0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL35822LP

ISL35822LP

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    ISL35822LP - Octal 2.488Gbps to 3.187Gbps/ Lane Retimer - Intersil Corporation

  • 数据手册
  • 价格&库存
ISL35822LP 数据手册
® ISL35822 D ata Sheet June 29, 2005 FN6165.0.0 Octal 2.488Gbps to 3.187Gbps/ Lane Retimer Features • 8 Lanes of Clock & Data Recovery and Retiming; 4 in Each Direction • Differential Input/Output • Wide Operating Data Rate Range: 2.488Gbps to 3.1875Gbps, and 1.244Gbps to 1.59325Gbps • Ultra Low-Power Operation (163mW typical per lane, 1300mW typical total consumption, LX4 mode) • Low Power Version Available for LX4 Applications • 17mm Square Low Profile 192 pin 1.0mm Pitch EBGA-B Package • Compliant to the IEEE 802.3 10GBASE-LX4(WWDM), 10GBASE-CX4, and XAUI Specifications • Reset Jitter Domain • Meets 802.3ae and 802.3ak Jitter Requirements with Significant Margin • Received Data Aligned to Local Reference Clock for Retransmission • Increase Driving Distance • LX4: Up to 40 inches of FR-4 Traces or 500 Meters of MMF Fiber at 3.1875Gbps • CX4: Over 15 meters of Compatible Cable • Deskewing and Lane-to-Lane Alignment • 0.13mm Pure-Digital CMOS Technology • 1.5V Core Supply, Control I/O 2.5V Tolerant • Clock Compensation • Tx/Rx Rate Matching via IDLE Insertion/Deletion up to ±100ppm Clock Difference • Receive Signal Detect and 16 Levels of Receiver Equalization for Media Compensation • CML CX4 Transmission Output with 16 Settable Levels of Pre-Emphasis, Eight on XAUI Side • Single-Ended or Differential Input Lower-Speed Reference Clock • Ease of Testing • Complete Suite of Ingress-Egress Loopbacks • Full 802.3ae Pattern Generation and Test, including CJPAT & CRPAT • PRBS (both 223-1 and 13458 byte) Built-In Self Tests, Error Flags and Count Output • JTAG and AC-JTAG Boundary Scan • Long Run Length (512 bit) Frequency Lock Ideal for Proprietary Encoding Schemes • Extensive Configuration and Status Reporting via 802.3 Clause 45 Compliant MDC/MDIO Serial Interface • Automatic Load of ISL35822 Control and all XENPAK Registers from EEPROM or DOM Circuit Figure 1. FUNCTIONAL BLOCK DIAGRAM Egress 3 Egress 2 Egress 1 Egress 0 Ingress 3 Ingress 2 Ingress 1 Ingress 0 Receive Parallel Data RX0N RX0P Clock & Data Recovery Deserializer and Comma Detector 8B/10B Decoder Receive FIFO 8B/10B Encoder & Mux TX0N TX0P RFCP RFCN Clock Multiplier 3.125G MDIO MDC MDIO/MDC Register File I2C Interface SCL SDA 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2005. All Rights Reserved All other trademarks mentioned are the property of their respective owners. ISL35822 Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Signal Detection, Termination & Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Byte Alignment (Code-Group Alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8b/10b Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Deskew (Lane to Lane) Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitter Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8b/10b Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8b/10b Coding and Decoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bit Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error Indications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Byte or Lane Synchronization Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Channel Fault Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Coding Violation, Disparity & FIFO Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PMA Loopback (1.0.0 & 1.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCS Parallel Network Loopback (3.C004.[3:0]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Test Loopbacks (1.C004.12 & 4.C004.12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDIO Register Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Space Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NVR Registers & EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-Configuring Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DOM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose (GPIO) Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LASI Registers & I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reading Additional EEPROM Space Via the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Writing EEPROM Space through the I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 5 9 9 9 9 10 10 10 10 10 11 11 11 11 12 12 13 13 13 13 13 13 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 19 2 ISL35822 Block Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Byte Writes to EEPROM Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PMA/PMD DEVICE 1 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PMA/PMD Registers (1.0 to 1.15/1.000F’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XENPAK-Defined Registers (1.8000’h to 1.8106’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XENPAK LASI and DOM Registers (1.9000’h to 1.9007’h & 1.A000’h to 1.A100’h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PMA/PMD and GPIO Registers (1.C001’h to 1.C01D’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCS DEVICE 3 MDIO REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PCS Registers (3.0 to 3.25/3.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PCS Registers (3.C000’h to 3.C00E’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PHY XS DEVICE 4 MDIO REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE PHY XS Registers (4.0 to 4.25/4.0019’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vendor-Specific PHY XS Registers (4.C000’h to 4.C00B’h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-Configure Register List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG & AC-JTAG Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIST Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC and Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CX4/LX4/XAUI Re-timer Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Analog Power and Ground Plane Splits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Power Supply Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XENPAK/XPAK/X2 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LX4 Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDIO/MDC Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DOM Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LASI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intersil Corporation Contact Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 19 21 24 27 33 38 39 41 45 46 47 51 53 53 55 58 59 60 60 60 61 63 65 70 70 70 71 71 72 72 72 72 73 73 75 75 3 ISL35822 List of Figures Figure 1. FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 3. PRE-EMPHASIS OUTPUT ILLUSTRATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC). . . . . . . . . . . . . . Figure 5. LASI EQUIVALENT SCHEMATIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 6. BLOCK DIAGRAM OF BIST OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 7. TOP VIEW OF PINOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 8. EBGA-192 PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 9. DIFFERENTIAL OUTPUT SIGNAL TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 10. LANE TO LANE DIFFERENTIAL SKEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 11. EYE DIAGRAM DEFINITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 12. BYTE SYNCHRONIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 13. LANE-LANE ALIGNMENT OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 14. RETRANSMIT LATENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 15. MDIO FRAME AND REGISTER TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 16. MDIO INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 17. MDIO TIMING AFTER SOFT RESET (D.0.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 18. BEGINNING I2C NVR READ AT THE END OF RESET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 19. I2C BUS INTERFACE PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 20. NVR/DOM SEQUENTIAL READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 22. I2C SINGLE BYTE READ OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 23. SINGLE BYTE WRITE OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 24. I2C OPERATION TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 25. VDDPR CLAMP CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Figure 26. RESISTIVE DIVIDER CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 11 14 18 54 58 59 65 65 65 66 66 66 67 67 68 68 68 69 69 69 69 70 74 74 4 ISL35822 List of Tables Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 2. DEVAD DEVICE ADDRESS TABLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 3. MDIO MANAGEMENT FRAME FORMATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 5. IEEE PMA/PMD CONTROL 1 REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 6. IEEE PMA/PMD STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 8. IEEE DEVICES IN PACKAGE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 9. IEEE PMA/PMD TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . Table 11. IEEE TRANSMIT DISABLE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 12. IEEE PMD SIGNAL DETECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 14. IEEE PACKAGE IDENTIFIER REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 15. XENPAK NVR CONTROL & STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 20. NVR I2C OPERATION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 21. NVR I2C OPERATION STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 22. XENPAK NVR REGISTER COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 26. XENPAK LASI CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 27. XENPAK LASI RX_ALARM STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 28. XENPAK LASI TX_ALARM STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 29. XENPAK LASI STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 36. XENPAK DOM ALARM FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 37. XENPAK DOM WARNING FLAGS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 39. PMA CONTROL 2 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 41. PMA PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 43. PMA/PMD EQUALIZATION CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 15 15 19 21 21 21 22 22 22 23 23 23 24 24 24 24 24 25 25 25 26 26 27 27 27 28 28 29 29 29 30 30 31 32 32 32 33 33 34 34 34 35 35 35 35 5 ISL35822 Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 48. GPIO PIN INPUT STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 50. GPIO PIN OUTPUT REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 51. DOM CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 56. MDIO PCS DEVAD 3 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 57. IEEE PCS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 58. IEEE PCS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 59. IEEE PCS TYPE SELECT REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 61. IEEE 10GBASE-X PCS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 63. PCS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 64. PCS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 66. PCS INTERNAL ERROR CODE REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 67. PCS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 72. BIST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 73. BIST ERROR COUNTER REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 74. MDIO PHY XS DEVAD 4 REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 75. IEEE PHY XS CONTROL 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 76. IEEE PHY XS STATUS 1 REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 80. PHY XS CONTROL REGISTER 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 81. PHY XS CONTROL REGISTER 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 82. PHY XS INTERNAL ERROR CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 83. PHY XS INTERNAL IDLE CODE REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 85. PHY XS PRE-EMPHASIS CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 87. PHY XS EQUALIZATION CONTROL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 91. PHY XS CONTROL REGISTER 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 92. Auto-CONFIGURE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 93. JTAG OPERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 94. CLOCK PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 36 36 36 36 37 37 37 37 38 38 39 39 39 40 40 40 41 41 42 42 42 43 43 43 44 44 45 45 46 46 46 47 47 47 48 49 49 49 50 50 50 50 51 51 51 51 53 55 ISL35822 Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 97. JTAG INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 98. MANAGEMENT DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 99. MISCELLANEOUS PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 101. VOLTAGE SUPPLY PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 102. ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 103. RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 104. POWER DISSIPATION AND THERMAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . Table 111. OTHER DC ELECTRICAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 112. REFERENCE CLOCK REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11). . . . . . . . . . . . . . . . . . . Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11) . . . . . . . . . . . . . . . . . . . . . Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17) . . . . . . . . . . . . . . . . . . . . . . . . . Table 116. RESET AND MDIO TIMING (SEE Figure 17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24). . . . . . . . . . . . . . . . . . . . . . . . . . . 55 55 55 56 56 57 57 60 60 60 61 61 61 61 62 62 62 63 63 63 64 64 64 7 ISL35822 FIGURE 2. DETAILED FUNCTIONAL BLOCK DIAGRAM (BIST OMITTED) (See also Figure 4 & Figure 5 for MDIO and LASI blocks and Figure 6 for BIST operation) OPRxxx(5 pins) OPTxxx(3 pins) TX_ENA[3:0] LX4_MODE TX_FAULT XAUI LASI BIST_ENA GPIO[4:0] PADR[4:0] RFC P/N XP_ENA TX_ENC TXCK20 MF[3:0] TRSTN RSTN TCLK MDIO MDC TDO TMS TDI WRTP SDA SDC 20X or 10X Clock JTAG MDIO Register, LASI & Common Logic MDIO Engine I2C BIST LX4/CX4 Deserializer & Comma Detector RXP0P/N Equalizer Signal Detect CDR S e ria liz e r 10B/8B Decoder RX FIFO Deskew TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TCX0 P/N S e ria liz e r Deserializer & Comma Detector RXP1P/N Equalizer Signal Detect CDR 10B/8B Decoder RX FIFO Deskew Egress RXP2P/N Equalizer Signal Detect TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator TCX1 P/N Egress S e ria lize r TCX2 P/N Deserializer & Comma Detector CDR 10B/8B Decoder RX FIFO Deskew TXFIFO & Error and Orderset Detector 8B/10B Encoder, AKR Generator Deserializer & Comma Detector RXP3P/N Equalizer Signal Detect S e ria liz e r CDR 10B/8B Decoder RX FIFO Deskew PCS // (PHY XS) Loopback TXFIFO & Error and Orderset Detector PCS // Network Loopback 8B/10B Encoder, AKR Generator TCX3 P/N PHY XS (Serial) Loopback Serializer PMA Loop back D e se ria liz e r & C om m a D e te ctor TXP0 P/N 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector RX FIFO Deskew 10B/8B Decoder CDR Equalizer Signal Detect RCX0 P/N D e se ria liz e r & C om m a D e te ctor Serializer TXP1 P/N 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector RX FIFO Deskew 10B/8B Decoder CDR Equalizer, Signal Detect RCX1 P/N Ingress Serializer TXP2 P/N 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector RX FIFO Deskew 10B/8B Decoder Ingress CDR Equalizer, Signal Detect RCX2 P/N D e se ria liz e r & C om m a D e te ctor D e se ria liz e r & C om m a D e te ctor Serializer TXP3 P/N 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector RX FIFO Deskew 10B/8B Decoder CDR Equalizer, Signal Detect RCX3 P/N Device Address 4 PHY XGXS Device Address 3 PCS Device Address 1 PMA/PMD 8 ISL35822 General Description The ISL35822 is a fully integrated octal 2.488Gbps to 3.1875Gbps Clock and Data Recovery (CDR) circuit and Retimer ideal for high bandwidth serial electrical or optical communications systems. It extracts timing information and data from serial inputs at 2.488Gbps to 3.1875Gbps, covering 10 Gigabit Fiber Channel (10GFC) and IEEE 802.3 specified 10 Gigabit Ethernet eXtended Attachment Unit Interface (XAUI) rates. Each ISL35822 accepts two sets of four high-speed differential serial signals, re-times them with a local Reference Clock, reduces jitter, and delivers eight clean high-speed signals. The ISL35822 provides a full-function XAUI-to-10GBASE-CX4 PMA/PMD (compatible with the IEEE 802.3ak specification), and also can be configured to provide the electrical portion of a XAUI-to-10GBASE-LX4 PMA/PMD, needing only laser drivers and photo detectors to be added. In both these applications, the XAUI side can be configured to implement the XENPAK MSA_R3.0 specification, including full NVR and DOM support. The XPAK and X2 specifications currently all reference the XENPAK specification, and are supported in exactly the same manner. The ISL35822 can also be used to enhance a single full-duplex 10 Gigabit XAUI link, extending the driving distance of the high-speed (2.488Gbps to 3.1875Gbps) differential traces to 40 inches of FR4 PCB (assuming a proper impedance-controlled layout). Each lane can operate independently with a data transfer rate of within ±100ppm of either 20x or 10x the local Reference Clock. The reference clock should be 156.25MHz for 10 Gigabit Ethernet XAUI applications, and 159.375MHz for 10 Gigabit Fiber Channel. Other reference frequencies can be used for proprietary rates. For other applications, each of the 8 lanes can be operated independently, within the same data rate and clock restrictions. The ISL35822 contains eight clock & data recovery units, 8B/10B decoders and encoders, and elastic buffers which provide the user with a simple interface for transferring data serially and recovering it on the receive side. When recovering an 8B/10B stream, a receive FIFO aligns all incoming serial data to the local reference clock domain, adding or removing IDLE sequences as required. This simplifies implementation of an upstream ASIC by removing the requirement to deal with multiple clock domains. The Retimer can also be configured to operate as eight nonencoded 10-bit Retimers. Allowing long strings of consecutive 1’s or 0’s (up to 512 bits), the ISL35822 has the capacity to accommodate proprietary encoded data links at any data rate between 2.488Gbps and 3.1875Gbps (and for half rate operation from 1.244Gbps to 1.59375Gbps). The device configuration can be done through the use of the two line Management Data Input/Output (MDIO) Interface specified in IEEE 802.3 Clause 45. The ISL35822 supports a 5-bit Port Address, and DEVice ADdresses (DEVAD) 1, 3 & 4. The initial values of the registers default to values controlled, where appropriate, by external configuration pins, and set to optimize the initial configuration