D E E1 e L L1 h N NOTES: 1. Plastic or metal protrusions of 0.006” maximum per side are not included. 2. Plastic interlead protrusions of 0.010” maximum per side are not included. 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994 SO-8 0.068 0.006 0.057 0.017 0.009 0.193 0.236 0.154 0.050 0.025 0.041 0.013 8 SO-14 0.068 0.006 0.057 0.017 0.009 0.341 0.236 0.154 0.050 0.025 0.041 0.013 14 SO16 (0.150”) 0.068 0.006 0.057 0.017 0.009 0.390 0.236 0.154 0.050 0.025 0.041 0.013 16 SO16 (0.300”) (SOL-16) 0.104 0.007 0.092 0.017 0.011 0.406 0.406 0.295 0.050 0.030 0.056 0.020 16 SO20 (SOL-20) 0.104 0.007 0.092 0.017 0.011 0.504 0.406 0.295 0.050 0.030 0.056 0.020 20 SO24 (SOL-24) 0.104 0.007 0.092 0.017 0.011 0.606 0.406 0.295 0.050 0.030 0.056 0.020 24 SO28 (SOL-28) 0.104 0.007 0.092 0.017 0.011 0.704 0.406 0.295 0.050 0.030 0.056 0.020 28 TOLERANCE MAX ±0.003 ±0.002 ±0.003 ±0.001 ±0.004 ±0.008 ±0.004 Basic ±0.009 Basic Reference Reference NOTES 1, 3 2, 3 Rev. M 2/07 20 FN6728.3 December 22, 2009 ISL28113, ISL28213, ISL28413 Thin Shrink Small Outline Package Family (TSSOP) 0.25 M C A B D N (N/2)+1 A MDP0044 THIN SHRINK SMALL OUTLINE PACKAGE FAMILY MILLIMETERS SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE PIN #1 I.D. A A1 A2 b c D E E1 e H 1.20 0.10 0.90 0.25 0.15 5.00 6.40 4.40 0.65 0.60 1.00 1.20 0.10 0.90 0.25 0.15 5.00 6.40 4.40 0.65 0.60 1.00 1.20 0.10 0.90 0.25 0.15 6.50 6.40 4.40 0.65 0.60 1.00 1.20 0.10 0.90 0.25 0.15 7.80 6.40 4.40 0.65 0.60 1.00 1.20 0.10 0.90 0.25 0.15 9.70 6.40 4.40 0.65 0.60 1.00 Max ±0.05 ±0.05 +0.05/-0.06 +0.05/-0.06 ±0.10 Basic ±0.10 Basic ±0.15 Reference Rev. F 2/07 E E1 1 B TOP VIEW (N/2) 0.20 C B A 2X N/2 LEAD TIPS C SEATING PLANE e 0.05 L L1 NOTES: b 0.10 C N LEADS SIDE VIEW 0.10 M C A B 1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side. 2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25mm per side. 3. Dimensions “D” and “E1” are measured at dAtum Plane H. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. SEE DETAIL “X” c END VIEW L1 A A2 GAUGE PLANE 0.25 A1 DETAIL X L 0° - 8° For additional products, see www.intersil.com/product_tree Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 21 FN6728.3 December 22, 2009
ISL28413 价格&库存

很抱歉,暂时无法提供与“ISL28413”相匹配的价格&库存,您可以联系我们找货

免费人工找货