for XAUI, CX4, and XENPAK/XPAK/X2 use. Optionally, the ISL35822 configuration can be loaded at power-on or reset from the NVR EEPROM or DOM used for the XENPAK/XPAK/X2 registers. A full suite of loopback configurations is provided, including the (802.3ae required) XAUI-transmit to XAUI-receive loopback, and also the (802.3ae optional) PHY XGXS loopback (effectively CX4/LX4-receive to CX4/LX4 transmit). Lane-by-lane diagnostic loopback is available through vendor-specific MDIO registers. The ISL35822 is a version of the BBT3821 for operation as a lower-power LX4 device. Power consumption can be reduced further at lowered supply voltages. Functions The ISL35822 serves three main functions: • Pre-emphasize the output and equalize the input in order to “re-open” the data eye, thus allowing CX4 operation, and also increasing the available driving distance of the high-speed traces in XAUI links. • Clock compensation by insertion and deletion of IDLE characters when 8B/10B encoding and decoding is enabled. • Automatic Byte and Lane Alignment, using both disparities of /K/ for Byte alignment and either ||A|| or IDLE to DATA transitions for lane alignment. Receiver Operations Loss of Signal Detection, Termination & Equalization Each receiver lane detects and recovers the serial clock from the received data stream. An equalizer has been added to each receiver input buffer, which boosts high frequency edge response. The boost factor can be selected from 16 values (none to full) through the MDIO Registers, (see Table 43 for the PMA/PMD and Table 87 for the PHY XS). A nominally 100Ω on-chip transmission line terminating resistor is integrated with the input equalizer. This eliminates the requirement of external termination resistors. It greatly improves the effectiveness of the termination, providing the best signal integrity possible. There are also signal detect functions on each input lane, whose “Loss Of Signal” (LOS) and “Signal Detect” (SIG_DET) outputs appear in the MDIO Vendor-Specific registers at address 1.C00A’h (Table 44) and 4.C00A’h (Table 90). The LOS indication reflects the standard XAUI specification, while the SIG_DET indication (CX4 inputs only) implements the CX4 function. These signals can also 9 ISL35822 be routed to the MF[3:0] pins (see Table 81 and Table 99). The PMA configuration determines which of these signals will be reflected in the IEEE PMD Receive signal detect register at 1.10 (see Table 12), and contribute to the RX_FAULT bit in the IEEE Status Register 2 at address 1.8 (see Table 10) and the LOCAL_FLT bit in the IEEE PMA/PMD Status 1 Register, at address 1.1, (see Table 6). The PHY XGXS LOS will be reflected in the IEEE Status Registers at addresses 4.8 and 4.1 (see Table 77 and Table 76). The threshold of the LOS detectors is controlled via the 'LOS_TH' bits in the MDIO registers at 1.C001'h, see Table 39, for the PMA/PMD, and for the PHY XS at 4.C001'h, see Table 81. unless overridden by the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81). Up to a full code group may be deleted or modified while aligning the “comma” code group correctly to the edges of the RefClock. A comma received at any odd or even byte location, but at the proper byte boundary, will not cause any byte realignment. 8b/10b Decoding The internal 10b decoding specified in the IEEE802.3-2002 specification, section 36.2.4 in Tables 36-1 & 36-2, and discussed in more detail in “8b/10b Coding and Decoding” page 12, is enabled by default in the PCS and PHY XS through the setting of the respective CODECENA bits to 1’b, and may be disabled through the MDIO registers [3,4].C000’h (Table 63 and Table 80) by setting the respective bit to 0’b. Note that the transmit encoding will also be disabled. Although Comma detection will still operate normally, the PCS_SYNC engine (see above) may not operate correctly on a proprietary coding scheme, unless byte sync is performed on K28.5 characters, and no code violations are to be expected in the proprietary data, and so should normally be disabled if the 8b/10b coding is turned off. The ‘fallback’ byte sync operations described above can still be used, if the encoding scheme meets the “comma” rules; otherwise they should be disabled also via the CDET bits, and the user should expect unsynchronized 10-bit data to be forwarded to the transmitter. No clock compensation is then possible, and a synchronous reference clock should be used throughout. Clock and Data Recovery When the 8B/10B coding is used, the line rate receive clock is extracted from the transition rich 10-bit coded serial data stream independently on each lane. When 8B/10B coding is not used, longer run length (up to 512 1’s and 0’s) can be supported. The data rate of the received serial bit stream must be within ±100ppm of the nominal bit rate (strictly within ±200 ppm of the multiplied local reference clock) to guarantee proper reception. The receive clock locks to the input within 2µs after a valid input data stream is applied. The received data is de-serialized and byte aligned. Byte Alignment (Code-Group Alignment) Unless the CDET bits of the MDIO Registers at address 3.C000’h (for PCS, see Table 63) or 4.C000’h (for PHY XS, see Table 80) are turned off, the respective Byte Alignment Units are activated. Each Byte Alignment Unit searches the coded incoming serial stream for a sequence defined in IEEE 802.3-2002 Clause 36 as a “comma”. A comma is the sequence “0011111” or “1100000” depending on disparity, and is uniquely located in a valid 8B/10B coded data stream, appearing as the start of some control symbols, including the /K/ IDLE (K28.5). Comma disparity action can be controlled via the same CDET bits of the registers [3:4].C000’h (see Table 63 and Table 80). Any proprietary encoding scheme used should either incorporate these codes, or arrange byte alignment differently. Upon detection of a comma, the Byte Alignment Unit shifts the incoming data to align the received data properly in the 10-bit character field. Two possible algorithms may be used for byte alignment. The default is that specified in the IEEE802.3ae-2002 clause 48 specification, and is very robust. This algorithm relies on the 10b/8b decoder, and should not be used with proprietary encoding/decoding schemes. The alternative is to byte-align on any comma pattern. Although quick to align, and normally quite reliable, this method is susceptible to realignment on certain single bit errors or on successive K28.7 characters, but could be preferable for proprietary coding schemes, or during debug. The algorithm selection is controlled via MDIO register PCS_SYNC_EN bits, for the PCS at address 3.C000’h (Table 63), for the PHY XS at address 4.C000’h (Table 80), 10 Receive FIFO The Receive FIFO performs two functions: 1. Lane to Lane Alignment 2. Clock Compensation Deskew (Lane to Lane) Alignment Trunking, also known as deskewing, means the alignment of packet data across multiple lanes. 8 bytes of RXFIFO are dedicated for this lane to lane alignment in each direction. During high-speed transmission, different active and passive elements in the links may impart varying delays in the four lanes. In trunking mode, multiple lanes share the same clock (the local reference clock), which is used to transfer data for output on the serial transmitter. Deskewing is accomplished by monitoring the contents of the FIFOs to detect either an /A/ code-group on every lane (an ||A|| Ordered_Set), or the boundary between IDLE sequences and any non-IDLE data (see Table 1); the latter boundary defines the beginning of the packet. The choice of which alignment markers to use can be controlled by the A_ALIGN_DIS bits in MDIO [3,4].C000’h (see for PCS Table 63 and for PHY XS Table 80), unless overridden by the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81) to align on ||A||. When this alignment ISL35822 data is detected in all four lanes within the span of the Alignment FIFO, the deskewing (lane to lane) alignment operation is performed, and will be held until another ||A|| or IDLE-to- non-IDLE transition is detected again on the lanes. During this alignment, up to four code groups may be deleted on any lane. For correct operation, the XAUI Lane 0 signals should be connected to the ISL35822 Lane 0 pins. The deskew algorithm state machines (each implemented according to IEEE 802.3ae) are enabled by setting the DSKW_SM_EN bits (Address [3,4].C000’h, see Table 63 and/or Table 80) to 1 or overriding them with the respective XAUI_EN bits in the [3,4].C001’h registers (Table 64 and Table 81). Note that when one side’s DSKW_SM_EN is set to 1, the same side CAL_EN bit (Address [3,4].C000’h, Table 63/Table 80) is ignored. When a DSKW_SM_EN bit is set to 0, lane deskew can still be enabled by setting CAL_EN, but the deskew action will be carried out without hysteresis. The user has the option to disable trunking, or to enable trunking across each set of 4 lanes, in the PCS (device 3) and PHY XGXS (device 4), under control of the respective PSYNC bits in registers [3,4].C000h. In trunking mode, the lanes may have phase differences, but they are expected to be frequency synchronous. In non-trunking mode, each received serial stream need only be within ±100ppm of the nominal bit rate (2.488Gbps to 3.1875Gbps in full-speed mode or 1.244Gbps to 1.59375Gbps in half-speed mode). Setting the PSYNC bits high will enable the trunking mode, so that all transmitted data will be synchronized to the same clock. Note that trunking mode is only possible if 8B/10B Coding is activated, and all lanes have the same half-rate setting (See Table 71). Transmitter Operations 8b/10b Encoding The internal 10b encoding specified in the IEEE802.3-2002 specification, section 36.2.4 in Tables 36-1 & 36-2, and discussed in more detail in “8b/10b Coding and Decoding” page 12, is enabled by default in the PCS and PHY XS through the setting of the respective CODECENA bits to 1’b, and may be disabled through the MDIO registers [3,4].C000’h (see Table 63 and Table 80) by setting the respective bit to 0’b. Note that the receive decoding will also be disabled. The (decoded, synchronized and aligned) data is transferred via the transmit FIFOs, (normally) encoded, serialized and re-transmitted on the Serial Output pins, whose effective output impedance is nominally 100Ω differential. Pre-Emphasis In order to compensate for the loss of the high frequency signal component through PCB traces or the CX4 Cable Assembly, sixteen levels of programmable pre-emphasis have been provided on the CX4/LX4 PMA serial transmit lanes, and eight levels on the XAUI PHY XS serial transmit lanes. The output signal is boosted immediately after any transition (see Figure 3). This maximizes the data eye opening at the receiver inputs and enhances the bit error rate performance of the system. The MDIO Registers at Addresses [1,4].C005’h (see Table 41 and Table 85) control the level of pre-emphasis for the PMA/PMD (sixteen levels) and PHY XGXS (eight levels) respectively, settable from none to the maximum. The initial default values of the PMA/PMD register depend on the LX4_MODE configuration pin, and are set to the optimum values for CX4 or XAUI (assumed best for LX4 drivers). The PMA side has an additional set of Pre-emphasis enabling bits, in 1.C00B.5:2 that enable or disable the predriver/pre-emphasis. In LX4 mode these default to disabled, to reduce the power consumption. All these three registers may be auto-loaded (see Auto-Configuring Control Registers page 16) from an NVR EEPROM on start-up or RESET. FIGURE 3. PRE-EMPHASIS OUTPUT ILLUSTRATION Clock Compensation In addition to deskew, the Receive FIFOs also compensate for clock differences. Since the received serial streams can, under worst case conditions, be off by up to ±200ppm from the local clock domain, the received data must be adjusted to the local reference clock frequency. Another 8 bytes of RXFIFO are dedicated for clock compensation. The FIFOs achieve clock tolerance by identifying any of the IDLE patterns (/K/, /A/ or /R/ as defined by the IEEE 802.3ae standard) in the received data and then adding or dropping IDLEs as needed. The Receive FIFO does not store the actual IDLE sequences received but generates the number of IDLEs needed to compensate for clock tolerance differences. The IDLE patterns retransmitted will be determined according to the IEEE 802.3ae algorithm if the appropriate AKR_SM_EN bit is set in Registers [3,4].C001’h (see Table 64 and Table 81). 1 1 0 0 VLOW-pp VHI-pp Bit Time Bit Time Bit Time 11 ISL35822 8b/10b Coding and Decoding 8 Bit Mode If 8B/10B encoding/decoding is turned on, the ISL35822 expects to receive a properly encoded serial bit stream. The serial bit stream must be ordered “abcdeifghj” with “a” being the first bit received and “j” the last. If the received data contains an error, the Retimer will re-transmit it as an ERROR or /E/ character. The character transmitted may be controlled via the ERROR code Registers [3,4].C002’h, Table 66 and Table 82. The internal decoding into, and encoding from, the FIFOs is listed in Table 1 below. If the TRANS_EN bit or XAUI_EN bit (MDIO Registers at addresses [3,4].C001’h, see Table 64 and Table 81 are set, all incoming XAUI or CX4/LX4 IDLE patterns will be converted to the (internal) XGMII IDLE pattern set by the respective PCS or PHY XS control registers at addresses [3,4].C003’h, with a default value 107’h, the standard XGMII IDLE code (see Table 67 and Table 83) in the internal FIFOs. The first full column of IDLES after any column containing a non-IDLE will be stored in the respective elasticity FIFO, and all subsequent full IDLE columns will repeat this pattern, until another column containing a non-idle is received. If in addition either of the AKR_SM_EN or XAUI_EN bits in the respective MDIO registers at Addresses [3,4].C001’h is set (see Table 64 and Table 81, these IDLEs will be sequenced on transmission into a pseudo-random pattern of ||A||, ||K||, and ||R|| codes according to the IEEE 802.3ae specified algorithm. If neither of the AKR_SM_EN and XAUI_EN bits are set, the internal IDLEs will all be transmitted as /K/ codes. Elasticity will be achieved by adding or deleting columns of internal IDLEs. If neither the TRANS_EN bit nor the XAUI_EN bit is set (for either the PCS or the PHY XS), the incoming XAUI IDLE codes will all be decoded to the appropriate XGMII control code values in the respective internal FIFO. If the AKR_EN or XAUI_EN bits are set, they will be sequenced into a pseudo-random pattern of ||A||, ||K||, and ||R|| codes and retransmitted, if not, the Inter Packet Gap (IPG) will be retransmitted as the same XAUI codes as in the first full IDLE column. For most applications, the XAUI_EN bit high configuration is the most desirable, and is the default. Table 1. VALID 10b/8b DECODER & ENCODER PATTERNS RECEIVING SERDES SERIAL CODE, CHARACTER Valid Data /K/ (Sync) K28.5 TRANS_EN BIT(4) X 1 0 /A/ (Align) K28.3 1 0 /R/ (Skip) K28.0 1 0 /S/ K27.7 /T/ K29.7 K28.1 /F/ K28.2 /Q/ K28.4 K28.6 K28.7 K23.7 /E/ K30.7 Any other Note (1): Note (2): Note (3): Note (4): INTERNAL DATA E-BIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 K-BIT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TRANSMITTING SERDES SERIAL CODE Valid Data NOTES DESCRIPTION Same Data Value as Received IEEE802.3ae algorithm SERIAL INTERNAL AKR_SM_ CHARACTER FIFO DATA EN(4) 0-FF’h 07’h (2) BC (1) 07’h (2) 7C (1) 07’h (2) 1C (1) FB FD 3C 5C 9C DC FC F7 FE X 1 0 1 0 1 0 1 0 X X X X X X X X /E/ Invalid code /F/ /Q/ See 802.3 Table /A/ /K/ /R/ /K/ /A/ /K/ /R/ /A/ /A/ /K/ /R/ /R/ /S/ /T/ K28.5 Comma (Sync) IEEE802.3ae algorithm K28.3 Align IEEE802.3ae algorithm K28.0 K27.7 K29.7 K28.1 K28.2 K28.4 K28.6 K28.7 K23.7 K30.7 Alternate Idle (Skip) Start Terminate Extra comma Signal Ordered_Set Sequence Ordered_Set X X X X X X X X X X Repeat has False Comma Error Code Error Code = ERROR reg.(3) First incoming IDLE only, subsequent IDLEs in that block repeat first received code. Default value, actually set by ‘Internal Idle’ register, [3:4].C003’h, see Table 67 and Table 83. Value set by ‘ERROR Code’ register, [3:4].C002’h, see Table 66 and Table 66. The XAUI_EN bit forces it to 1FE’h. If the XAUI_EN bit is set, the ISL35822 acts as though both the TRANS_EN and AKR_EN bits are set. 12 ISL35822 10 Bit Mode If a PCS or PHY XS 8B/10B codec is inactive (the respective XAUI_EN AND CODECENA bits are disabled, see Table 63/Table 64 & Table 80/Table 81), no 8b/10b coding or decoding is performed. The incoming bits will be arbitrarily split into 10 bit bundles in the internal FIFO, optionally based on any commas received, but otherwise not checked, and must be retransmitted in the same clock domain, since no elasticity is possible. Therefore the local reference clock must be frequency synchronous with the data source. Only the jitter domain will be reset. System designers must ensure that the data stream is adequately DC-balanced and contains sufficient transition density for proper operation, including synchronization. Channel Fault Indications Any of the above faults (LOS/SIG_DET, Byte Sync, or Lane Align), will (by default) cause a local fault in the relevant receiver. If the PCS_SYNC_EN bit at address [3,4]C000’h (or the XAUI_EN bit at [3:4].C001’h) (see Table 63 to Table 65 and/or Table 80 to Table 81) is set, the internal FIFOs will propagate the local fault indication specified in the IEEE802.3ae-2002 specification (Sections 46.3.4 and 48.2.4.2) as the Sequence Ordered_Set ||LF|| (see Table 48-4), /K28.4/D0.0/D0.0/D1.0/, which will be transmitted as the appropriate XAUI or LX4/CX4 TX output. The ISL35822 lanes 0-3 must be connected to XAUI and LX4/CX4 lanes 0-3 in strict order. Any Sequence Ordered_Set (including ||LF|| and ||RF||) received on an input channel will be retransmitted unchanged on the appropriate output channel. Error Indications An equivalent schematic of the various IEEE-defined and Vendor Specific Fault and Status registers in the ISL35822 is shown in Figure 4. Those register signals that also contribute to the LASI system are indicated (see Figure 5). Coding Violation, Disparity & FIFO Errors The 8b/10b decoder will detect any code violation, and replace the invalid character by the error character /E/. In the case of a disparity error, the error may be propagated and only flagged at the end of a packet (according to the IEEE 802.3 rules). The ISL35822 will handle this according to those rules. In addition, the MDIO system includes a flag, in registers [3,4].C007’h on bits 11:8 (see Table 69 and Table 88). Similarly, an error in the PCS or PHY XS Elastic (clock compensation) FIFOs will be flagged in bits 7:4 of the same registers. The FIFO errors may also be flagged on the MF[3:0] pins via the MDIO MF_SEL and MF_CTRL register bits (address 4.C001’h, see Table 81). If a PCS or PHY XS 8B/10B codec is inactive, disparity error and coding violation errors do not apply, and the FIFOs have no active error source. Loss of Signal If the reference clock is missing or at an out-of-range frequency, the PLL in the CMU will fail to lock. This is the only possible internal cause of a PMA ‘TX Local Fault ‘ indication in bit 1.8.11 (Table 10), and will cause ‘RX Local Fault’ in bit 1.8.10 and other consequent fault indications (see Table 6, Table 27 and Table 28). Loss of the input signal may be caused by poor connections, insufficient voltage swings, or excessive channel loss. If any of these conditions occurs, the Loss Of Signal (LOS) and (CX4) SIG_DET detector outputs on the lane will indicate the fault, and may be monitored via the MDIO system (see Table 6, Table 10, Table 27, Table 28, Table 76 and Table 77). See also the section on “Loss of Signal Detection, Termination & Equalization“ on page 9 above. In addition, the MDIO MF_SEL and MF_CTRL register bits (address 4.C001’h, see Table 81) may be set to provide the LOS/SIG_DET indication on the MF[3:0] pins. Loopback Modes In addition to the IEEE 802.3ae-required loopback modes, the ISL35822 provides a number of additional modes. Each mode is described in detail below, by reference to the Detailed Functional Block Diagram in Figure 2, together with the register bits controlling it. Byte or Lane Synchronization Failure The MDIO system can indicate a failure to achieve Byte Synchronization on any lane, in the PCS register bits 3.24.3:0 (Table 61) or in the PHY XS register bits 4.24.3:0 (Table 78), which shows the lane-by-lane Byte Sync status. A failure here, if not caused by any of the above ‘Loss of Signal’ conditions, would normally reflect a very high bit error rate, or incorrectly coded data. Failure of Lane Synchronization is indicated for the PCS by register bit 3.24.12 (Table 61) or for the PHY XS by register bit 4.24.12 (Table 78), and can be caused by failure to detect /A/ characters on every lane of a channel, by excessive skew between /A/s on the lanes of a channel, or by inconsistent skews. PMA Loopback (1.0.0 & 1.C004.[11:8]) The PMA loopback is implemented from the output of the TCX[3:0] serializers to the input multiplexers in front of the RCX[3:0] CDRs. All four lanes are controlled by bit 1.0.0, while the individual lanes can be controlled (one at a time) by the 1.C004’h.[11:8] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RXP[3:0][P/N] pins through almost all the ‘egress’ channel to the input of the (still active) TCX[3:0] output drivers, then (bypassing the RCX[3:0][P/N] inputs, the equalizers and LOS detectors) back from the CDRs through almost all the ‘ingress’ channel to the TXP[3:0][P/N] pins. 13 ISL35822 FIGURE 4. IEEE AND VENDOR SPECIFIC FAULT AND STATUS REGISTERS (EQUIVALENT SCHEMATIC) TXFAULT PMA/PMD SIGNAL DETECT level REG 1.C00A.3:0 REG 1.C012h.13 POLARITY IEEE REG 1.8.11 See LASI REG 1.C001.10:8 CX4 SIGNAL_ DETECT CX4 LX4 PLL LOCK FAIL IEEE REG 1.1.7 IEEE REG 1.1.2 REG 1.C00A.7:4 REG 1.C01D.6 CX4 LX4 IEEE REG 1.10.4:1 IEEE REG 1.10.0 See LASI IEEE REG 1.8.10 See LASI OPRLOS [3:0] IEEE REG 3.8.11 See LASI PCS BYTE SYNC IEEE REG 3.24.3:0 IEEE REG 3.1.2 IEEE REG 3.1.7 PCS LANE ALIGN IEEE REG 3.24.12 See LASI IEEE REG 3.8.10 See LASI PHY XS LANE ALIGN IEEE REG 4.24.12 IEEE REG 4.8.11 See LASI PHY XS BYTE SYNC IEEE REG 4.24.3:0 IEEE REG 4.1.2 IEEE REG 4.1.7 IEEE REG 4.8.10 REG 3.C001.10:8 level PHY XS SIGNAL DETECT REG 4.C00A.3:0 See LASI PHY XS (Serial) Loopback (4.0.14 & 4.C004.[11:8]) The PHY XS loopback is implemented from the output of the TXP[3:0] serializers to the input multiplexers in front of the RXP[3:0] CDRs. All four lanes are controlled by bit 4.0.14, while the individual lanes can be controlled (one at a time) by the 4.C004’h.[11:8] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RCX[3:0][P/N] pins through almost all the ‘ingress’ channel to the input of the (still active) TXP[3:0] output drivers, then (bypassing the RXP[3:0][P/N] inputs, the equalizers and LOS detectors) back from the CDRs through almost all the ‘egress’ channel to the TCX[3:0][P/N] pins. PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14) This loopback is implemented (at the internal XGMII-like level) from the output of the RXFIFOs in the ‘egress’ channel to the input of the TXFIFOs in the ‘ingress’ channel. The individual lanes can be controlled (one at a time) by the 4.C004’h.[3:0] bits. If the enable bit in 3.C001.7 (Table 64) is set, all four lanes can be controlled by bit 3.0.14. Since the latter is specifically excluded by subclause 45.2.3.1.2 of the IEEE 802.3ae-2002 specification for a 10GBASE-X PCS, the default is to NOT enable this loopback bit, and if it is enabled, the ISL35822 does not conform to the IEEE specification. A maintenance request has been submitted to the IEEE to enable this loopback bit as optional, and to allow a ‘PCS Loopback Capability’ bit in register bit 3.24.10 (see http://www.ieee802.org/3/maint/requests/maint_1113.pdf), but this has so far been rejected, and may never be approved. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RXP[3:0][P/N] pins through the full PHY XS via the internal XGMII to the TXP[3:0][P/N] pins. This could also be seen as a ‘short’ loopback at the XGMII input of the PCS. PCS Parallel Network Loopback (3.C004.[3:0]) This loopback is implemented (at the internal XGMII-like level) from the output of the RXFIFOs in the ‘ingress’ channel to the input of the TXFIFOs in the ‘egress’ channel. The individual lanes can be controlled (one at a time) by the 3.C004’h.[3:0] bits. Assuming that this is the only loopback enabled, and that the BIST and test pattern generation features are not enabled, the signal flow is from the RCX[3:0][P/N] pins through the PMA/PMD and PCS and again PMA/PMD to the TCX[3:0][P/N] pins. This could also be seen as a ‘short’ loopback at the XGMII input of the PHY XS. 14 ISL35822 Serial Test Loopbacks (1.C004.12 & 4.C004.12) In addition to the above loopbacks, the ISL35822 also offers two serial loopbacks directly between the serial inputs and outputs. These loopbacks use the recovered clock as the timing for the outputs (instead of the multiplied reference clock), so do not reset the jitter or clock domains, and in addition do NOT provide any pre-emphasis on the outputs. Furthermore, on the PMA/PMD side (1.C004.12) the lanes are internally swapped (so the Lane 3 output is from the Lane 0 input, etc.). Because of their limited utility, they are not illustrated in Figure 2 or Figure 6. They are mainly useful for debugging an otherwise intractable system problem. The reference clock still needs to be within locking range of the input frequency. The remainder of the signal path will remain active (as normal), so that if for example 1.C004.12 is set, data coming in on RCX[3:0], in addition to emerging on TCX[0:3] without retiming, etc., will also emerge from TXP[3:0] retimed, as usual. MDIO Register Addressing The PADR[4..0] hardware address pins control the PRTAD (Port Address) value, each port normally consisting of a series of MDIO Managed Devices (MMDs). Each Port may include up to 31 different devices, of which the current specification defines 8 types, and allows vendor specification of two others. The ISL35822 device corresponds to the PMA/PMD, PCS and PHY XGXS defined types, so responds to DEVAD values of 1, 3 and 4 respectively. The Clause 45-accessible registers are listed for each Device Address in the tables referenced in Table 2. Many of these register addresses are IEEE-defined; the ‘Vendor Defined’ registers are arranged to be as DEVAD independent as possible. Table 2. DEVAD DEVICE ADDRESS TABLE DEVAD VALUE IEEE DEFINITION REGISTER LIST TABLE Table 4, page 19 Table 56, page 38 DEVAD = 1 (00001’b) PMA/PMD Device DEVAD = 3 (00011’b) PCS Device Serial Management Interface The ISL35822 implements the MMD Management Interface defined in IEEE 802.3-2002 Clauses 22 & enhanced in IEEE 802.3ae-2002 Clause 45. This two-pin interface allows serial read/write of the internal control registers and consists of the MDC clock and MDIO data terminals. The PADR[4..0] pins are used to select the ‘Port address’ to which a given ISL35822 device responds. The ISL35822 will ignore Clause 22 format frames (on a frame-by-frame basis), based on the second ST (start) bit value. The two formats are shown in Table 3, together with the references to the respective IEEE 802.3 specifications. DEVAD = 4 (00100’b) PHY XS (XGXS) Device Table 74, page 45 Each individual device may have up to 216 (65,536) registers. The ISL35822 implements all the defined registers for 10GBASE PMA/PMD, 10GBASE-X PCS and PHY XS devices, and a few Vendor Specific registers for each DEVAD respectively. The latter have been placed in the blocks beginning at D.C000’h so as to avoid the areas currently defined as for use by the XENPAK module and similar MSA devices, to facilitate use of the ISL35822 in such modules and systems. Table 3. MDIO MANAGEMENT FRAME FORMATS CLAUSE 22 FORMAT (FROM TABLE 22-10 IN IEEE STD 802.3-2002 EDITION, FOR REFERENCE) OPERN Read Write PRE 1….1 1….1 ST 01 01 OP 10 01 PHYAD PPPPP PPPPP REGAD RRRRR RRRRR TA Z0 10 DATA DDDDDDDDDDDDDDDD DDDDDDDDDDDDDDDD Z Z IDLE CLAUSE 45 FORMAT (FROM TABLE 45-64 IN IEEE 802.3.ae-2002) OPERN Addrs Write Read Read Inc PRE(1) 1….1 1….1 1….1 1….1 ST 00 00 00 00 OP 00 01 11 10 PRTAD PPPPP PPPPP PPPPP PPPPP DEVAD DDDDD DDDDD DDDDD DDDDD TA 10 10 Z0 Z0 ADDRESS/DATA AAAAAAAAAAAAAAAA DDDDDDDDDDDDDDDD DDDDDDDDDDDDDDDD DDDDDDDDDDDDDDDD Z Z(2) Z Z IDLE Note (1): The ‘Preamble’ consists of at least 32 bits. After a software reset, a few extra preamble bits may be needed, depending on the MDC clock rate. See timing diagrams in Figure 15 and Figure 17. Note (2): The actual register will not be updated until up to three additional MDC cycles have been received. See Figure 15. 15 ISL35822 I2C Space Interface In addition to the standard MDIO registers discussed above, the ISL35822 implements the register addresses specified in the XENPAK MSA specification for the NVR, DOM and LASI blocks. The built-in I2C controller can be configured to load these registers with the MSA-specified data on start-up or reset or on demand from an I2C EEPROM (frequently included as part of a DOM circuit) and/or one or four DOM circuits (see below). Optionally, a portion of the NVR space may be used to autoload the various ISL35822 control registers at start-up or reset. These operations are discussed in more detail below. Auto-Configuring Control Registers If the XP_ENA pin is asserted, and the I2C controller can successfully read the I2C NVR space into the MDIO NVR space, the ISL35822 will examine the Auto-configure Pointer value at 1.33029 (1.8105’h). If this is neither 00’h or FF’h, the ISL35822 will use that value (S below) as an offset pointer into the A0.00:FF’h I2C space already copied into the MDIO NVR space, and the number of bytes given in the Auto-configure Size register 1.33028 (1.8104) value (N below) to load N bytes from the NVR data starting from location S into the various ISL35822 configuration control registers. The loading sequence and the correspondence between the NVR block and the control registers is listed in Table 92. The auto-configure engine will behave benignly if the S and N values are misconfigured, so that if S + N ≥ 252 (for example), the auto-configure block will stop at an S + N value of 252, and not use S, N , or the Checksum value to load a configuration control register. (Hence the exclusion of FF’h as a value for S is no limitation). Similarly, values of N > 40 will be ignored. Note that in a XENPAK/XPAK/X2 module, the value of S should not be between 00’h and 76’h, since this would start the loading from within the MSA-defined region. (Hence the exclusion of 00’h as a value for S is normally no limitation). If the value of S lies between 77’h and A6’h, that portion of the auto-configure data within that band can be overwritten as part of the Customer Writable area defined by the MSA specifications; if this is undesirable, that range of values should also be excluded. On the other hand, this could be used to allow some customization for specific end-user configuration values. If the block overlaps the boundary between the ‘Customer Writable’ and ‘Vendor Specific’ areas, the first part would be customerwritable, and the second part not. The order of the configuration registers has been arranged to place those most likely to be useful in such a customer-configuration environment at the beginning of the block. The ‘Customer Area Checksum’ would be part of the auto-configure block, and some other byte in the ‘Customer Writeable Area’ would need to be adjusted to make the Checksum and the desired configuration value coincide. The Command Status bits in the NVR Command register (Table 15) at 1.32768.3:2 (1.8000’h.3:2) will reflect the success of both the NVR and (if called for) the auto-configure loading operations. NVR Registers & EEPROM If the XP_ENA pin is asserted enabled (high), at the end of hardware RESET or power-up the ISL35822 will attempt to load the NVR area by initiating a NVR-block read through the 1.32768 (1.8000’h) control register (Table 15). See Figure 18. The same will occur if the appropriate command value is written into this register. The I2C interface will attempt to read the A0.00:FF’h I2C space into the 1.8007:8106’h MDIO register space. The Command Status bits in the 1.32768 (1.8000’h) Control register will reflect the status of this operation. Failure may occur if the expected ACK is not received from any address after the number of attempts set in control register 1.32273 (1.8005’h), default 63 (Table 20), or if a collision is detected on the I2C bus. The timing sequence of this Block Read operation is shown in Figure 20. The host can check the checksums against the values at 1.807D, and optionally 1.80AD and 1.8106, and take appropriate action. As soon as the XENPAK MDIO space is loaded, the STA MDIO device may interrogate it. Note that the ISL35822 merely stores the values read from the EEPROM or other device at A0.00-FF’h, and, with a few exceptions, does not interpret them in any way. The exceptions are listed explicitly in Table 22, together with the other uninterpreted groups, and are: • The Package OUI at 1.32818:32821 (1.8032:5’h), which will be mirrored in the IEEE-defined 1.14:15 (1.E:F’h) space, as required by section 10.8.2 of the XENPAK spec; the allowable values here are specified by the XENPAK, XPAK and X2 specifications; • The DOM Capability byte at 1.32890 (1.807A), see the DOM Registers section, page 16; • The Auto-configure size and pointer bytes at 1.33028:9(1.8104:5); (see Auto-Configuring Control Registers, page 16). • If the Auto-configure operation is enabled, the block of bytes so specified will be written into the ISL35822 control registers, (see Auto-Configuring Control Registers on page 16 and Table 92). Other registers may be interpreted in future versions of the ISL35822. DOM Registers If the NVR load operation succeeds, the (newly read-in) XENPAK register at 1.32890 (1.807A’h) is examined, and if the DOM Capability bit is set (bit 6, see Table 23), the I2C interface will attempt to read the DOM values from the I2C device address space specified in the same register (bits 2:0), normally 001’b pointing to A2’h. See Note (2) to Table 23 for details. A full block of data will be read from this space (normally A2.00:FF’h) into the 1.40960:41215 (1.A000: A0FF’h) MDIO register DOM space. See Figure 18 and Figure 20 for details. The DOM control register is implemented in the ISL35822 at 16 ISL35822 1.41216 (1.A100’h), so that one-time or (by default) periodic updates of the DOM information can be loaded into the MDIO DOM space by writing the appropriate values into it, as shown in Table 38, page 33. The actual automatic update rates selectable in this XENPAK-defined register are controlled by the DOM Control register in the ISL35822 vendor-specific register space at 1.49176 (1.C018’h), which also controls other actions of the DOM interface (see Table 51). In particular, since many available DOM circuits can handle only one lane, bit 2 enables or disables indirect access to separate DOM circuits on the four lanes. If the bit is 0’b, the DOM circuit is directly addressed at Ax.00:FF’h, and is assumed to provide the full four lane data, including the determination of which data is to be treated as the ‘furthest out of range’ or the ‘representative value’, as specified in Note 1 to Table 27 in section 11.2.6 of the XENPAK R3.0 specification, to be returned in the XENPAKdefined 1.A060:A06D’h space for a WDM module. If bit 2 of 1.C018’h is set to 1’b, the DOM data is polled from four devices attached to the I2C serial bus, getting 10 bytes from each of them. The 40 bytes of data are stored in the four lane register blocks starting from 1.A0C0’h, 1.A0D0’h, 1.A0E0’h and 1.A0F0’h respectively. The device addresses of these four DOM devices on the 2-wire bus are configured by registers 1.C01B’h and 1.C01C’h (Table 54); the starting memory addresses by registers 1.C019’h and 1.C01A’h (Table 53). Since the ISL35822 has no mechanism to determine out-ofrange data, it chooses one of these four 10-byte long groups of data to copy into 1.A060’h:A069’h according to bits 1:0 of 1.C018’h (the ‘representative’ lane per the above-mentioned XENPAK Note). In addition, the Alarm and Status flags (Table 36 and Table 37) will be loaded from this lane into 1.A070:A075’h. The ISL35822 assumes that the DOM circuit(s) will have these A/D values and flags at the same relative offsets as those specified in the XENPAK R3.0 and the SFF-8472 specifications. to the possible byte alignment and 8b/10b code violations, which may be used to trigger a LASI. The available inputs depend on the LX4/CX4 select LX4_MODE pin (Table 99), and are detailed in Table 27 and Table 28, and include: 1. Various status bits within the ISL35822, derived from its operations; in particular, the LOS indications, Byte Sync and EFIFO errors, the Fault bits [1,3,4].8.10:11, etc. 2. The Optical Interface Status pins (in LX4 mode), see Table 99. 3. The Alarm flags in 1.A070:1 (Table 36). These bits are gated with the enable bits in 1.9006:7 (Table 30 and Table 31) and the LX4/CX4 LX4_MODE pin (Table 99) to drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27). 4. The GPIO pins (Table 100). If configured as inputs, they may be used to optionally trigger the LASI on either a high or low level. See above. These status inputs can all be read via the LASI Status registers (1.9003 to 1.9005, see Table 27 to Table 29). Any of these inputs, if enabled via the LASI Control Registers, 1.9000 to 1.9002 (Table 24 to Table 26), can drive the LASI pin. Figure 5 shows an equivalent schematic for the LASI system (an expansion of Figure 21 in the XENPAK specification). Reading Additional EEPROM Space Via the I2C Interface The I2C interface will allow single-byte reads from any possible I2C address. The device address and memory address are written into the 1.32769 (1.8001’h) and 1.32770 (1.8002’h) registers respectively (see Table 16 and Table 17), and on issuing a ‘Read one byte’ command (write 0002’h to 1.32768 = 1.8000’h) the data will be read from the I2C space in the MDIO register at 1.32771 (1.8003’h, see Table 18). For timing sequence, see Figure 22. Note that a 16-bit addressable EEPROM (or equivalent) device on the I2C bus may be read by setting the Long Memory bit 1.32773.8 (1.8005.8’h) to a ‘1’, and writing a full 16-bit memory address value into 1.32770 (1.8002’h). This in principle allows access to almost a full 8MB of I2C space, excluding only the NVR and (optional) DOM device address portions. This 16-bit operation MUST NOT be used on an 8-bit device, since the register address setting operation will attempt to write the low byte of the address into the register at the high byte address. Such a 16-bit memory address device should be located at a device address not used by the NVR or DOM system. These one-byte operations could be used to read other types of data from (multiple) DOM devices (such as limit lookup tables), or for expanded informational areas. It also facilitates the use of I2C-based DCP (Digital Control Potentiometer) devices for Laser Current control, and other similar setup and monitoring uses. General Purpose (GPIO) Pins The ISL35822 includes some flexibly configurable General Purpose Input-Output (GPIO) pins, which may be configured to be inputs or outputs. As inputs, their level may be read directly via the MDIO system, but also they may be configured (again via MDIO registers, see Table 47 through Table 50) to optionally trigger the LASI on either a high or low level. The GPIO pins may also individually be used as outputs, and set high or low, under MDIO control. The GPIO control registers are among those that can be autoconfigured on start-up. LASI Registers & I/O The ISL35822 implements the Link Alarm Status Interrupt (LASI) interface defined in section 10.13 of the XENPAK specification. The source and nature of these is described above under “Error Indications” on page 13 and in Figure 4. In addition to these specification-defined inputs, the ISL35822 incorporates a number of additional inputs, related 17 FIGURE 5. LASI EQUIVALENT SCHEMATIC (See Also Figure 4) OPTX LBC OPT TEMP OPTX LOP TX_ FAULT REG 1.9005h[3:0] LASI STATUS REG. 4.C007h. 11:8 REG. 4.C007h. 7:4 REG. 3.24.12 REG. 1.10.0 PHY XS LOS (SIG DET) PHY XS BYTE SYNCH PHY XS FIFO ERROR PHY XS CODE ERROR REG. 4.24.12 Clear on Read of 1.9005 REG 1.9006h[7:0] TX_FLAG CONTROL TX_FLAG REG 1.A070h[7:0] TX_FLAG LINK STATUS Clock on any change Q D LS_ALARM CLK CLR LS ALARM Masked Change REG. 4.C00Ah. 3:0 REG 1.C01Dh.2:0 ALARM PIN POLARITY REG 1.C012h.13 POLARITY REG. 4.24.3:0 REG 1.8.11 REG 3.8.11 Clear on read REGISTER 1.9004h.[10:0] TX_ALARM_STATUS Latch on high REG 4.8.11 18 See IEEE CX4 CX4 CX4 CX4 CX4 CX4 CX4 LX4 LX4 LX4 Clear on read REGISTER 1.9003h.[6:0] RX_ALARM_STATUS Latch on high REG 1.C012h.[4:0] GPIO-LASI EN Latch hi LX4 LX4 CX4 LX4 REGISTER 1.9001h[10:0] TX_ALARM CONTROL REGISTER 1.9000h[6:0] RX_ALARM CONTROL RX_ALARM RX ALARM Masked LX4 ISL35822 TX_ALARM TX ALARM Masked LASI PCS BYTE SYNCH REG 1.C012h.[12:8] GPIO POLARITY GPIO [4:0] REG 1.8.10 REG 3.8.10 REG 4.8.10 GPIO->LASI GPIO ALARM Masked CX4 LX4 LX4 REG 1.C011h.[12:8] GPIO INPUT REG 1.10.0 REG 3.24 [3:0] REG 1.9002h[3:0] LASI CONTROL LX4 CX4 PCS CODE ERROR PCS FIFO ERROR REG 1.9007h[7:6] RX_FLAG CONTROL Selector for CX4 vs LX4 REG 1.C01Dh.3 OPRX OP LASI External Pad REG. 3.C007h. 7:4 REG. 3.C007h. 11:8 RX_FLAG REG 1.A074h[7:6] RX_FLAG Legend ISL35822 Writing EEPROM Space through the I2C Interface The ISL35822 permits two methods for writing the requisite values into EEPROM or other I2C devices from the MDIO space into the I2C register space. Many DOM circuits protect their important internal data through some form of password protection, and in general the ISL35822 will allow this to be done without a problem. BLOCK WRITES TO EEPROM SPACE The first method is applicable only to the NVR space (I2C address space A0.00:FF’h). If the WRTP (Write Protect) pin is inactive (low), and the NVR Write Size bit (1.32773.7 = 1.8005.7’h) is set to a ‘1’, then issuing a ‘Write All NVR’ command (write 0023’h to 1.32768 = 1.8000’h) will write the current contents of MDIO registers 1.8007:8106’h into the NVR space. The ‘NVR Write Page Size’ bits in 1.32773.1:0 (1.8005.1:0’h) control the block size used for the write operation. See Figure 21 for the sequence timing. Normally this operation is only useful for initialization of a module EEPROM space, but it could be used for field upgrades or the like. If the WRTP (Write Protect) pin is high (active, normal condition), OR the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’, then issuing a ‘Write All NVR’ command (write 0023’h to 1.32768 = 1.8000’h) will write only the current contents of the MDIO register block within 1.807F:80AE’h to the XENPAKdefined Customer Area, A0.77:A6’h. The actual block write will occur one byte at a time. The block write size controls cannot be used here, since the Customer Area block boundaries do not lie on page-write boundaries of the EEPROM, a feature of the XENPAK specification. BYTE WRITES TO EEPROM SPACE The second method is applicable to any part of the I2C space. The write operation is performed one byte at a time. The device address and memory address are written into the 1.32769 (1.8001’h) and 1.32770 (1.8002’h) registers respectively (see Table 16 and Table 17), and the data to be written into the 1.32772 (1.8004’h) register. On issuing a ‘Write one byte’ command (write 0022’h to 1.32768 = 1.8000’h) the data will be written into the I2C space. See Figure 23 for the timing sequence. Note that if the WRTP (Write Protect) pin is high, or the Write Size bit (1.32773.7 = 1.8005.7’h) is cleared to a ‘0’, writes to any part of the basic NVR space outside the XENPAKdefined Customer Area will be ignored. Also note that a 16-bit addressable EEPROM (or equivalent) device on the I2C bus may be written by setting the Long Memory bit 1.32773.8 (1.8005.8’h) to a ‘1’, and writing a full 16-bit memory address value into 1.32770 (1.8002’h). Note that this 16-bit operation MUST NOT be used on an 8-bit device. These one-byte operations could be used to load modified Device Address values or protective passwords into multiple DOM devices, or for loading other types of data into them. They are also useful for writing data into I2C interface DCP devices for setting laser currents, etc. MDIO Registers In the following tables, the addresses are given in the table headers both in decimal (as used in the IEEE 802.3ae and 802.3ak documents) and in hexadecimal form. Where the registers coincide in structure and meaning, but the Device Addresses differ, the underlying register bits are the same, and may be read or written indiscriminately via any relevant Device Address. For instance a full RESET may be initiated by writing any one of 1.0.15, 3.0.15, or 4.0.15. While the reset is active, reading any of these bits would return a ‘1’ (except that the reset lasts less than the MDIO preamble plus frame time). When the reset operation is complete, reading any of them will return a ‘0’. Note that extra preambles may be required after such a software RESET (see Figure 17). Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS PMA/PMD DEVICE 1 MDIO REGISTERS ADDRESS DEC 1.0 1.1 1.2:3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.0 1.1 1.2:3 1.4 1.5 1.6 1.7 1.8 1.9 1.A HEX NAME DESCRIPTION DEFAULT 2040’h 0004’h (2) 01839C6V’h 0001’h 001A’h 0000’h P (4) B311’h (2) 0000’h 001F’h (2) AC (5) R/W R/W RO/LL RO RO RO RO RO (6) RO (LH) R/W RO DETAILS Table 5 Table 6 See (1) Table 7 Table 8 Table 8 Table 9 Table 10 Table 11 Table 12 PMA/PMD Control 1 Reset, Enable serial loop back mode. PMA/PMD Status 1 ID Code Speed Ablty Dev in Pkg. Vend Sp Dev Local Fault and Link Status Manufacturer OUI & Device ID PMA/PMD Speed Ability Devices in Package, Clause 22. Vendor Specific Devices in Package PMA/PMD Control 2 PMA/PMD type Selection PMA/PMD Status 2 PMD TX Dis PMD Sig Det Fault Summary, Device Ability Disable PMD Transmit PMD Signal Detect 19 ISL35822 Table 4. MDIO PMA/PMD DEVAD 1 REGISTERS (Continued) PMA/PMD DEVICE 1 MDIO REGISTERS ADDRESS DEC 1.11 1.14:15 1.32768 1.32769 1.32770 1.32771 1.32772 1.32773 1.32774 1.32775: 33030 1.36864 1.36865 1.36866 1.36867 1.36868 1.36869 1.36870 1.36871 1.40960: 41215 1.41216 1.49153 1.49156 1.49157 1.49158 1.49162 1.49163 1.49167 1.49168: 49171 1.49176 1.49177:8 1.49179:80 1.49181 Note (1): Note (2): Note (3): Note (4): Note (5): HEX 1.B 1E:F 1.8000 1.8001 1.8002 1.8003 1.8004 1.8005 1.8006 1.8007: 8106 1.9000 1.9001 1.9002 1.9003 1.9004 1.9005 1.9006 1.9007 1.A000 :A0FF 1.A100 1.C001 1.C004 1.C005 1.C006 1.C00A 1.C00B 1.C00F 1.C010 :C013 1.C018 1.C019:A 1.C01B:C 1.C01D NAME PMD Ext Ca Pkg OUI NVR Cntrl I2C Dev Ad I2C Mem Ad I2C RD Data I2C WR Data I2C Op Ctl I2C Op Stts NVR Copy Registers RX Al Ctrl TX Al Ctrl LASI Ctrl RX Al Stts TX Al Stts LASI Stts DOM TX DOM RX DOM Copy Registers DOM Ctrl PMA Ctrl2 PMA LB PMA Pre PMA Eql SIG_DET Fine Tune Soft RST GPIO Cnfg DOM Control DOM Mem DOM Dev StatusPolrty DESCRIPTION PMD Extended Capability PMD Package OUI, etc. NVR Control & Status Register 1-Byte Operation Device Addr. 1-Byte Operation Memory Addr. 1-Byte Operation Read Data 1-Byte Operation Write Data I2C Operation Control I2C Operation Status XENPAK NVR Register Copies RX ALARM Control TX ALARM Control LASI Control RX ALARM Status TX ALARM Status LASI Status DOM TX_Flag Control DOM RX_Flag Control Alarm & Warning Thresholds, A/D Values, (cf SFF-8472) DOM Control & Status PMA Control 2 PMA Loopback Control PMA Pre-emphasis Control PMA Equalizer Boost Control Signal Detect Flags Adjust pre-emphasis, amplitude Soft RESET GPIO Config, Status & Alarm Registers DOM Control Register DOM Indirect Start Addresses DOM Indirect Device Addresses LASI Alarm Pin Polarity DEFAULT 0001’h 00000000’h (3) 0003’h A2’h 0000’h 0000’h 0000’h 004D’h 0000’h Set by EEPROM See Table (4) See Table (4) 0000’h 0000’h (2) 0000’h (2) 0000’h (2) 0000’h 0000’h Set by DOM devices 0000’h 0000’h 0000’h See Table (4) See Table (4) 0000’h (2) See Table (4) 0000’h 0000’h (2) 0000’h 6060’h See Tables 0000’h AC (5) R/W RO R/W R/W R/W R/W RO R/W R/W RO/LH R/W DETAILS Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32: Table 37 Table 38 Table 39 Table 40 Table 41 Table 43 Table 44 Table 45 Table 46 Table 47: Table 50 Table 51 Table 53 Table 54 Table 55 A A A R/W R/W R/W RO RO RO A A R/W R/W RO R/W A A A A R/W R/W R/W R/W RO A R/W R/W A A A A A R/W R/W R/W R/W R/W V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Read values depend on status signal values. Values shown indicate ‘normal’ operation. If NVR load operation succeeds, will be overwritten by value loaded, see Table 22 Default value depends on CX4/LX4 select LX4_MODE Pin Value. IEEE 802.3ae shows as R/W, but cannot write any other value. For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (6): IEEE 802.3 shows as R/W, but cannot write any other value than that set by LX4_MODE Pin. 20 ISL35822 IEEE PMA/PMD REGISTERS (1.0 TO 1.15/1.000F’H) Table 5. IEEE PMA/PMD CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 1.0 (1.0000’h) BIT(S) 1.0.15 3.0.15 4.0.15 1.0.14 1.0.13 1.0.12 1.0.11 1.0.10:7 1.0.6 1.0.5:2 1.0.1 1.0.0 Reset NAME SETTING 1 = reset 0 = reset done, normal operation DEFAULT 0’b R/W R/W SC DESCRIPTION Writing 1 to this bit will reset the whole chip, including the MDIO registers. (1) Reserved Speed Select Reserved LOPOWER Reserved Speed Select Speed Select Reserved PMA Loopback 1 = Enable loopback 0 = Normal operation 1 = 10Gbps 0000 = 10Gbps 0 = Normal Power 1 = 10Gbps 0’b 1’b 0’b 0’b 0’h 1’b 0’h 0’b 0’b R/W Enable serial loop back mode on all four lanes, XAUI in to XAUI out. RO RO 1 = bits 5:2 select speed Operates at 10Gbps R/W No Low Power Mode, writes ignored RO 1 = bits 5:2 select speed Note (1): After this RESET bit is written, the ISL35822 will not begin counting PREAMBLE bits immediately. See Figure 17 for details. Table 6. IEEE PMA/PMD STATUS 1 REGISTER MDIO REGISTER ADDRESS = 1.1 (1.0001’h) BIT 1.1.15:8 1.1.7 1.1.6:3 1.1.2 1.1.1 1.1.0 NAME Reserved Local Fault Reserved Rx Link Up LoPwrAble Reserved 1 = PMA Rx Link Up 0 = PMA/D Rx Link Down Low Power Ability 1 = PMA Local Fault SETTING DEFAULT 00’h 0’b 0’h 1’b (1) 0’b 0’b RO LL(1) RO ‘Up’ means CX4/LX4 signal level is OK, and the PLL locked Device does not support a low power mode RO Derived from Register 1.8.11:10 R/W DESCRIPTION Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 7. IEEE PMA/PMD, PCS, PHY XS, SPEED ABILITY REGISTER MDIO REGISTER ADDRESSES = 1.4, 3.4 & 4.4 ([1,3,4].0004’h) BIT 1.4.15:3 3.4.15:2 4.4.15:1 1.4.2:1 3.4.1 1.4.0 3.4.0 4.4.0 NAME Reserved for future speeds 10PASS-T2/ 2BASE-TL 10GbpsAble EFM Ability 10Gbps Ablility SETTING DEFAULT 000’h R/W DESCRIPTION 00’b 1’b RO RO Device cannot operate @ 2BASE-TL or 10PASST2 Device Able to operate @ 10Gbps 21 ISL35822 Table 8. IEEE DEVICES IN PACKAGE REGISTERS MDIO REGISTER ADDRESSES = 1.5, 3.5, 4.5 ([1,3:4].0005’h) BIT [1,3:4].5.15:8 [1,3,4].5.7 [1,3,4].5.6 [1,3:4].5.5 [1,3:4].5.4 [1,3:4].5.3 [1,3:4].5.2 [1,3:4].5.1 [1,3:4].5.0 NAME Reserved Link Partner 10PASS-TS tone table DTE XS PHY XS PCS WIS PMD_PMA Cls_22 SETTING DEFAULT 000’h Link Partner PMA/PMD present 0’b 10PASS-TS tone table present DTE XS Present PHY XS Present PCS Present WIS Present PMD/PMA Present Clause 22 registers 0’b 0’b 1’b 1’b 0’b 1’b 0’b RO RO RO RO RO RO RO RO Device has no Link Partner Device has no 10PASS-TS tone table Device ignores DEVAD 5 Device responds to DEVAD 4 Device responds to DEVAD 3 Device ignores DEVAD 2 Device responds to DEVAD 1 Device ignores Clause 22 R/W DESCRIPTION MDIO REGISTER ADDRESSES = 1.6, 3.6, 4.6 ([1,3:4].0006’h) [1,3:4].6.15 [1,3:4].6.14 [1,3,4].6.13 [1,3:4].6.12:0 VndrDEV2 VndrDEV1 Clause 22 extn. Reserved Vendor Specific DEV2 Vendor Specific DEV1 Clause 22 extension 0’b 0’b 0’b 000’h RO RO RO Device ignores DEVAD 31 Device ignores DEVAD 30 Device has no Clause 22 extension Table 9. IEEE PMA/PMD TYPE SELECT REGISTER MDIO REGISTER ADDRESSES = 1.7 (1.0007’h) BIT 1.7.15:4 1.7.3:0 NAME Reserved PMA/PMD Type 0100 = 10GBASE-LX4 0000 = 10GBASE-CX4 SETTING DEFAULT 000’h P’b(1) RO LX4_MODE select pin high is LX4 value, low is CX4 value R/W DESCRIPTION Note (1): Value depends on the current state of the LX4/CX4 select LX4_MODE pin. Although IEEE 802.3ae specifies R/W bits, only valid values may be written; since the pin controls the available valid value, no meaningful write is possible. Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESSES = 1.8 (1.0008’h) BIT 1.8.15:14 1.8.13 1.8.12 1.8.11 1.8.10 1.8.9 1.8.8 1.8.7 1.8.6 NAME Device present TXLocalFlt Ability RXLocalFlt Ability TXLocalFlt RXLocalFlt Ext Ability TX Disable 10GBASE-SR 10GBASE-LR SETTING 10 = Device present 1 = PMA/PMD can detect TX Fault 1 = PMA/PMD can detect RX Fault DEFAULT 10’b 1’b 1’b R/W RO RO RO RO LH(1) RO LH(1,2) RO RO RO RO DESCRIPTION When read as “10”, it indicates that a device is present at this device address PMA/PMD has the ability to detect a Local Fault on Transmit Path PMA/PMD has the ability to detect a Local Fault on Receive Path PLL lock fail (missing REFCLK) or TX_FAULT pin active PLL lock fail (missing REFCLK), or Loss of Signal in 1.10 (1.000A’h) Device has Extended Ability Register in 1.11 (1.000B’h) Device can Disable Transmitter Device cannot be 10GBASE-SR Device cannot be 10GBASE-LR 1 = TX Local Fault; on Egress 0’b channel 1 = RX Local Fault; on Ingress 0’b channel 1 = Extended Ability Register present. 1 = Can Disable TX 0 = cannot perform 0 = cannot perform 1’b 1’b 0’b 0’b 22 ISL35822 Table 10. IEEE PMA/PMD STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER (Continued) MDIO REGISTER ADDRESSES = 1.8 (1.0008’h) BIT 1.8.5 1.8.4 1.8.3 1.8.2 1.8.1 1.8.0 NAME 10GBASE-ER 10GBASE-LX4 10GBASE-SW 10GBASE-LW 10GBASE-EW PMA Loopback SETTING 0 = cannot perform 1 = can perform 0 = cannot perform 0 = cannot perform 0 = cannot perform 1 = can perform DEFAULT 0’b 1’b 0’b 0’b 0’b 1’b R/W RO RO RO RO RO RO DESCRIPTION Device cannot be 10GBASE-ER Device can be 10GBASE-LX4 Device cannot be 10GBASE-SW Device cannot be 10GBASE-LW Device cannot be 10GBASE-EW Device can perform PMA loopback Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28). Note (2): The source of ‘Loss of Signal’ depends on the LX4/CX4 select LX4_MODE pin (see register 1.10, 12, note (1) below). Table 11. IEEE TRANSMIT DISABLE REGISTER MDIO REGISTER ADDRESS = 1.9 (1.0009’h) BIT 1.9.15:5 1.9.4 1.9.3 1.9.2 1.9.1 1.9.0 NAME Reserved PMD Dis 3 PMD Dis 2 PMD Dis 1 PMD Dis 0 PMD Dis All Disable TX on Lane 3(1) Disable TX on Lane 2(1) Disable TX on Lane 1(1) Disable TX on Lane 0(1) Disable TX on all 4 Lanes 0’b 0’b 0’b 0’b 0’b R/W R/W R/W R/W R/W 1 = Disable PMD Transmit on respective Lane(1) 0 = Enable PMD Transmit on respective Lane (unless TXON/OFF pin is Low) SETTING DEFAULT R/W DESCRIPTION Note (1): In CX4 mode the TCXnP/N pin outputs will be disabled; in LX4 Mode only TX_ENA[n] pin is disabled. Table 12. IEEE PMD SIGNAL DETECT REGISTER MDIO REGISTER ADDRESS = 1.10 (1.000A’h) BIT 1.10.15:5 1.10.4 1.10.3 1.10.2 1.10.1 1.10.0 NAME Reserved PMD Rx Ln 3 PMD Rx Ln 2 PMD Rx Ln 1 PMD Rx Ln 0 PMD Rx Glob PMD Signal Det’d PMD Signal Det’d PMD Signal Det’d PMD Signal Det’d PMD Signal Det’d 1’b(1) 1’b(1) 1’b(1) 1’b(1) 1’b(1) RO RO RO RO RO 1 = PMD Signal Detected on respective Lane (Global, all Lanes) 0 = PMD Signal not detected on respective Lane (Global, any Lane) SETTING DEFAULT R/W DESCRIPTION Note (1): These bits reflect the OPRLOS[3:0] pins (Table 99) in LX4 mode, or the CX4 SIGNAL_DETECT function in CX4 mode, depending on the LX4_MODE select pin. Table 13. IEEE EXTENDED PMA/PMD CAPABILITY REGISTER(1) MDIO Register Addresses = 1.11 (1.000B’h) BIT 1.11.15:1 1.11.0(1) NAME Reserved 10GBASE-CX4 1 = can perform SETTING DEFAULT 0000’h 1’b R/W RO RO Device can be 10GBASE-CX4 DESCRIPTION Note (1): These values reflect the IEEE 802.3ak 10GBASE-CX4 specification. 23 ISL35822 Table 14. IEEE PACKAGE IDENTIFIER REGISTERS MDIO REGISTER ADDRESSES = 1.14:15 (1.000E:F’h) BIT 1.14.15:0 1.15.15:0 NAME Package ID Package ID SETTING Package OUI bits 3:24 & etc. DEFAULT 00’h 00’h R/W R/W R/W DESCRIPTION If NVR is loaded, these are copies of 1.32818:32819 (1.8032:8033’h) & 1.32820:32821 (1.8034:8035’h) XENPAK-DEFINED REGISTERS (1.8000’H TO 1.8106’H) Table 15. XENPAK NVR CONTROL & STATUS REGISTER MDIO (XENPAK) REGISTER ADDRESS = 1.32768 (1.8000’h) BIT 1.32768.15:6 1.32768.5 1.32768.4 1.32768.3:2 NAME Reserved NVR Command(1) Reserved NVR Command Status(3) Current Status of NVR Command 1 = Write NVR 0 = Read NVR SETTING DEFAULT 000’h 0’b(2) 0’b 00’b R/W R/W R/W RO RO 11 = Command failed 10 = Command in progress/Queued 01 = Command completed with success 00 = Idle 10 = read/write one byte(3) 11 = read/write all NVR contents(3) Other values = reserved Write/Read Control for I2C operation DESCRIPTION 1.32768.1:0 Extended NVR Command NVR operation to be 11’b(2) performed R/W Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until read after command completion (either Succeed or Failed). Note (2): At the end of a hardware RESET via the RSTN pin, on powerup, or on a register [1,3,4].0.15 RESET operation, and if the XP_ENA pin is asserted, the ISL35822 will automatically begin an ‘all NVR read’ operation. Note (3): The single byte commands are controlled through the bits of the registers at 1.32769:32774 (1.8001:8006’h). The ‘block write/read’ commands are affected by register 1.32773 (1.8005’h). Additional status is available in 1.327743 (1.8006’h) Table 16. I2C ONE-BYTE OPERATION DEVICE ADDRESS REGISTER MDIO REGISTER ADDRESS = 1.32769 (1.8001’h) BIT 1.32769.15:8 1.32769.7:0 NAME Reserved Device Address I2C Device address to access SETTING DEFAULT 00’h A2’h R/W RO R/W All I2C Device addresses are even. Bit 0 cannot be set. DESCRIPTION Table 17. I2C ONE-BYTE OPERATION MEMORY ADDRESS REGISTER MDIO REGISTER, ADDRESS = 1.32770 (1.8002’h) BIT 1.32770.15:0 NAME Memory Address access SETTING I2C Memory address to DEFAULT 0000’h(2) R/W R/W (1.8001’h) DESCRIPTION I2C Memory Address within Device address of 1.32769 Note (1): 8-bit-addressed I2C devices are addressed using bits 7:0. Never set bit 1.32773.8 (1.8005’h.8) for 16-bit address operation with an 8-bit address I2C device. Table 18. I2C ONE-BYTE OPERATION READ DATA REGISTER MDIO REGISTER ADDRESS = 1.32771 (1.8003’h) BIT 1.32771.15:8 1.32771.7:0 NAME Reserved Read Data I2C Read Data SETTING DEFAULT 00’h 00’h R/W RO RO Result of I2C 1-byte Read operation DESCRIPTION 24 ISL35822 Table 19. I2C ONE-BYTE OPERATION WRITE DATA REGISTER MDIO Register Address = 1.32772 (1.8004’h) BIT 1.32772.15:8 1.32772.7:0 NAME Reserved Write Data I2C Write Data SETTING DEFAULT 00’h 00’h R/W RO R/W Data to be written by 1-byte Write Operation DESCRIPTION Table 20. NVR I2C OPERATION CONTROL REGISTER MDIO REGISTER ADDRESS = 1.32773 (1.8005’h) BIT 1.32773.15:9 1.32773.8 1.32773.7 1.32773.6:4 NAME Reserved Long Memory(1) NVR Write Size I2C Bus Speed Speed of I2C SCL clock(4) (derived from REF_CLOCK) 11 = 63 10 = 16 01 = 4 00 = 1 11 = 32 bytes 10 = 16 bytes 01 = 8 bytes 00 = 4 byte 1 =16 bit 0 = 8 bit SETTING DEFAULT 00’h 0’b 0’b 100’b R/W RO R/W R/W R/W Length of address for I2C device selected 1 = Block write all 256 bytes to NVR(2) 0 = Write only 1.807F:AE’h to NVR(3) 111 = 400kHz 110 = 200kHz 101 = 150kHz 100 = 100kHz 011 = 40kHz 010 = 20kHz 001 = 10kHz 000 = 4kHz DESCRIPTION 1.32773.3:2 NVR ACK Error Count 11’b R/W Number of ACK failures at any address before I2C Operation failure is reported 1.32773.1:0 NVR Write Page Size(2) 01’b R/W The I2C interface block write operation will issue a STOP and wait for the EEPROM every time after this number of bytes are sent out Note (1): This bit should only be set if an I2C device which needs a 16-bit address is to be addressed. The NVR and DOM spaces are all 8-bit address sections, and for these areas, this bit should be 0’b. Note (2): Block 256-byte NVR writes will not occur unless the WRTP pin is set Low. NVR Write Page Size controls Page size for Block operations only. Note (3): This area corresponds to the XENPAK-defined Customer Area; see XENPAK Spec R3.0 Section 10.12.22. Writes will be performed one byte at a time. Note (4): The I2C clock speeds listed are approximate. They are derived by division from the CMU, locked to the RFCP/N inputs. At 156.25MHz, the nominal 100kHz clock will actually be 156.25/1.6kHz, just over 97.5kHz. See also the notes to Table 117. Table 21. NVR I2C OPERATION STATUS REGISTER MDIO REGISTER ADDRESS = 1.32774 (1.8006’h) BIT 1.32774.15 1.32774.14:4 1.32774.3 1.32774.2 1.32774.1 1.32774.0 XP_ENA Reserved Vendor Specific Area EXOR sum check Customer Write Area EXOR sum check Reserved NVR Area EXOR sum check Error Flag Error Flag Error Flag NAME SETTING XP_ENA pin 0000’h 0’b 0’b 0’b 0’b DEFAULT R/W RO RO RO LH RO LH RO LH(1) RO LH 1 = 1.807D ! = EXOR(1.8007:807C) 0 = 1.807D = EXOR(1.8007:807C) (2) 1 = 1.8106 ! = EXOR(1.80AE:8105) 0 = 1.8106 = EXOR(1.80AE:8105) (2) 1 = 1.80AD ! = EXOR(1.807E:80AC) 0 = 1.80AD = EXOR(1.807E:80AC) (2) DESCRIPTION 1 = XP_ENA pin high, 0 = low Note (1): These bits are latched high on any internal error condition detected. They are reset low (cleared) on being read. Note (2): These bits are set if the EXOR sum calculated from the indicated range is not the same as the value read into the listed checksum register. Note that this is NOT the same as the XENPAK-defined checksum calculation. Contact Intersil for a method of reconciling these two checksum calculations. 25 ISL35822 Table 22. XENPAK NVR REGISTER COPY MDIO XENPAK/XPAK/X2 NVR REGISTER ADDRESSES = 1.32775:33030 (1.8007:8106’h) BYTE ADDRESS DEC HEX NAME NVR Register Copy PKG OUI DESCRIPTION(1) XENPAK NVR Register Copies XENPAK/XPAK/X2 Package OUI (bits 3 to Xenpak = 0008BE 24) XPAK = 000ACB X2 = 000C64 XENPAK NVR Register Copies DOM Capability Bits XENPAK NVR Register Copies Basic Field Checksum(3) Customer Writable Area(4) Customer Area Checksum(5) Vendor Specific Area Auto-configure Size (N) Auto-configure Pointer (S) Vendor Specific Checksum(6) See page 16 (or 00 or FF’h) SUGGESTED VALUE R/W R/W(2) R/W(2) Mirrored to 1.14:15 (1.E:F’h) DETAILS 1.32775 to 1.8007 to 1.32817 1.8031 1.32818 to 1.8032 to 1.32821 1.8035 1.32822 to 1.8036 to 1.32889 1.8079 1.32890 1.32891 1.32892 1.32893 1.807A 1.807B 1.807C 1.807D NVR Register Copy DOM Ctrl NVR Reg Copy Basic Chksm NVR Register Copy Cstm Chksm R/W(2) R/W(2) R/W(2) Table 23 Σ(1.8007:807C) R/W(2) 1.32894 to 1.807E to 1.32940 1.80AC 1.32941 1.80AD Σ(1.807E:80AC) R/W(2) See Table 92 1.32942 to 1.80AE to NVR Register 1.33027 1.8103 Copy 1.33028 1.33029 1.33030 1.8104 1.8105 1.8106 A/C Size A/C Pointer Vndr Chksm Σ(1.80AE:8105) Note (1): Only register values operated on by the ISL35822 are individually listed. The others are merely copied from the I2C NVR space. Note (2): Although data can be written to these registers, it will be volatile, unless the ‘Write NVR’ operation as specified in “Writing EEPROM Space through the I2C Interface” on page 19 is performed. Note (3): Checksum to be calculated from 1.8007’h to 1.807C’h. Host can check for validity. Note (4): If WRTP pin is high, this is the only area that can be written by the user. See also Note (2) above. Note (5): Checksum to be calculated from 1.807E’h to 1.80AC’h. Note (6): Checksum to be calculated from 1.80AE’h to 1.8105’h. Table 23. XENPAK DIGITAL OPTICAL MONITORING (DOM) CAPABILITY REGISTER MDIO (XENPAK) REGISTER, ADDRESS = 1. 32890 (1. 807A’h) BIT 1.32890.15:8 1.32890.7 1.32890.6 1.32890.5 1.32890.4 1.32890.3 1.32890.2:0 NAME Reserved DOM Ctrl Reg DOM system Lane-by Lane LBC Scale Reserved DOM Address 001’b R/W I2C Device Address of (initial) DOM IC(2) 1 = 10µA 0 = 2µ A 1 = Implemented 0 = Not implemented SETTING SUGGESTED VALUE(1) 000’h 1’b 1’b 1’b R/W R/W R/W R/W DOM Control/Status Register 1.A100’h DOM Implemented WDM Lane-by-Lane DOM; registers 1.A0C0:A0FF’h valid Laser Bias Scale Factor R/W(3) DESCRIPTION Note (1): Suggested values are given, for a full LX4 module with four individual-lane DOM circuits, at least one having the DOM data at Device Address A2’h. Note (2): Last three significant bits of the (default) DOM I2C Device Address (NB LSB is a read/write flag). Upper bits are assumed to be ‘1010’b, Device address will be (A0’h + 2*(). A device MUST be present at this address for correct operation if bit 6 is set. Note (3): Although data can be written to this register, it should only be done for writing the NVR, using the ‘Write NVR’ operation as specified in “Writing EEPROM Space through the I2C Interface” on page 19. The values here should normally only be loaded from the NVR, since they could affect the operation of the ISL35822 if incorrect. 26 ISL35822 XENPAK LASI AND DOM REGISTERS (1.9000’H TO 1.9007’H & 1.A000’H TO 1.A100’H) Table 24. XENPAK LASI RX_ALARM CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36864 (1.9000’h) BIT 1.36864.15:7 1.36864.6 1.36864.5 1.36864.4 1.36864.3 1.36864.2 1.36864.1 1.36864.0 NAME Reserved PCS Byte S RX Power PMA LF PCS LF PCS Code DOM RX PHY RX LF 1 = trigger LASI by corresponding bit of 1.36867 (1.9003’h) 0 = LASI ignores corresponding bit of 1.36867 (1.9003’h) SETTING DEFAULT(1) 000’h 0’b 1’b 1’b 1’b 0’b/1’b 1’b 1’b R/W R/W R/W R/W R/W R/W R/W PCS Byte Sync Fail LASI Enable Receive Laser Pwr/Sig Det LASI Enable PMA RX Local Fault LASI Enable PCS RX Local Fault LASI Enable 8b/10b Code Violation LASI Enable DOM RX or RX EFIFO Fault LASI Enable PHY RX Local Fault LASI Enable R/W DESCRIPTION Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 25. XENPAK LASI TX_ALARM CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36865 (1.9001’h) BIT 1.36865.15:11 1.36865.10 1.36865.9 1.36865.8 1.36865.7 1.36865.6 1.36865.5 1.36865.4 1.36865.3 1.36865.2 1.36865.1 1.36865.0 NAME Reserved PHY S_D LBC LTEMP LOP TX LF Byte Sync PMA LF PCS LF TX EFIFO DOM TX/ PHY Code PHY TX LF 1 = trigger LASI from corresponding bit of 1.36868 (1.9004’h) 0 = LASI ignores corresponding bit of 1.36868 (1.9004’h) SETTING DEFAULT(1) 000’h 0’b/1’b 1’b/0’b 1’b/0’b 1’b/0’b 1’b/0’b 0’b/1’b 1’b 1’b/0’b 0’b/1’b 1’b 1’b R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W PHY XS Signal Detect LASI Enable Laser Bias Current Fault LASI Enable Laser Temperature Fault LASI Enable Laser Output Power Fault LASI Enable Transmit Local Fault LASI Enable PHY XS Byte Sync Fail LASI Enable PMA TX Local Fault LASI Enable PCS TX Local Fault LASI Enable Transmit EFIFO Error LASI Enable DOM TX or PHY XS 8b/10b Code Violation Fault LASI Enable PHY TX Local Fault LASI Enable R/W DESCRIPTION Note (1): Where two values are given, Default depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value. The value may be overwritten by the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 26. XENPAK LASI CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36866 (1.9002’h) BIT 1.36866.15:4 1.36866.3 1.36866.2 1.36866.1 1.36866.0 NAME Reserved GPIO RX_Alarm TX_Alarm LS_Alarm 1 = trigger LASI via bit in 1.36869 (1.9005’h) 0 = LASI ignores bit SETTING DEFAULT(1) 000’h 0’b 0’b 0’b 0’b R/W R/W R/W R/W Enable GPIO pins to trigger LASI(2) Enable RX_Alarm to trigger LASI Enable TX_Alarm to trigger LASI Enable Link Status change to trigger LASI R/W DESCRIPTION Note (1): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Since on Power up or RESET several LASI contributors will initially be in the ‘fault’ condition (in particular, Byte Synch and Lane Alignment, and their derivatives), it may be advisable for a host to clear these before enabling these to trigger LASI. Note (2): See description of the General Purpose Input/Output (GPIO) pins and bits for a description of how they contribute to the LASI system. 27 ISL35822 Table 27. XENPAK LASI RX_ALARM STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36867 (1.9003’h) BIT 1.36867.15:6 1.36867.6 1.36867.5 NAME Reserved PCS Byte Synch RX Receive Power/Level PMA LF PCS LF PCS Code DOM RXFlg/ RX EFIFO PHY RX LF 1 = Alarm Condition is Detected 0 = No Alarm Condition is Detected 0’b 0’b 0’b 0’b 0’b RO/LH RO/LH RO/LH RO/LH RO/LH SETTING DEFAULT 000’h 0’b 0’b RO/LH RO/LH PCS Byte Sync Fail (logical NAND of bits 3.24.[3:0]) LX4: Receive Laser Power from OPRXOP pin (for polarity see 1.49181) CX4: Loss of Signal Detect(3) PMA/PMD RX Local Fault: mirror to bit 1.8.10(2) PCS RX Local Fault: mirror to bit 3.8.10(2) PCS 8b/10b Code Violation in any lane of PCS LX4: DOM RX_Flag (from polling) CX4: RX EFIFO over/underflow Fault PHY RX Local Fault Status: mirror to bit 4.8.10(2) R/W DESCRIPTION(1) 1.36867.4 1.36867.3 1.36867.2 1.36867.1 1.36867.0 Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value Note (2): These mirrored bits will be cleared on a read of either this register or of their respective mirroring registers. Note (3): This bit is derived from the OR of the LOS bits (1.C00A.3:0). In the case of a signal which is close to the LOS threshold value, so that LOS is changing over time for one or more lanes, this bit may give a “FAIL” indication even though the SIGNAL_DETECT function declares the signal “GOOD”, and Byte Synch and Lane Align all indicate a “GOOD” signal. Table 28. XENPAK LASI TX_ALARM STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36868 (1.9004’h) BIT 1.36868.15:11 1.36868.10 1.36868.9 NAME Reserved PHY S_D LBC SETTING DEFAULT 000’h 1 = Alarm Condition is 0’b Detected 0 = No Alarm Condition is Detected 0’b RO/ LH RO LH LX4: No fail detected CX4: PHY XS Signal Detect Fail (XAUI) LX4: Laser Bias Current Fault (from OPTXLBC pin, for polarity see 1.49181) CX4: No failure detectable LX4: Laser Temperature Fault (from OPTTEMP pin, for polarity see 1.49181) CX4: No failure detectable LX4: Laser Output Power Fault (from OPTXLOP pin, for polarity see 1.49181) CX4: No failure detectable Transmit Local Fault (from TX_FAULT pin, for polarity see 1.49170) LX4: No fail detected CX4: PHY XS Byte Sync Fail Status PMA TX Local Fault Status: mirror to bit 1.8.11(2) LX4: PCS TX Local Fault Status: mirror to bit 3.8.11(2) CX4: No failure detectable LX4: No fail detected CX4: Transmit EFIFO Error Status LX4: DOM TX_Flag (from polling) CX4: PHY XS 8b/10b Code Violation PHY TX Local Fault Status: mirror to bit 4.8.11(2) R/W DESCRIPTION(1) 1.36868.8 LTEMP 0’b RO LH 1.36868.7 LOP 0’b RO LH 1.36868.6 1.36868.5 1.36868.4 1.36868.3 1.36868.2 1.36868.1 1.36868.0 TX LF Byte Sync PMA LF PCS LF TX EFIFO DOM TX/ PHY Code PHY TX LF 0’b 0’b 0’b 0’b 0’b 0’b 0’b RO LH RO LH RO LH RO LH RO LH RO LH RO LH Note (1): Where two descriptions are given, depends on LX4/CX4 select LX4_MODE pin. First value is LX4 value Note (2): These mirrored bits will be cleared on read of either this register or their respective registers. 28 ISL35822 Table 29. XENPAK LASI STATUS REGISTER MDIO REGISTER, ADDRESS = 1.36869 (1.9005’h) BIT 1.36869.15:4 1.36869.3 NAME Reserved GPIO Alarm 1 = Alarm Condition is Detected SETTING DEFAULT 000’h 0’b RO Logic OR of signals in register 1.49169.[15:8] (1.C011h), which come from GPIO pins. Logic OR of signals in register 1.36867 RX_ALARM Status register Logic OR of signals in register 1.36868 TX_ALARM Status register Link Status Logic change in AND of “PMD Signal OK” (1.10.0), “PCS Lane Alignment” (3.24.12), and “PHY XS Lane Alignment” (4.24.12) R/W DESCRIPTION 1.36869.2 1.36869.1 1.36869.0 RX_ALARM TX_ALARM LS_ALARM 0 = No Alarm Condition is 0’b Detected 0’b 0’b RO RO RO LH(1) Note (1): This bit is latched high on any change in the condition detected. It is reset low (cleared) on being read. Table 30. XENPAK DOM TX_FLAG CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36870 (1.9006’h) BIT(1) 1.36870.15:8 1.36870.7 1.36870.6 1.36870.5:4 1.36870.3 1.36870.2 1.36870.1 1.36870.0 NAME Reserved TTmp_Hi TTmp_Lo Reserved LBC_Hi LBC_Lo LOP_Hi LOP_Lo 1 = Enable Alarm 0 = Disable Alarm 1 = Enable Alarm 0 = Disable Alarm SETTING DEFAULT(2) 000’h 0’b 0’b 0’h 0’b 0’b 0’b 0’b R/W R/W R/W R/W R/W R/W R/W Laser Bias Current High AlarmEnable Laser Bias Current Low Alarm Enable Laser Output Power High Alarm Enable Laser Output Power Low Alarm Enable Transceiver Temp High Alarm Enable Transceiver Temp Low Alarm Enable R/W DESCRIPTION Note (1): These bits control (select) alarm signals (bits) in register 1.41072 (1.A070’h) to generate the TX_Flag bit of register 1.36868 (1.9004’h) to trigger TX_ALARM and hence LASI. Note (2): The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 31. XENPAK DOM RX_FLAG CONTROL REGISTER MDIO REGISTER, ADDRESS = 1.36871 (1.9007’h) BIT(1) 1.36871.15:8 1.36871.7 1.36871.6 1.36871.5:0 NAME Reserved ROP_Hi ROP_Lo Reserved 1 = Enable Alarm 0 = Disable Alarm SETTING DEFAULT(2) 000’h 0’b 0’b 00’h R/W R/W Receive Optical Power High Alarm Enable Receive Optical Power Low Alarm Enable R/W DESCRIPTION Note (1): These bits control (select) alarm signals (bits) in register 1.41073 (1.A071’h) to generate the RX_Flag bit of register 1.36867 (1.9003’h) to trigger RX_ALARM and hence LASI. Note (2): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 29 ISL35822 Table 32. XENPAK DOM ALARM & WARNING THRESHOLD REGISTERS COPY XENPAK/XPAK/X2 DOM REGISTERS = 1.40960:40999 & 41032:41055 (1.A000:A027’h & A048:A05F’h) (1) BYTE ADDRESS DEC HEX MEMORY ADDRESS 00 to 07 08 to15 16 to 23 24 to 31 32-39 72 to 95 DESCRIPTION Transceiver Temp High & Low Alarm & Warning Thresholds Reserved Laser Bias Current High & Low Alarm & Warning Thresholds (Lane 0 or common to all lanes) Laser Output Power High & Low Alarm & Warning Thresholds Receive Optical Power High & Low Alarm & Warning Thresholds Lane-by-Lane Laser Bias Current High & Low Alarm & Warning Thresholds (or Zero) DEFAULT R/W RO RO RO RO RO RO DETAILS Byte Order: High Alarm MSB:LSB Low Alarm MSB:LSB High Warning MSB:LSB Low Warning MSB:LSB 1.40960 to 1.A000 to 1.40967 1.A007 1.40968 to 1.A008 to 1.40975 1.A00F 1.40976 to 1.A010 to 1.40983 1.A017 1.40984 to 1.A018 to 1.40991 1.A01F 1.40992to 1.40099 1.A020 to 1.A027 1.41032 to 1.A048 to 1.41055 1.A05F Order: Lane 1 to Lane 3 Note (1): These1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). For further details see Table 27 in the XENPAK MSA Rev 3.0 specification, especially Note 2. If it is desired to write this data into a DOM device through the MDIO interface, it will need to be written one byte at a time via the methods discussed in “MDIO Register Addressing” on page 15. Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF) BYTE ADDRESS DEC 1.41056 1.41057 1.41058 1.41059 1.41060 1.41061 1.41062 1.41063 1.41064 1.41065 1.41066 1.41069 1.41070 to 1.41077 1.41078 to 1.41151 1.41152:3 1.41154:5 1.41156:7 1.41158:9 1.41160:1 1.41162:7 1.41168:9 HEX 1.A060 1.A061 1.A062 1.A063 1.A064 1.A065 1.A066 1.A067 1.A068 1.A069 1.A06A to 1.406D 1.A06E to 1.A075 1.A076 to 1.A0BF 1.A0C0:1 1.A0C2:3 1.A0C4:5 1.A0C6:7 1.A0C8:9 1.A0CA:F 1.A0D0:1 MEMORY ADDRESS 96 & 97 98 & 99 100 & 101 102 & 103 104 & 105 106 to 109 110 to 117 118 to 191 192:193 194:195 196:197 198:199 200:201 202:207 208:209 DESCRIPTION(1) “Farthest out of range/Representative” Transceiver Temperature (2) Reserved “Farthest out of range/Representative” Laser Bias Current(2) “Farthest out of range/Representative” Laser Output Power(2) “Farthest out of range/Representative” Receive Optical Power(2) Reserved DOM Status, Capability, and Alarm Flags(2). See Table 34 to Table 37 Reserved Lane 0 Transceiver Temperature (3) Reserved Lane 0 Laser Bias Current(3) Lane 0 Laser Output Power(3) Lane 0 Receive Optical Power(3) Reserved Lane 1 Transceiver Temperature (3) DEFAULT R/W RO DETAILS MSB:LSB RO RO RO MSB:LSB MSB:LSB MSB:LSB RO RO RO RO RO RO MSB:LSB MSB:LSB MSB:LSB MSB:LSB MSB:LSB RO MSB:LSB 30 ISL35822 Table 33. XENPAK DOM MONITORED A/D VALUES REGISTER COPY (Continued) MDIO XENPAK/XPAK/X2 DOM REGISTER ADDRESSES = 1.41056:41069 & 1.41152:41215 (1.A060:A06D’h & 1.A0C0:A0FF) BYTE ADDRESS DEC 1.41170:1 1.41172:3 1.41174:5 1.41176:7 1.41178:83 1.41184:5 1.41186:7 1.41188:9 1.41190:1 1.41192:3 1.41194:9 1.41200:1 1.41202:3 1.41204:5 1.41206:7 1.41208:9 1.41210:5 HEX 1.A0D2:3 1.A0D4:5 1.A0D6:7 1.A0D8:9 1.A0DA:F 1.A0E0:1 1.A0E2:3 1.A0E4:5 1.A0E6:7 1.A0E8:9 1.A0EA:F 1.A0F0:1 1.A0F2:3 1.A0F4:5 1.A0F6:7 1.A0F8:9 1.A0FA:F MEMORY ADDRESS 210:211 212:213 214:215 216:217 218:223 224:225 226:227 228:229 230:231 232:233 234:239 240:241 242:243 244:245 246:247 228:249 250:255 Reserved Lane 1 Laser Bias Current(3) Lane 1 Laser Output Power(3) Lane 1 Receive Optical Power(3) Reserved Lane 2 Transceiver Temperature (3) Reserved Lane 2 Laser Bias Current(3) Lane 2 Laser Output Power(3) Lane 2 Receive Optical Power(3) Reserved Lane 3 Transceiver Temperature (3) Reserved Lane 3 Laser Bias Current(3) Lane 3 Laser Output Power(3) Lane 3 Receive Optical Power(3) Reserved RO RO RO RO RO MSB:LSB MSB:LSB MSB:LSB MSB:LSB MSB:LSB RO RO RO RO RO MSB:LSB MSB:LSB MSB:LSB MSB:LSB MSB:LSB DESCRIPTION(1) DEFAULT R/W RO RO RO RO DETAILS MSB:LSB MSB:LSB MSB:LSB MSB:LSB Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on RESET (if enabled), on demand, or periodically under the control of Register 1.A100’h (Table 38). Note (2): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the “Farthest out of range” or “Representative” values for these registers, according to the rules of Note 1 to Table 28 in the XENPAK MSA Rev 3.0 specification. A single onelane DOM device system will provide the values from the single DOM device here only. If the ‘Indirect DOM Enable’ bit is set, “Representative” is defined by Register bits 1.C018’h.1:0 (Table 51), and the values from the specified lane’s DOM are entered here also. Note (3): If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to provide the Lane-by-Lane data. For a single one-lane DOM device system these values are 00’h. The Lane-by-Lane data is obtained from the I2C address space via the pointers defined in Registers 1.C019:C’h (Table 53 & Table 54), if the ‘Indirect DOM Enable’ bit is set (Register 1.C018’h Table 51). Table 34. XENPAK OPTIONAL DOM STATUS BITS REGISTER MDIO REGISTER, ADDRESS = 1.41070 (1.A06E’h) BIT 1.41070.15:1 1.41070.0 NAME Reserved Data_Ready_Bar 1 = Not Ready 0 = Ready SETTING DEFAULT 0000’h 0’b(2) RO High during power-up and first NVR/DOM read. After that set low. R/W DESCRIPTION(1) Note (1): This 1-byte register value is merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as a result of the values copied. Note (2): Assumes NVR/DOM read succeeds 31 ISL35822 Table 35. XENPAK DOM EXTENDED CAPABILITY REGISTER MDIO REGISTER, ADDRESS = 1.41071 (1.A06F’h) BIT 1.41071.15:8 1.41071.7 1.41071.6 1.41071.5 1.41071.4 1.41071.3 1.41071.2 1.41071.1 1.41071.0 NAME Reserved TT_Able LBC_Able LOP_Able ROP_Able AL_Able WN_Able MON_LASI Reserved 1 = Indicates Capability Implemented 0 = Not Implemented SETTING DEFAULT 00’h(1) RO RO RO RO RO RO RO RO Transceiver Temp Monitoring Capable Laser Bias Current Monitoring Capable Laser Output Power Monitoring Capable Receive Optical Power Monitoring Capable Alarm Flags for Monitored Quantities Warning Flags for Monitored Quantities Monitoring Quantities Input to LASI Monitoring Capable R/W DESCRIPTION(1) Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on a periodic or on-demand direct DOM update operation (i.e. with Register bit 1.C018’h.2 Table 51 not set) under the control of Register 1.A100’h (Table 38). The ISL35822 takes no action as a result of the values copied. Table 36. XENPAK DOM ALARM FLAGS REGISTER MDIO REGISTER, ADDRESS = 1.41072:3 (1.A070:1’h) BIT 1.41072.15:8 1.41072.7 1.41072.6 1.41072.5:4 1.41072.3 1.41072.2 1.41072.1 1.41072.0 1.41073.15:8 1.41073.7 1.41073.6 1.41073.5:0 NAME Reserved TT_High TT_Low Reserved LBC_High LBC_Low LOP_High LOP_Low Reserved ROP_High ROP_Low Reserved 1 = Alarm Set 0 = Alarm Not Set 1 = Alarm Set 0 = Alarm Not Set 1 = Alarm Set 0 = Alarm Not Set SETTING DEFAULT 00’h(1) 0’b 0’b 00’b 0’b 0’b 0’b 0’b 00’h 0’b 0’b 00’h RO RO Receive Optical Power High Alarm Receive Optical Power Low Alarm RO RO RO RO Laser Bias Current High Alarm Laser Bias Current Low Alarm Laser Output Power High Alarm Laser Output Power Low Alarm R/W RO RO RO Transceiver Temp High Alarm Transceiver Temp Low Alarm DESCRIPTION(1) Note (1): These 1-byte register values are copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers, according to Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM device here. If the ‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as set by Register bits 1.C018’h.1:0 in Table 51) lane DOM are entered here. See “DOM Registers” on page 16. These bits are gated with the enable bits in 1.9006:7 (Table 30 & Table 31) and the LX4/CX4 select LX4_MODE pin to drive bits 1.9004.1 & 1.9003.1 (Table 28 & Table 27), and if enabled via 1.9002 & 1.9001 (Table 25 & Table 24) to drive the LASI pin. Table 37. XENPAK DOM WARNING FLAGS REGISTER MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h) BIT 1.41076.15:8 1.41076.7 1.41076.6 1.41076.5:4 NAME Reserved TT_High TT_Low Reserved 1 = Warning Set 0 = Warn. Not Set SETTING DEFAULT 00’h(1) 0’b 0’b 00’b RO RO Transceiver Temp High Warning Transceiver Temp Low Warning R/W DESCRIPTION(1) 32 ISL35822 Table 37. XENPAK DOM WARNING FLAGS REGISTER (Continued) MDIO REGISTER, ADDRESS = 1.41076:7 (1.A074:5’h) BIT 1.41076.3 1.41076.2 1.41076.1 1.41076.0 1.41077.15:8 1.41077.7 1.41077.6 1.41077.5:0 NAME LBC_High LBC_Low LOP_High LOP_Low Reserved ROP_High ROP_Low Reserved 1 = Warning Set 0 = Warn. Not Set SETTING 1 = Warning Set 0 = Warning Not Set DEFAULT 0’b 0’b 0’b 0’b 00’h 0’b 0’b 00’h RO RO Receive Optical Power High Warning Receive Optical Power Low Warning R/W RO RO RO RO DESCRIPTION(1) Laser Bias Current High Warning Laser Bias Current Low Warning Laser Output Power High Warning Laser Output Power Low Warning Note (1): These 1-byte register values are merely copied by the ISL35822 from the I2C address space on Power-up or RESET, or on any DOM read operation. If the ‘Indirect DOM Enable’ bit (Register bit 1.C018’h.2 Table 51) is not set, a four-lane external DOM device is expected to determine the values for these registers, according Section 11.3 in the XENPAK MSA Rev 3.0 specification. A single one-lane DOM device system will provide the values from the single DOM device here. If the ‘Indirect DOM Enable’ bit is set, the values from the “Representative” (as defined by Register bits 1.C018’h.1:0 in Table 51), lane DOM are entered here. Table 38. XENPAK DOM OPERATION CONTROL AND STATUS REGISTER MDIO REGISTER, ADDRESS = 1.41216 (1.A100’h) BIT 1.41216.15:4 1.41216.3:2 NAME Reserved DOM Command Status(1) DOM Command Type(1) Current Status of DOM Command SETTING DEFAULT 0000’h 00’b RO 11 = Command failed 10 = Command in progress/Queued 01 = Command complete w success 00 = Idle 00 = Single DOM Read operation 01 = Periodic update, slowest rate(3) 10 = Periodic update, intermediate rate(3) 11 = Periodic update, fastest rate(3) R/W DESCRIPTION 1.41216.1:0 NVR operation to be performed 11’b(2) R/W Note (1): User writes to these bits are not valid unless the Command Status is Idle. The Command Status will not return to Idle until being read after command completion (either Succeed or Failed). Note (2): At the end of a hardware RESETN or a register 1.0.15 RESET operation, if the XP_ENA pin is asserted, and the DOM control bits are set in 1.32890 (1.807A), the ISL35822 will automatically begin a ‘Periodic update, fastest rate read’ operation. Note (3): The rates of the periodic reads are determined by bits 4:3 of register 1.49176 (1.C018’h), see Table 51. VENDOR-SPECIFIC PMA/PMD AND GPIO REGISTERS (1.C001’H TO 1.C01D’H) Table 39. PMA CONTROL 2 REGISTER MDIO REGISTER, ADDRESS = 1.49153 (1.C001’h) BIT 1.49153.15 1.49153.14 1.49153.13 1.49153.12:11 1.49153.10:8 NAME PMA DC_O_DIS Test Amplitude adjust Reserved PMA_LOS_TH 0’h = 160mVp-p 1’h = 240mVp-p 2’h = 200mVp-p 3’h = 120mVp-p 4’h = 80mVp-p else = 160mVp-p SETTING 1 = Disable, 0 = normal 0 = normal DEFAULT 0’b(1) 0’b(2) (1) 1,0’h(1) (3) 0’h LX4: (3) 0’h, CX4: 03’h(1) R/W Set the threshold voltage for the Loss Of Signal (LOS) detection circuit in PMA/PMD. Nominal levels are listed for each control value. Note that the differential peak-to-peak value is twice that listed. R/W R/W R/W R/W DESCRIPTION PMA DC Offset Disable User must keep at 0. Optimizing Setting, TBD(4) 1.49153.7:0 Note (1): Note (2): Note (3): Note (4): Reserved 00’h These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Internal test purposes only. Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. Optimum value to meet output templates. Contact BitBlitz for recommended value. 33 ISL35822 Table 40. PMA SERIAL LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 1.49156 (1.C004’h) BIT 1.49156.15:13 1.49156.12 1.49156.11 1.49156.10 1.49156.9 1.49156.8 1.49156.7:0 NAME Reserved PMA Test LP PMA SLP_3 PMA SLP_2 PMA SLP_1 PMA SLP_0 Reserved 1 = enable 0 = disable 0’h(1) 0’b(2) 0’b(2) 0’b(2) 0’b(2) R/W R/W Serial Network Test Loopback PMA Serial Loop Back Enable for each individual lane. When high, it routes the internal PMA Serial output to the PMA Serial input. SETTING DEFAULT R/W DESCRIPTION Note (1): Loopback is from Serial I/P to Serial O/P. Recommended use for test purposes only; the lanes are swapped, and no pre-emphasis is performed. Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 41. PMA PRE-EMPHASIS CONTROL MDIO REGISTER ADDRESS = 1.49157 (1.C005’h) BIT 1.49157.15:12 1.49157.11:8 1.49157.7:4 1.49157.3:0 NAME PRE_EMP Lane 3 PRE_EMP Lane 2 PRE_EMP Lane 1 PRE_EMP Lane 0 SETTING See Table 42 for settings DEFAULT(1) 00’h/07’h 00’h/07’h 00’h/07’h 00’h/07’h R/W R/W R/W R/W R/W DESCRIPTION Configure the level of PMA pre-emphasis (if Enabled, see 1.C01B.5:2 in Table 45) Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 42. PMA PRE-EMPHASIS CONTROL SETTINGS (1) ADDRESS 1.C005’h BITS 3:0 0000(3) 0001 0010 0011 0100 0101 0110 0111(4) PRE-EMPHASIS (802.3ak) (2) = (1-VLOW/VHI) 0% 5.0% 9.5% 14.0% 18.5% 22.0% 26.5% 30.0% PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 0 0.053 0.105 0.163 0.227 0.282 0.361 0.429 ADDRESS 1.C005’h BITS 3:0 1000 1001 1010 1011 1100 1101 1110 1111 PRE-EMPHASIS (802.3ak) (2) = (1-VLOW/VHI) 33.0% 36.5% 40.0% 43.0% 46.0% 49.0% 52.0% 54.5% PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 0.493 0.575 0.667 0.754 0.852 0.961 1.083 1.198 Note (1): See Figure 3 for illustration of the pre-emphasized waveform and meaning of symbols. Note (2): This equation is the one used by the IEEE 802.3 CX4 Working Group when discussing pre-emphasis (alias Transmit equalization). The template normalization factor of 0.69 in step 6) of IEEE 802.3akD5.3 Section 54.6.3.6 reflects 0.31 (31%) pre-emphasis according to this equation. Note (3): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for LX4 operation. This setting allows for a lowered device power consumption by using the Lowered Power bits to turn off the pre-emphasis drivers (seeTable 45). Note (4): This is the Default value set on power-up or RESET if the LX4/CX4 LX4_MODE pin is set for CX4 operation. This setting allows for a small loss in the PCB traces and connectors before the IEEE 802.3akD5.3 defined TP2 compliance measurement point. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 34 ISL35822 Table 43. PMA/PMD EQUALIZATION CONTROL MDIO REGISTER ADDRESS = 1.49158 (1.C006’h) BIT 1.49158.15:14 1.49158.3:0 NAME Reserved PMA EQ_COEFF 0’h/C’h 0’h = no boost in equalizer. F’h = boost is maximum R/W Configuration of the PMA/PMD equalizer SETTING DEFAULT(1) R/W DESCRIPTION Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 44. PMA SIG_DET AND LOS DETECTOR STATUS REGISTER MDIO REGISTER ADDRESS = 1.49162 (1.C00A’h) BIT 1.49162.15:8 1.49162.7 1.49162.6 1.49162.5 1.49162.4 1.49162.3 1.49162.2 1.49162.1 1.49162.0 NAME Reserved SIG_DET_3 SIG_DET_2 SIG_DET_1 SIG_DET_0 PMA_LOS_3 PMA_LOS_2 PMA_LOS_1 PMA_LOS_0 1 = Signal less than threshold 0 = Signal greater than threshold 1 = CX4 Signal Detect Asserted 0 = CX4 Signal Detect Deasserted SETTING DEFAULT 00’b 1’b 1’b 1’b 1’b 0’b 0’b 0’b 0’b RO/LH (2) RO/LL(1) Signal Detect for PMA lane 3 Signal Detect for PMA lane 2 Signal Detect for PMA lane 1 Signal Detect for PMA lane 0 Loss Of Signal for PMA lane 3 Loss Of Signal for PMA lane 2 Loss Of Signal for PMA lane 1 Loss Of Signal for PMA lane 0 R/W DESCRIPTION Note (1): These bits are latched low on any SIG_DET failure condition detected. They are reset high on being read. Note (2): These bits are latched high on any LOS condition detected. They are reset low on being read. Table 45. PMA/PMD MISCELLANEOUS ADJUSTMENT REGISTER MDIO REGISTER ADDRESS = 1.49163 (1.C00B’h) BIT 1.49163.15:10 1.49163.9:6 1.49163.5:2 1.49163.1:0 NAME Reserved Amplitude LoweredPower Reserved Output Control (1) SETTING DEFAULT 00’h LX4: 5’h CX4: 3’h R/W R/W R/W Bit 5 is for Lane 3, etc. Values of 0’b reduce device power consumption. Test Function, do not alter. R/W DESCRIPTION Predriver Control (1,2) LX4: 0’h CX4: F’h Internal 00’b Note (1): Default values depend on setting of LX4/CX4 select LX4_MODE pin. LX4 value is shown first. The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): The 0’h LX4 default value, combined with the 00’h pre-emphasis values (see Table 41) allow reduced power consumption in LX4 applications. Table 46. PMA/PMD/PCS/PHY XS SOFT RESET REGISTER MDIO REGISTER ADDRESS = [1,3:4].49167 ([1,3:4].C00F’h) BIT 1.49167.15 [3,4].49167.15 [1,3:4].49167.14:0 NAME SOFT_RESET Reserved SETTING Write 1 to initiate. DEFAULT 0’b R/W R/W SC DESCRIPTION Reset the entire chip except MDIO register settings(1) Note (1): This reset will NOT cause a reload of the NVR or DOM areas, nor an Auto-Configure operation. It will reset the Byte Sync engine, the Lane Alignment engine, the FIFO pointers, and the I2C controller. The ISL35822 will (if “normally” configured) transmit ||LF|| local fault signals until Byte Sync and Lane Alignment are re-established, and any DOM update in progress may be aborted. 35 ISL35822 Table 47. GPIO PIN DIRECTION CONFIGURE REGISTER MDIO REGISTER ADDRESS = 1.49168 (1.C010’h) BIT 1.49168.15:5 1.49168.4:0 NAME Reserved GPIO pins configuration 1 = output 0 = input 00’h(1) R/W Controls whether GPIO pin is used as input or output SETTING DEFAULT R/W DESCRIPTION Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 48. GPIO PIN INPUT STATUS REGISTER MDIO REGISTER ADDRESS = 1.49169 (1.C011’h) BIT 1.49169.15:13 1.49169.12:8 1.49169.7:5 1.49169.4:0 NAME Reserved LASI I/P value Reserved GPIO Pin I/P Value 1 = Pin Hi 0 = Pin Lo RO Original values from GPIO pins directly. 1 = can trigger LASI (1) 0 = cannot trigger LASI RO/LH XOR of GPIO Pin I/P and Invert register 1.49170.13:8. SETTING R/W DESCRIPTION Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49170.5:0 and the GPIO enable bit 1.36866.3 are set high. Table 49. TX_FAULT & GPIO PIN TO LASI CONFIGURE REGISTER MDIO REGISTER ADDRESS = 1.49170 (1.C012’h) BIT 1.49170.15:14 1.49170.13 1.49170.12:8 1.49170.7:5 1.49170.4:0 NAME Reserved Invert TX_FAULT 1 = Pin Low, 0 = Pin High to trigger LASI Invert LASI I/P Reserved Enable LASI I/P 1 = Enable (1) 0 = Do not Enable 00’h(2) R/W Enable the GPIO pin value to trigger GPIO_ALARM to LASI 1 = Invert to LASI 0 = Straight to LASI 0’b(2) 00’h(2) R/W R/W Control Polarity of TX_FAULT pin which will trigger LASI (if enabled) Control XOR of GPIO Pin I/P to LASI I/P register 1.49169.13:8. SETTING DEFAULT R/W DESCRIPTION Note (1): If any of these bits is set to ‘1’, it triggers LASI if the corresponding bit in 1.49169.12:8 and the GPIO enable bit 1.36866.3 are set high. The polarity that will trigger LASI is set by bits 1.49170.12:8 above. Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 50. GPIO PIN OUTPUT REGISTER MDIO REGISTER ADDRESS = 1.49171 (1.C013’h) BIT 1.49171.15:5 1.49171.4:0 NAME Reserved GPIO[4:0] Pin Output 0 = Low 1 = High 00’h(1) R/W Controls GPIO[4:0] pin levels if set as output SETTING DEFAULT R/W DESCRIPTION Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 36 ISL35822 Table 51. DOM CONTROL REGISTER MDIO REGISTER ADDRESS = 1.49176 (1.C018’h) BIT 1.49176.15:6 1.49176.5 1.49176.4:3 1.49176.2 1.49176.1:0 NAME Reserved Test Control DOM Update period Indirect DOM Enable Representative See Table 52 1 = Enable 0 = Disable Lane value 0’b 00’h 0’b(2) 00’b(2) R/W R/W R/W R/W User must keep at 0. Controls rates at which DOM A/D values are updated Enable updates from four DOM devices. See Table 33, Table 38 Select Lane for 1.A060:D’h SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): If ‘Indirect DOM Enable’ is set, then the DOM A/D and Flag values are loaded from the I2C spaces pointed to by the Indirect Mode values in Table 53 and Table 54, and ‘Representative’ controls which lane’s A/D values will appear in 1.A060:D’h. If not, then ‘Representative’ has no effect, and the full DOM area is updated from a single DOM device. See “DOM Registers” on page 16 for details. Table 52. DOM PERIODIC UPDATE WAITING TIME VALUES (Approximate, based on REF_CLOCK = 156.25 MHz; default underlined) 1.41216.1:0 (1.A100’h.1:0) BITS(1) 00 01 10 11(2) N/A 800ms 400ms 100ms(2) 1.49176.4:3 (1.C018’h) BITS(1) 00(2) N/A 1000ms 500ms 150ms 01 N/A 1300ms 600ms 200ms 10 N/A 1600ms 700ms 300ms 11 Note (1): See Table 38 and Table 51 for these registers. Note (2): These are the Default values. The value in 1.C018’h may be overwritten by the Auto-Configure operation Table 53. DOM INDIRECT MODE START ADDRESS REGISTERS MDIO REGISTER ADDRESSES = 1.49177:8 (1.C019:1A’h) BIT 1.49177.15:8 1.49177.7:0 1.49178.15:8 1.49178.7:0 NAME Lane 3 DOM Lane 2 DOM Lane 1 DOM Lane 0 DOM SETTING Start Address Start Address Start Address Start Address DEFAULT(1) 60’h 60’h 60’h 60’h R/W R/W R/W R/W R/W DESCRIPTION Start address to read A/D values from DOM monitor device of respective lane Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 54. DOM INDIRECT MODE DEVICE ADDRESS REGISTERS MDIO REGISTER ADDRESSES = 1.49179:80 (1.C01B:1C’h) BIT 1.49179.15:9 1.49179.8 1.49179.7:1 1.49179.0 1.49180.15:8 1.49180.7 1.49180.7:1 1.49180.0 NAME Lane 3 DOM SETTING Device Address DEFAULT(1) 54’h R/W R/W DESCRIPTION Note: I2C Device address to read A/D values from DOM monitor device of respective lane is twice set value. Thus ‘Default’ column addresses are A8’h, A6’h A4’h and A2’h for Lanes 3, 2, 1 & 0 respectively. LSB reflects ‘Read’ operation value Not used, Set by current operation Lane 2 DOM Device Address 53’h R/W Not used, Set by current operation Lane 1 DOM Device Address 52’h R/W Not used, Set by current operation Lane 0 DOM Device Address 51’h R/W Not used, Set by current operation Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 37 ISL35822 Table 55. OPTICAL STATUS & CONTROL PIN POLARITY REGISTER MDIO REGISTER ADDRESS = 1.49181 (1.C01D’h) BIT 1.49181.15:7 1.49181.6 1.49181.5 1.49181.4 1.49181.3 1.49181.2 1.49181.1 1.49181.0 NAME Reserved OPRLOS[3:0] TX_ENA[3:0] TX_ENC OPRXOP OPTTEMP OPTXLBC OPTXLOP 1 = low -> LOS 0 = high -> LOS 1 = Active Low 0 = Active Hi 1 = Pin Low to trigger LASI 0 = Pin High to trigger LASI 0’b 0’b 0’b 0’b 0’b 0’b 0’b R/W R/W R/W R/W R/W R/W R/W Input polarity to 1.10 and enable Byte Synch in LX4 mode Polarity of TX_ENA outputs Polarity of TX_ENC input Control Polarity of respective input pins which will trigger LASI (if enabled) SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 56. MDIO PCS DEVAD 3 REGISTERS PCS DEVICE 3 MDIO REGISTERS ADDRESS DEC 3.0 3.1 3.2:3 3.4 3.5 3.6 3.7 3.8 3.14:15 3.24 3.25 3.49152 3.49153 3.49154 3.49155 3.49156 3.49159 3.49160 3.49161 3.49164 3.49165 3.49166 3.49167 HEX 3.0 3.1 3.2:3 3.4 3.5 3.6 3.7 3.8 3.E:F 3.18 3.19 3.C000 3.C001 3.C002 3.C003 3.C004 3.C007 3.C008 3.C009 3.C00C 3.C00D 3.C00E 3.C00F NAME PCS Control 1 PCS Status 1 ID Code Speed Ability IEEE Devices Vendor Devices PCS Type PCS Status 2 Package ID PCS-X Status 3 PCS Test PCS Control 2 PCS Control 3 PCS ERROR PCS IDLE DESCRIPTION Reset, Enable loop back mode. PCS Fault, Link Status Manufacturer and Device OUI 10Gbps Ability Devices in Package, Clause 22 capable Vendor Specific Devices in Pkg IEEE PCS TYPE SELECT REGISTER Device Present, Local Fault, Type Summary Package OUI, etc. IEEE 10GBASE-X PCS STATUS REGISTER IEEE 10GBASE-X PCS TEST CONTROL REGISTER PCS CONTROL REGISTER 2 PCS Control Register 3 PCS INTERNAL ERROR CODE REGISTER PCS INTERNAL IDLE CODE REGISTER DEFAULT 2040’h 0004’h (3) 01839C6V’h 0001’h 001A’h 0000’h 0001’h 8002’h (3) 00000000’h See (5) 0000’h 0F6F’h 0801’h 00FE’h 0007’h 0000’h 0000’h AAAA’h 0000’h 0000’h 0000’h 0000’h A A A A A AC(2) R/W R/W RO LL RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W RO LH R/W R/W R/W RO/ RCNR R/W SC DETAILS Table 57 Table 58 See (1) Table 7 Table 8 Table 8 Table 59 Table 60 See (4) Table 61 Table 62 Table 63 Table 64 Table 66 Table 67 Table 68 Table 69 Table 70 Table 71 Table 72 Table 73 Table 46 PCS // Loop Back PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER Test_Flags Output Ctrl Half Rate BIST Ctrl BIST Error Soft Reset Receive Path Test & Status Flags Output Control and Test function Half rate clock mode enable BIST Control Register BIST ERROR Counter Registers Reset (non MDIO) Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation. Note (4): The IEEE 802.3ae specification allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero. Note (5): If IEEE 802.3ae (and default) setting for PCS Loopback, 180F’h. If PCS Loopback allowed, 1C0F’h. See Table 61 and Table 64. 38 ISL35822 IEEE PCS REGISTERS (3.0 TO 3.25/3.0019’H) Table 57. IEEE PCS CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 3.0 (3.0000’h) BIT(S) 3.0.15 1.0.15 4.0.15 3.0.14(1) Reset NAME SETTING 1 = reset 0 = reset done, normal operation Optionally, enable PCS Loopback, otherwise reserved 1 = 10Gbps DEFAULT 0’b R/W R/W SC DESCRIPTION Writing 1 to this bit will reset the whole chip, including the MDIO registers. If enabled by EN_PCS_LB (see bit 3.C001’h.7, Table 64) perform PCS Loopback, and is a R/W bit; otherwise, effectively a reserved RO 0’b bit (1). 1 = bits 5:2 select speed PCS_LB_EN 0’b R/W 3.0.13 3.0.12 3.0.11 3.0.10:7 3.0.6 3.0.5:2 3.0.1:0 Speed Select Reserved LOPOWER Reserved Speed Select Speed Select Reserved 1’b 00’h RO 0 = Normal Power 0’b R/W No Low Power Mode, writes ignored 1 = 10Gbps 0000 = 10Gbps 1’b 0’h 0’b RO RO 1 = bits 5:2 select speed Operates at 10Gbps Note (1): This bit is not permitted to be a PCS loopback bit by IEEE 802.3ae-2002 subclause 45.2.3.1.2 in 10GBASE-X PCS devices. Intersil has submitted a maintenance request (#1113) to allow that use of this bit. Many XENPAK hosts, however, expect this loopback (which is mandatory for 10GBASE-R PCS devices). Setting the 3.C001’h.7 bit, (Table 64) will activate this loopback enable bit, but cause the ISL35822 to be non-conforming to the current 802.3 specification. See “Loopback Modes ” on page 13). Table 58. IEEE PCS STATUS 1 REGISTER MDIO REGISTER ADDRESS = 3.1 (3.0001’h) BIT 3.1.15:8 3.1.7 3.1.6:3 3.1.2 NAME Reserved Local Fault Reserved Rx Link Up 1 = PCS Rx Link Up 0 = PCS Rx Link Down Low Power Ability 1 = PCS Local Fault SETTING DEFAULT 00’h 0 0’h 1 (1) RO LL(1) ‘Up’ means CX4/LX4 signal level is OK, Byte Synch and Lane-Lane Alignment have all occurred Device does not support a low power mode RO Derived from Register 3.0008’h R/W DESCRIPTION 3.1.1 3.1.0 LoPwrAble Reserved 0 0 RO Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 59. IEEE PCS TYPE SELECT REGISTER MDIO REGISTER ADDRESS = 3.7 (3.0007’h) BIT 3.7.15:2 3.7.1:0 NAME Reserved PCS Type 01 = 10GBASE-X SETTING DEFAULT 000’h 01b RO(1) Writes ignored R/W DESCRIPTION Note (1): Although the 802.3ae specification describes this register as type R/W, this register cannot have any value other than that reflecting the 10GBASE-X PCS. Thus writing any other value is ignored, and the register is in effect type RO. 39 ISL35822 Table 60. IEEE PCS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESS = 3.8 (3.0008’h) BIT 3.8.15:14 3.8.13:12 3.8.11 3.8.10 3.8.9:3 3.8.2 3.8.1 3.8.0 NAME Device present Reserved TX LocalFlt RX LocalFlt Reserved 10GBASE-W 10GBASE-X 10GBASE-R 0 = cannot perform 1 = can perform 0 = cannot perform 0’b 1’b 0’b RO RO RO Device cannot be 10GBASE-W Device can perform 10GBASE-X Device cannot be 10GBASE-R 1 = TX Local Fault; on Egress 0’b channel 1 = RX Local Fault; on Ingress 0’b channel RO LH(1) RO LH(1) PLL Lock Failure is only PCS TX Fault Lane Alignment or Byte Alignment not done, or Loss of Signal, from Register 3.24 (3.0018’h) SETTING 10 = Device present DEFAULT 10’b R/W RO DESCRIPTION When read as “10”, it indicates that a device is present at this device address Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28) Table 61. IEEE 10GBASE-X PCS STATUS REGISTER MDIO REGISTER ADDRESSES = 3.24 (3.0018’h) BIT 3.24.15:13 3.24.12 3.24.11 3.24.10 NAME Reserved Lane_Align Test_Pattern PCS Loopback Ability(2) or Reserved Reserved Lane3 Sync Lane2 Sync Lane1 Sync Lane0 Sync 1 = PCS Lane is Synchronized 0 = PCS Lane not Synchronized 1 = 4 Lanes Aligned 0 = Lanes not aligned Test Pattern Abilities 1 = has Optional PCS Loopback Ability. 1’b(1) 1’b 0’b RO RO RO 1 = All four 3G receive lanes (on ingress path) are aligned 1 = The device is able to generate test patterns for 10GBASE-X If enabled by EN_PCS_LB (see bit 3.C001’h.7, Table 64) indicates PCS Loopback ability, and is a 1‘b bit; otherwise, a reserved 0’b bit (2). SETTING DEFAULT R/W DESCRIPTION 3.24.9:4 3.24.3 3.24.2 3.24.1 3.24.0 00’h 1’b(1) 1’b(1) 1’b(1) 1’b(1) RO RO RO RO Reflects the PCS_SYNC byte alignment state machine condition; not valid if not enabled in device (see Table 63) Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 60. Note (2): See Note (1) to Table 57, Note (2) to Table 64 and/or “PCS (Parallel) Loopback (4.C004.[3:0] & Optionally 3.0.14)” under “Loopback Modes ” on page 13. If enabled, this register bit does NOT conform to the IEEE 802.3ae-2002 specification. Table 62. IEEE 10GBASE-X PCS TEST CONTROL REGISTER MDIO REGISTER ADDRESS = 3.25 (3.0019’h) BIT 3.25.15:3 3.25.2 3.25.1:0 NAME Reserved PCS TestPatEn PCS TestPat Type Transmit Test Pattern Enable Test pattern select 0’b 00’b R/W R/W 0 = Do not Transmit test pattern 1 = Transmit test pattern 11 = Reserved 10 = Mixed frequency test pattern (Continuous /K/ = K28.5) 01 = Low frequency test pattern (repeat 0000011111 = K28.7) 00 = High frequency test pattern (repeat 0101010101 = D10.2) SETTING DEFAULT R/W DESCRIPTION Note (1): For other test pattern generation capabilities incorporated in the ISL35822, including CJPAT and CRPAT, see Table 72. 40 ISL35822 VENDOR-SPECIFIC PCS REGISTERS (3.C000’H TO 3.C00E’H) Table 63. PCS CONTROL REGISTER 2 MDIO REGISTER ADDRESS = 3.49152 (3.C000’h) BIT 3.49152.15:14 3.49152.13:12 3.49152.11 3.49152.10 3.49152.9:8 NAME Test Mode Reserved PCS Clock PSYNC PCS CODECENA PCS CDET[1:0] 0 = disable 1 = enable Comma Detect Select 1’b 1’b 11’b R/W R/W R/W 1 = Synchronize/align four lanes 0 = Do not synchronize/align four lanes Internal 8B/10B PCS Codec enable/disable These bits individually enable positive and negative disparity “comma” detection. 11 = Enable both positive and negative comma detection 10 = Enable positive comma detection only 01 = Enable negative comma detection only 00 = Disable comma detection Enable De-skew state machine control (3) . Forced enabled by XAUI_EN. May not operate correctly unless the PCS_SYNC_EN bit is also set. Other values should only be used if incoming data is frequency-synchronous with the local reference clock(4) Enable 8b/10b PCS coding synchronized state machine(3) to control the byte alignment (IEEE ‘code-group alignment’) of the high speed de-serializer Enables IDLE vs. NON-IDLE detection for lane-lane alignment. Overridden by XAUI_EN, see Table 64 Enable the elastic function of the receiver buffer Receiver aligns data on incoming “/A/” characters (K28.3). If disabled (default), receiver aligns data on IDLE to nonIDLE transitions (if bit 3 set). Overridden by XAUI_EN, see Table 64 Enable de-skew calculator of receiver Align FIFO SETTING 00’b DEFAULT(1) 00’b R/W R/W DESCRIPTION User should leave at 00’b 3.49152.7 PCS DSKW_SM_EN 0 = disable(2) 1 = enable 0’b R/W 3.49152.6:5 3.49152.4 PCS RCLKMODE(4) 11’b = Local Reference Clock PCS_SYNC_EN 0 = disable(2) 1 = enable 1 = enabled 0 = disabled 1 = enabled 0 = disabled 1 = disabled(1) 0 = enabled 11’b 0’b R/W R/W 3.49152.3 3.49152.2 3.49152.1 PCS IDLE_D_EN PCS ELST_EN PCS A_ALIGN_DIS 1’b 1’b 1’b R/W R/W R/W 3.49152.0 Note (1): Note (2): Note (3): Note (4): PCS CAL_EN 1 = enabled 0 = disabled 1’b R/W The default values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). These bits are overridden by PCS XAUI_EN, see Table 64 and Table 65. These state machines are implemented according to 802.3ae-2002 clause 48.6.2. If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PCS to the PHY XS is set to the recovered clock. If the PCS Clock PSYNC bit is set (the default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own recovered clock. If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost, or repeated). Table 64. PCS CONTROL REGISTER 3 MDIO REGISTER ADDRESS = 3.49153 (3.C001’h) BIT 3.49153.15:12 3.49153.11 NAME Reserved PCS XAUI_EN 1 = enable 0 = disable 1’b(1) R/W Enables all XAUI features per 802.3ae-2002. It is equivalent to setting the configuration bits listed in Table 65 (but does not change the actual value of the corresponding MDIO registers’ bits). SETTING DEFAULT R/W DESCRIPTION 3.49153.10:8 3.49153.7 Reserved EN_PCSLB_EN 0’b(1) Enable 3.0.14 Loopback Control (2) 41 ISL35822 Table 64. PCS CONTROL REGISTER 3 (Continued) MDIO REGISTER ADDRESS = 3.49153 (3.C001’h) BIT 3.49153.6 NAME PCS AKR_SM_EN SETTING 1 = enable random A/K/R 0 = /K/ only(3) 1 = enable 0 = disable(3) Overridden by XAUI_EN, see Table 65 DEFAULT 0’b(1) R/W R/W DESCRIPTION Enable pseudo- random A/K/R(4) in Inter Packet Gap (IPG) on PCS transmitter side (vs. /K/ only) This bit enables the transceiver to translate an “IDLE” pattern in the internal FIFOs (matching the value of register 3.C003’h) to and from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/ characters. 3.49153.5 PCS TRANS_EN 0’b(1) R/W 3.49153.4 3.49153.3 3.49153.2:0 Reserved TX_SDR Reserved PCS receive data rate 0’b(1) 001’b R/W 1 = PCS egress takes data from PHY XS at half speed 0 = PCS egress takes data from PHY XS at full speed Note (1): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): PCS loopback via bit 3.0.14 (Table 57) is NOT permitted by IEEE 802.3ae-2002 for 10GBASE-X PCS devices. Many XENPAK hosts, however, expect this loopback (which is mandatory for 10GBASE-R PCS devices). Setting this bit will enable this loopback, but cause the ISL35822 to be non-conforming to the current 802.3 specification. See “Loopback Modes ” on page 13). Note (3): These bits are overridden by PCS XAUI_EN, see also Table 65. Note (4): This state machine is implemented according to IEEE 802.3ae-2002 clause 48.2.6. Table 65. PCS or PHY XS XAUI_EN CONTROL OVERRIDE FUNCTIONS BITS OVERRIDDEN BY XAUI_EN Bit, D.49153.11 (D.C001’h.11) = 1’b (1) REG. BIT(1) D.49153.5 D.49153.6 D.49152.1 D.49152.4 D.49152.7 D.49154 NAME TRANS_EN AKR_SM_EN A_ALIGN_DIS PCS_SYNC_EN DSKW_SM_EN ERROR Code OVERRIDE TO 1 = enable 1 = enable 0 = enabled 1 = enable 1 = enable FE’h DEFAULT 0’b 0’b 1’b 0’b 0’b FE’h R/W R/W R/W R/W R/W R/W R/W DESCRIPTION Translates /A/K/R/ to-from /I/ Generate pseudo-random /A/K/R/ Aligns data on incoming “||A||” IEEE Clause 48.2.6 State Machine IEEE Clause 48.2.6 State Machine Internal FIFO ERROR character Note (1): “D” is either 3 for PCS or 4 for PHY XS. Behavior of the two devices is entirely independent of each other. Table 66. PCS INTERNAL ERROR CODE REGISTER MDIO REGISTER, ADDRESS = 3.49154 (3.C002’h) BIT 3.49154.15:8 3.49154.7:0 NAME Reserved PCS ERROR Desired Value(2) FE’h R/W Error Code. These bits allow the internal FIFO ERROR control character to be programmed. SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden to FE’h by XAUI_EN, see Table 64 and Table 65. Table 67. PCS INTERNAL IDLE CODE REGISTER MDIO REGISTER ADDRESS = 3.49155 (3.C003’h) BIT 3.49155.15:8 3.49155.7:0 NAME Reserved PCS XG_IDLE Desired Value 07’h R/W IDLE pattern in internal FIFOs for translation to/from XAUI IDLEs SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 42 ISL35822 Table 68. PCS PARALLEL NETWORK LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 3.49156 (3.C004’h) BIT 3.49156.15:4 3.49156.3 3.49156.2 3.49156.1 3.49156.0 NAME Reserved PLP_3 PLP_2 PLP_1 PLP_0 1 = enable PCS Parallel 0’b(1) Network loopback(2) 0’b(1) 0 = disable 0’b(1) 0’b(1) R/W PCS Parallel Network Loop Back Enable for each individual lane. When high, routes the CX4/LX4 Serial input to the CX4/LX4 Serial output via the XGMII side of the PCS. SETTING DEFAULT R/W DESCRIPTION Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): Equivalent to a loopback at the XGMII input side of the PHY XS. Table 69. PCS RECEIVE PATH TEST AND STATUS FLAGS MDIO REGISTER ADDRESS = 3.49159 (3.C007’h) BIT 3.49159.15:12 3.49159.11 3.49159.10 3.49159.9 3.49159.8 3.49159.7 3.49159.6 3.49159.5 3.49159.4 3.49159.3:0 NAME Test Flags EFIFO_3 EFIFO_2 EFIFO_1 EFIFO_0 Code_3 Code_2 Code_1 Code_0 Test Flags 1 = EFIFO error in Lane 0 = no EFIFO error in Lane SETTING DEFAULT 0’h 0’b 0’b 0’b 0’b 1 = 10b/8b Code error in 0’b Lane 0’b 0 = no 10b/8b Code error 0’b 0’b 0’h ROLH ROLH ROLH ROLH ROLH ROLH ROLH ROLH Special test use only PCS 10b/8b Decoder Code Violation Detection(1) R/W ROLH DESCRIPTION Special test use only PCS Elasticity FIFO Overflow/Underflow Error Detection(1) Note (1): Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI register 1.9003’h (see Table 27) Table 70. PMA/PCS OUTPUT CONTROL & TEST FUNCTION REGISTER MDIO REGISTER ADDRESS = 3.49160 (3.C008’h) BIT 3.49160.15:14 3.49160.13 3.49160.12:10 3.49160.9 3.49160.8:6 3.49160.5 3.49160.12:10 3.49160.1 3.49160.0 NAME Reserved ENA_3 Reserved ENA_2 Reserved ENA_1 Reserved ENA_0 Reserved Enable Lane 0 O/P Enable Lane 1 O/P Enable Lane 2 O/P Enable Lane 3 O/P SETTING DEFAULT 10’b 1’b 010’b 1’b 010’b 1’b 010’b 1’b 0’b R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W DESCRIPTION Test Function, do not alter 0 = disable (indep. of LX4_MODE) Test Function, do not alter 0 = disable (indep. of LX4_MODE) Test Function, do not alter 0 = disable (indep. of LX4_MODE) Test Function, do not alter 0 = disable (indep. of LX4_MODE) Test Function, do not alter 43 ISL35822 Table 71. PCS/PHY XS HALF RATE CLOCK CONTROL REGISTER MDIO REGISTER ADDRESSES = 3.49161 & 4.49161 ([3,4].C009’h) BIT 3.49161.15:4 4.49161.15:4 3.49161.3 4.49161.3 3.49161.2 4.49161.2 3.49161.1 4.49161.1 3.49161.0 4.49161.0 NAME Reserved HALF_RATE 3 HALF_RATE 2 HALF_RATE 1 HALF_RATE 0 1’b = half rate clock 0’b = full rate clock 1’b = half rate clock 0’b = full rate clock 1’b = half rate clock 0’b = full rate clock 1’b = half rate clock 0’b = full rate clock SETTING DEFAULT 0’h 0’b 0’b 0’b 0’b R/W R/W R/W R/W R/W R/W Lane 3 is running at half rate clock speed Lane 2 is running at half rate clock speed Lane 1 is running at half rate clock speed Lane 0 is running at half rate clock speed DESCRIPTION Table 72. BIST CONTROL REGISTER MDIO REGISTER ADDRESS = 3.49164 (3.C00C’h) BIT 3.49164.15 3.49164.14:12 3.49164.11 3.49164.10:8 NAME BIST_EN Reserved BIST_DIR BIST_PAT Select BIST data output direction Select BIST generator data pattern(4) 0’b 0’h R/W R/W 1 = BIST to PCS (transmit path) 0 = BIST to XGXS (receive path) 000 = CRPAT 001 = CJPAT 010 = PRBS23 with 9 /K/s as IPG 011 = Short PRBS23 pattern(2) 100 = Jumbo Ethernet packet(3) Other = reserved 1 = Enable BIST checker 0 = Disable BIST checker SETTING BIST generator enable DEFAULT 0’b R/W R/W DESCRIPTION(1) 1 = Enable BIST generator 0 = Disable BIST generator 3.49164.7 3.49164.6:4 3.49164.3 3.49164.2:0 BIST_DET Reserved BIST_SRC BIST_CHK BIST checker enable 0’b R/W Select BIST data checker input source Select BIST checker data pattern (5) 0’b 0’h R/W R/W 0 = PCS to BIST (receive path) 1 = XGXS to BIST (transmit path) 000 = CRPAT 001 = CJPAT 010 = PRBS23 with /K/’s as IPG 011 = Short PRBS23 pattern(2) 100 = Jumbo Ethernet packet(3) Other = reserved Note (1): See “BIST Operation” on page 53 for a description of these tests and patterns. Note (2): Note (3): Note (4): Note (5): This Short pattern is the first 13458 Bytes of the full PRBS 223-1 Byte pattern, and also has 9 /K/ per lane as IPG This pattern is an /S/, preamble, the ‘Short PRBS23’ pattern, one /T/, and 9 /K/s, repeated. A Soft Reset is required to activate the newly selected pattern. The checker expects at least one /K/ on each lane between pattern repeats 44 ISL35822 Table 73. BIST ERROR COUNTER REGISTERS MDIO REGISTER ADDRESSES = 3.49165:6 (3.C00D:E’h) BIT 3.49165.15:8 3.49165.7:0 3.49166.15:8 3.49166.7:0 NAME BIST_ERR_CNT_3 BIST_ERR_CNT_2 BIST_ERR_CNT_1 BIST_ERR_CNT_0 SETTING Lane 3 errors Lane 2 errors Lane 1 errors Lane 0 errors DEFAULT 00’h 00’h 00’h 00’h R/W RCNR(1) RCNR(1) RCNR(1) RCNR(1) DESCRIPTION Error byte counter of BIST pattern checker on each Lane Note (1): The counters do not rollover at FF’h, and are cleared on read. There is also an error flag bit, see register 4.C007, Table 88. Table 74. MDIO PHY XS DEVAD 4 REGISTERS PHY XS DEVICE 4 MDIO REGISTERS ADDRESS DEC 4.0 4.1 4.2:3 4.4 4.5 4.6 4.8 4.14:15 4.24 4.25 4.49152 4.49153 4.49154 4.49155 4.49156 4.49157 4.49158 4.49159 4.49160 4.49161 4.49162 4.49163 4.49167 HEX 4.0 4.1 4.2:3 4.4 4.5 4.6 4.8 4.E:F 4.18 4.19 4.C000 4.C001 4.C002 4.C003 4.C004 4.C005 4.C006 4.C007 4.C008 4.C009 4.C00A 4.C00B 4.C00F NAME PHYXS Control 1 PHYXS Status 1 ID Code Speed Ability IEEE Devices Vendor Devices PHYXS Status 2 Package ID PHYXS Status 3 PHYXS Test PHYXS Control 2 PHYXS Control 3 PHYXS ERR PHYXS IDLE DESCRIPTION Reset, Enable loop back mode. PCS Fault, Link Status Manufacturer and Device OUI 10Gbps Ability Devices in Package, Clause 22 capable Vendor Specific Devices in Pkg DEFAULT 2040’h 0004’h (3) 01839C6V’h 0001’h 001A’h 0000’h AC (2) R/W R/W RO (LL) RO RO RO RO RO RO RO R/W DETAILS Table 75 Table 76 See (1) Table 7 Table 8 Table 8 Table 77 See (4) Table 78 Table 79 Table 80 Table 81 Table 82 Table 83 Table 84 Table 85 Table 87 Table 88 Table 89 Table 71 Table 90 Table 91 Table 46 Device Present, Local Fault, Type Summary 8000’h (3) Package OUI, etc. 10GBASE-X PHY XGXS Status 10GBASE PHY XS Test Control PHY XS Control Register 2 PHY XS Control Register 3 PHY XS Internal ERROR code register PHY XS Internal IDLE Code Register 00000000’h 1C0F’h 0000’h 0F6F’h 0800’h 00FE’h 0007’h 0000’h 0000’h 0000’h 0000’h AAAA’h 0000’h 0000’h 0000’h 0000’h A A A A A A A R/W R/W R/W R/W R/W R/W R/W RO LH R/W R/W RO LH R/W R/W SC PHYXS Loop Back PHY XS Loop Back Control Register PRE_EMPH Equalization Test_Flags Output Ctrl Half Rate LOS Det Reserved Soft Reset PHY XS Pre-emphasis level PHY XS Equalization Control PHY XS Receive Path Test & Status Flags Output Control and Test function Half rate clock mode enable PHY XS Status 4 LOS Register PHY XS Control 4 TXCLK20 Reset (non MDIO) Note (1): ‘V’ is a version number. See “JTAG & AC-JTAG Operations” on page 53 for a note about the version number. Note (2): For rows with “A”, the default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (3): Read value depends on status signal values. Value shown indicates ‘normal’ operation. Note (4): The IEEE 802.3ae spec allows this to be all zeroes. A XENPAK (etc.) host can more readily determine where the NVR registers are if this value is zero. 45 ISL35822 IEEE PHY XS REGISTERS (4.0 TO 4.25/4.0019’H) Table 75. IEEE PHY XS CONTROL 1 REGISTER MDIO REGISTER ADDRESS = 4.0 (4.0000’h) BIT(S) 3.0.15 1.0.15 4.0.15 4.0.14 3.0.13 4.0.13 4.0.12 4.0.11 4.0.10:7 3.0.6 4.0.6 3.0.5:2 4.0.5:2 4.0.1:0 Reset NAME SETTING 1 = reset 0 = reset done, normal operation 1 = Enable loopback 0 = Normal operation 1 = 10Gbps DEFAULT 0’b R/W R/W SC DESCRIPTION Writing 1 to this bit will reset the whole chip, including the MDIO registers. Enable PHY XS loop back mode on all four lanes. Operates at 10Gbps & above PHY XS Loopback Speed Select Reserved LOPOWER Reserved Speed Select Speed Select Reserved 0’b 1’b 00’h R/W RO 0 = Normal Power 0’b R/W No Low Power Mode, writes ignored 1 = 10Gbps 0000 = 10Gbps 1’b 0’h 0’b RO RO Operates at 10Gbps & above Operates at 10Gbps Table 76. IEEE PHY XS STATUS 1 REGISTER MDIO REGISTER ADDRESS = 4.1 (4.0001’h) BIT 4.1.15:8 4.1.7 4.1.6:3 4.1.2 NAME Reserved Local Fault Reserved Tx Link Up 1 = XGXS Tx Link Up 0 = XGXS Tx Link Down Low Power Ability 1 = PHY XS Local Fault SETTING DEFAULT 00’h 0 0’h 1 (1) RO LL(1) ‘Up’ means XAUI-side signal level is OK, Byte Synch and Lane-Lane Alignment have all occurred Device does not support a low power mode RO Derived from Register 4.0008’h R/W DESCRIPTION 4.1.1 4.1.0 LoPwrAble Reserved 0 0 RO Note (1): This bit is latched low on a detected Fault condition. It is set high on being read. Table 77. IEEE PHY XS STATUS 2 DEVICE PRESENT & FAULT SUMMARY REGISTER MDIO REGISTER ADDRESSES = 4.8 (4.0008’h) BIT 4.8.15:14 4.8.13:12 4.8.11 4.8.10 4.8.9:0 NAME Device present Reserved TX LocalFlt RX LocalFlt Reserved 1 = TX Local Fault; on Egress 0’b channel 1 = RX Local Fault; on Ingress 0’b channel RO/ LH(1) RO/ LH(1) Lane Alignment or Byte Alignment not done, or Loss of Signal. From Reg. 4.24 PLL lock failure (lack of RFCP/N signal) SETTING 10 = Device present DEFAULT 10’b R/W RO DESCRIPTION When read as “10”, it indicates that a device is present at this device address Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI registers 1.9003’h (bit 10, see Table 27) or 1.9004’h (bit 11, see Table 28) 46 ISL35822 Table 78. IEEE 10GBASE-X PHY XGXS STATUS REGISTER MDIO REGISTER ADDRESSES = 4.24 (4.0018’h) BIT 4.24.15:13 4.24.12 4.24.11 4.24.10 4.24.9:4 4.24.3 4.24.2 4.24.1 4.24.0 NAME Reserved PHY XS Lane_Align Test_Pattern PHYXSLpbk Reserved Lane3 Sync Lane2 Sync Lane1 Sync Lane0 Sync 1 = Lane is Synchronized 0 = Lane not Synchronized 1’b(1) 1’b(1) 1’b(1) 1’b(1) RO RO RO RO Reflects the PCS_SYNC byte alignment state machine condition; not valid if not enabled in device (see Table 80) 1 = 4 Lanes Aligned 0 = Lanes not aligned Test Pattern Abilities Loopback Ability 1’b(1) 1’b 1’b RO RO RO 1 = Four 3G receive lanes (on egress path) are aligned 1 = The device is able to generate test patterns for 10GBASE-X 1 = Device is able to loopback SETTING DEFAULT R/W DESCRIPTION Note (1): The status of these bits depends on the signal conditions. Default shown is for normal operation. The bits contribute to the RX Local Fault bit, see Table 77. Table 79. IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER MDIO REGISTER ADDRESS = 4.25 (4.0019’h) BIT 4.25.15:3 4.25.2 4.25.1:0 NAME Reserved PHY XS TestPatEn PHY XS TestPat Type Receive Test Pattern Enable Test pattern select (see Table 72 for other test patterns generated by the ISL35822) 0’b 00’b R/W R/W 0 = Do not enable Receive test pattern 1 = Enable Receive test pattern 11 = Reserved 10 = Mixed frequency test pattern (Continuous /K/ = K28.5) 01 = Low frequency test pattern (repeat 0000011111 = K28.7) 00 = High frequency test pattern (repeat 0101010101 = D10.2) SETTING DEFAULT R/W DESCRIPTION VENDOR-SPECIFIC PHY XS REGISTERS (4.C000’H TO 4.C00B’H) Table 80. PHY XS CONTROL REGISTER 2 MDIO REGISTER ADDRESS = 4.49152 (4.C000’h) BIT 4.49152.15:14 4.49152.13:12 4.49152.11 4.49152.10 4.49152.9:8 NAME Test Mode Reserved PHY XS Clock PSYNC PHY XS CODECENA PHY XS CDET[1:0] 0 = disable 1 = enable Comma Detect Select. 1’b 1’b 11’b R/W R/W R/W 1 = Synchronize/align four lanes 0 = Do not synchronize/align four lanes Internal 8B/10B Codec enable/disable These bits individually enable positive and negative disparity “comma” detection. 11 = Enable both positive and negative comma detection 10 = Enable positive comma detection only 01 = Enable negative comma detection only 00 = Disable comma detection Enable De-skew state machine control (3) . Forced enabled by PHY XS XAUI_EN. May not operate correctly unless the PHY XS PCS_SYNC_EN bit is also set. Other values should only be used if incoming data is frequency-synchronous with the local reference clock(4). SETTING 00’b DEFAULT(1) 00’b R/W R/W DESCRIPTION User should leave at 00’b 4.49152.7 PHY XS DSKW_SM_EN PHY XS RCLKMODE 0 = disable(2) 1 = enable 11’b = Local Reference Clock(4) 0’b R/W 4.49152.6:5 11’b R/W 47 ISL35822 Table 80. PHY XS CONTROL REGISTER 2 (Continued) MDIO REGISTER ADDRESS = 4.49152 (4.C000’h) BIT 4.49152.4 NAME PHY XS PCS_SYNC_EN(5) PHY XS IDLE_D_EN PHY XS ELST_EN PHY XS A_ALIGN_DIS SETTING 0 = disable(2) 1 = enable 1 = enable 0 = disable 1 = enable 0 = disable 1 = disable(2) 0 = enable DEFAULT(1) 0’b R/W R/W DESCRIPTION Enable 8b/10b PCS coding synchronized state machine(3) to control the byte alignment (IEEE ‘code-group alignment’) of the high speed de-serializer Enables IDLE vs. NON-IDLE detection for lane alignment. Overridden by PHY XS XAUI_EN, see Table 88 Enable the elastic function of the PHY XS receiver buffer PHY XS Receiver aligns data on incoming “/A/” characters (K28.3). If disabled (default), receiver aligns data on IDLE to non-IDLE transitions (if bit 3 set). Overridden by PHY XS XAUI_EN, see Table 81 Enable de-skew calculator of PHY XS receiver Align FIFO 4.49152.3 4.49152.2 4.49152.1 1’b 1’b 1’b R/W R/W R/W 4.49152.0 Note (1): Note (2): Note (3): Note (4): PHY XS CAL_EN 1 = enable 0 = disable 1’b R/W The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). These bits are overridden by PHY XS XAUI_EN, see Table 81 and Table 65. These state machines are implemented according to 802.3ae-2002 clause 48. If the RCLKMODE bits are set to 10’b, the internal XGMII clock from the PHY XS to the PCS is set to the recovered clock. If the PHY XS Clock PSYNC bit is set (the default), the recovered clock from Lane 0 is used for all four lanes, if cleared, or if the RCLKMODE bits are set to 01’b or 00’b, each lane uses its own recovered clock. If the incoming data is NOT frequency-synchronous with the local reference clock, data will be corrupted (occasional characters will be lost, or repeated). Note (5): This bit name reflects the “embedded” PCS function within an XGXS, see IEEE 802.3 Clause 47.2.1. Table 81. PHY XS CONTROL REGISTER 3 MDIO REGISTER ADDRESS = 4.49153 (4.C001’h) BIT 4.49153.15 4.49153.14:13 4.49153.12 NAME PHY XS DC_O_DIS Reserved MF_SEL Select source of signals for four MF pins 0’b R/W 1 = Select signals from PMA/PCS to be output on MF pins 0 = Select signals from PHY XGXS to be output on MF pins Enables all XAUI features per 802.3ae-2002. It is equivalent to setting the configuration bits listed in Table 65 (but does not change the actual value of the corresponding MDIO registers’ bits). Set the threshold voltage for the Loss Of Signal (LOS) detection circuit in PHY XS. Nominal levels are listed for each control value. Note that the differential peak-to-peak value is twice that listed SETTING 1 = Disable, 0 = normal DEFAULT(1) 0’b R/W R/W DESCRIPTION PHY XS DC Offset Disable 4.49153.11 PHY XS XAUI_EN 1 = enable 0 = disable 1’b R/W 4.49153.10:8 PHY_LOS_TH 0’h = 160mVp-p 1’h = 240mVp-p 2’h = 200mVp-p 3’h = 120mVp-p 4’h = 80mVp-p else = 160mVp-p 000’b R/W 4.49153.7 4.49153.6 4.49153.5 Reserved PHY XS AKR_SM_EN 1 = enable random A/K/R 0’b 0 = /K/ only(2) 0’b R/W R/W Enable pseudo- random A/K/R(3) in Inter Packet Gap (IPG) on transmitter side (vs. /K/ only) This bit enables the transceiver to translate an “IDLE” pattern in the internal FIFOs (matching the value of register 4.C003’h) to and from the XAUI IDLE /K/ comma character or /A/, /K/ & /R/ characters. PHY XS TRANS_EN 1 = enable 0 = disable(2) Overridden by PHY XS XAUI_EN, see Table 65 Reserved PHY XS TX_SDR PHY XS receive data rate 4.49153.4 4.49153.3 0’b R/W 1 = PHY XS takes data from PCS at half speed 0 = PHY XS takes data from PCS at full speed 48 ISL35822 Table 81. PHY XS CONTROL REGISTER 3 (Continued) MDIO REGISTER ADDRESS = 4.49153 (4.C001’h) BIT 4.49153.2:0 NAME MF_CTRL SETTING 0 = BIST_ERR 1 = LOS 2,3 = Reserved 4 = TXFIFO_ERR 5 = AFIFO_ERR 6 = EFIFO_ERR DEFAULT(1) 000’b R/W R/W DESCRIPTION Control the meaning of Multi-function pins MF[3:0] of the 4 lanes in the device selected by MF_SEL above (bit 12) Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden by PHY XS XAUI_EN, see also Table 65. Note (3): This state machine is implemented according toIEEE 802.3ae-2002 clause 48. Table 82. PHY XS INTERNAL ERROR CODE REGISTER MDIO REGISTER, ADDRESS = 4.49154 (4.C002’h) BIT 4.49154.15:8 4.49154.7:0 NAME Reserved PHY XS ERROR Desired Value(2) FE’h R/W Error Code. These bits allow the internal FIFO ERROR control character to be programmed. SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Note (2): These bits are overridden to FE’h by PHY XS XAUI_EN, see Table 65 and Table 81. Table 83. PHY XS INTERNAL IDLE CODE REGISTER MDIO REGISTER ADDRESS = 4.49155 (4.C003’h) BIT 4.49155.15:8 4.49155.7:0 NAME Reserved PHY XS XG_IDLE Desired Value 07’h R/W IDLE pattern in internal FIFOs for translation to/from XAUI IDLEs SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The default value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 84. PHY XS MISCELLANEOUS LOOP BACK CONTROL REGISTER MDIO REGISTER ADDRESS = 4.49156 (4.C004’h) BIT 4.49156.15:13 4.49156.12 4.49156.11 4.49156.10 4.49156.9 4.49156.8 4.49156.7:4 4.49156.3 4.49156.2 4.49156.1 4.49156.0 NAME Reserved Test LP SLP_3 SLP_2 SLP_1 SLP_0 Reserved PLP_3 PLP_2 PLP_1 PLP_0 1 = enable System (“PCS”) 0’b(2) Parallel Loopback 0’b(2) 0 = disable 0’b(2) 0’b(2) R/W PCS Parallel Loop Back Enable for each individual lane. When high, it routes the XAUI Serial input to the Serial output via the full PHY XS. 1 = enable 1 = enable PHY XS Network Loopback 0 = disable 0’b(1) 0’b(2) 0’b(2) 0’b(2) 0’b(2) R/W R/W Serial Host Test Loopback Internal PHY XS Serial Loop Back Enable for each individual lane. When high, it routes the internal XAUI Serial output to the Serial input. SETTING DEFAULT R/W DESCRIPTION Note (1): Loopback is from XAUI Serial I/P to Serial O/P. Recommended use for test purposes only; no retiming or pre-emphasis is performed Note (2): These values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). 49 ISL35822 Table 85. PHY XS PRE-EMPHASIS CONTROL MDIO REGISTER ADDRESS = 4.49157 (4.C005’h) BIT 4.49157.15:12 4.49157.11:9 4.49157.8:6 4.49157.5:3 4.49157.2:0 Reserved PRE_EMP Lane 3 PRE_EMP Lane 2 PRE_EMP Lane 1 PRE_EMP Lane 0 See Table 86 for 0’h settings 0’h 0’h 0’h R/W Configure the level of PHY XS pre-emphasis (nominal levels indicated) NAME SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The values may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 86. PHY XS XAUI PRE-EMPHASIS CONTROL SETTINGS ADDRESS 4.C005’h BITS 2:0 000 001 010 011 PRE-EMPHASIS (1) (802.3ak) = (1-VLOW/VHI) 0 0.17 0.28 0.44 PRE-EMPHASIS VALUE = ADDRESS 4.C005’h (VHI/ VLOW)-1 BITS 2:0 0 0.20 0.39 0.79 100 101 110 111 PRE-EMPHASIS (802.3ak) = (1-VLOW/VHI) 0.50 0.53 0.57 0.60 PRE-EMPHASIS VALUE = (VHI/ VLOW)-1 1.00 1.28 1.33 1.50 Note (1): See Note (2) to Table 42 for a note about the equations and symbols used here. Table 87. PHY XS EQUALIZATION CONTROL MDIO REGISTER ADDRESS = 4.49158 (4.C006’h) BIT 4.49158.15:14 4.49158.3:0 NAME Reserved PHY XS EQ_COEFF 0’h = no boost in equalizer. 0’h F’h = boost is maximum R/W Configuration of the PHY XS equalizer SETTING DEFAULT(1) R/W DESCRIPTION Note (1): The value may be overwritten by the Auto-Configure operation (See “Auto-Configuring Control Registers” on page 16 and Table 92 for details). Table 88. PHY XS RECEIVE PATH TEST AND STATUS FLAGS MDIO REGISTER ADDRESS = 4.49159 (4.C007’h) BIT 4.49159.15:12 4.49159.11 4.49159.10 4.49159.9 4.49159.8 4.49159.7 4.49159.6 4.49159.5 4.49159.4 4.49159.3 4.49159.2 4.49159.1 4.49159.0 NAME Test Flags EFIFO_3 EFIFO_2 EFIFO_1 EFIFO_0 Code_3 Code_2 Code_1 Code_0 BIST_ERR_3 BIST_ERR_2 BIST_ERR_1 BIST_ERR_0 1 = EFIFO error in Lane 0 = no EFIFO error in Lane SETTING DEFAULT 0’h 0’b 0’b 0’b 0’b 1 = 10b/8b Code error in 0’b Lane 0’b 0 = no 10b/8b Code error 0’b 0’b 1 = BIST error in lane 0’b 0 = No BIST error in lane 0’b 0’b 0’b ROLH Lane by lane BIST error checker indicator(1) (2) ROLH PHY XS 10b/8b Decoder Code Violation Detection(1) R/W ROLH ROLH DESCRIPTION Special test use only PHY XS Elasticity FIFO Overflow/Underflow Error Detection(1) Note (1): These bits are latched high on any Fault condition detected. They are reset low (cleared) on being read. They will also be reset low on reading the LASI register 1.9004’h (see Table 28) Note (2): See also error counters in registers 3.C00D:E’h (Table 73) 50 ISL35822 Table 89. PHY XS OUTPUT AND TEST FUNCTION CONTROL REGISTER MDIO REGISTER ADDRESS = 4.49160 (4.C008’h) BIT 4.49160.15:14 4.49160.13 4.49160.12:10 4.49160.9 4.49160.8:6 4.49160.5 4.49160.12:10 4.49160.1 4.49160.0 NAME Reserved ENA_3 Reserved ENA_2 Reserved ENA_1 Reserved ENA_0 Reserved Enable Lane 0 O/P Enable Lane 1 O/P Enable Lane 2 O/P Enable Lane 3 O/P SETTING DEFAULT 10’b 1’b 010’b 1’b 010’b 1’b 010’b 1’b 0’b R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W DESCRIPTION Test Function, do not alter 0 = disable Test Function, do not alter 0 = disable Test Function, do not alter 0 = disable Test Function, do not alter 0 = disable Test Function, do not alter Table 90. PHY XS STATUS 4 LOS DETECTOR REGISTER MDIO REGISTER ADDRESS = 4.49162 (4.C00A’h) BIT 4.49162.15:4 4.49162.3 4.49162.2 4.49162.1 4.49162.0 NAME Reserved PHY_LOS_3 PHY_LOS_2 PHY_LOS_1 PHY_LOS_0 SETTING DEFAULT 00’b 1 = Signal less than threshold 0’b 0 = Signal greater than threshold 0’b 0’b 0’b RO/LH(1) Loss Of Signal for lane 3 Loss Of Signal for lane 2 Loss Of Signal for lane 1 Loss Of Signal for lane 0 R/W DESCRIPTION Note (1): These bits are latched high on any LOS condition detected. They are reset low on being read. Table 91. PHY XS CONTROL REGISTER 4 MDIO REGISTER ADDRESS = 4.49163 (4.C00B’h) BIT 4.49163.15:2 4.49163.1 4.49163.0 NAME Reserved TXCLK20 Test 0 = disable 1 = enable Internal SETTING DEFAULT 00’h 0’b 0’b R/W R/W TXCLK20 pin output User must keep at 0’b R/W DESCRIPTION Auto-Configure Register List Table 92. Auto-CONFIGURE REGISTERS Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively NVR ADDRESS DEC S+0 S+1 S+2 S+3 S+4 S+5 S+6 HEX S+0 S+1 S+2 S+3 S+4 S+5 S+6 TARGET REGISTER BITS ADDRESS (1) DEC 4.49158.[3:0] 4.49157.[7:0] 4.49157.[15:8] 1.49158.[3:0] 1.49157.[7:0] 1.49157.[15:8] 1.36864.[6:0]. HEX 4.C006.[3:0] 4.C005.[7:0] 4.C005.[15:8] 1.C006.[3:0] 1.C005.[7:0] 1.C005.[15:8] 1.9000.[6:0] TARGET NAME(1) PHY XS Equalizer Value PHY XS Pre-emphasis Lanes 1:0 PHY XS Pre-emphasis Lanes 3:2 PMA/PMD Equalizer Value PMA/PMD Pre-emphasis Lanes 1:0 PMA/PMD Pre-emphasis Lanes 3:2 LASI RX Alarm Control Table 24 Table 43 Table 41 DETAILS Table 87 Table 85 51 ISL35822 Table 92. Auto-CONFIGURE REGISTERS (Continued) Auto-configure Pointer is (S), Auto-configure Size is (N), from 1.8106’h & 1.8105’h respectively NVR ADDRESS DEC S+7 S+8 S+9 S + 10 S + 11 S + 12 S + 13 S + 14 S + 15 S + 16 S + 17 S + 18 S + 19 S + 20 S + 21 S + 22 S + 23 S + 24 S + 25 S + 26 S + 27 S + 28 S + 29 S + 30 S + 31 S + 32 S + 33 S + 34 S + 35 S + 36 S + 37 S + 38 S + 39 HEX S+7 S+8 S+9 S+A S+B S+C S+D S+E S+F S + 10 S + 11 S + 12 S + 13 S + 14 S + 15 S + 16 S + 17 S + 18 S + 19 S + 1A S + 1B S + 1C S + 1D S + 1E S + 1F S + 20 S + 21 S + 22 S + 23 S + 24 S + 25 S + 26 S + 27 TARGET REGISTER BITS ADDRESS (1) DEC 1.36865.[7:0] 1.36865.[10:8] & 1.36866.[3:0] 1.36870. 1.36871. 1.49170.[1:0], 1.49168.[5:0] 1.49170.[11:8,5:2], 1.49170.[13:12], 1.49171.[5:0] 1.49176 1.49177.[7:0] 1.49177.[15:8] 1.49178.[7:0] 1.49178.[15:8] 1.49179.[7:0] 1.49179.[15:8] 1.49180.[7:0] 1.49180.[15:8] 1.49181.[7:0] 4.49152.[7:0] 4.49152.[15:8] 4.49153.[7:0] 4.49153.[15:8] 4.49154.[7:0] 4.49155.[7:0] 4.49156.[11:8,3:0] 3.49152.[7:0] 3.49152.[15:8] 3.49153.[7:0] 1:3.49153.[15:8] 3.49154.[7:0] 3.49155.[7:0] 1.49156.[11:8] 3.49156.[3:0] 1.49163.[9:2] 4.49163.[9:2] HEX 1.9001.[7:0] 1.9001.[10:8], 1.9002.[3:0] 1.9006 1.9007 1.C012.[1:0], 1.C010.[5:0] 1.C012.[11:8,5:2] 1.C012.[13:12], 1.C013.[5:0] 1.C018 1.C019.[7:0] 1.C019.[15:8] 1.C01A.[7:0] 1.C01A.[15:8] 1.C01B.[7:0] 1.C01B.[15:8] 1.C01C.[7:0] 1.C01C.[15:8] 1.C01D.[7:0] 4.C000.[7:0] 4.C000.[15:8] 4.C001.[7:0] 4.C001.[15:8] 4.C002.[7:0] 4.C003.[7:0] 4.C004.[11:8,3:0] 3.C000.[7:0] 3.C000.[15:8] 3.C001.[7:0] 1:3.C001.[15:8] 3.C002.[7:0] 3.C003.[7:0] 1.C004.[11:8] 3.C004.[3:0] 1.C00B.[9:2] 4.C00B.[9:2] TARGET NAME(1) LASI TX Alarm Control LASI TX Alarm & LASI Control DOM TX flag control DOM RX flag control GPIO LASI & Pin Direction Configuration GPIO LASI control DETAILS Table 25 Table 25 & Table 26 Table 30 Table 31 Table 49 & Table 47 Table 49 TX_FAULT polarity, GPIO LASI & Output Control Table 49 & Table 50 DOM Control Indirect DOM Mem Address Lane2 Indirect DOM Mem Address Lane3 Indirect DOM Mem Address Lane0 Indirect DOM Mem Address Lane1 Indirect DOM Dev Address Lane2 Indirect DOM Dev Address Lane3 Indirect DOM Dev Address Lane0 Indirect DOM Dev Address Lane1 Optical I/F Pin Polarity Control PHY XS control 2 PHY XS control 2 PHY XS control 3 PHY XS control 3 PHY XS Error Code PHY XS IDLE Code PHY XS Loopback Control PCS control 2 PCS control 2 PCS control 3 PCS control 3/PMA control 2 PCS Error Code PCS IDLE Code PCS/PMA Loopback Control Miscellaneous Adjustments BitBlitz Internal Test Control Table 64 & Table 39 (2) Table 66 Table 67 Table 40 & Table 68 (3) Table 45 Table 91 Table 82 Table 83 Table 85 Table 63 Table 81 Table 55 Table 80 Table 54 Table 51 Table 53 Note (1): The 8 bits of the NVR register (7:0) are mapped to the listed bits of the target in order. Unused bits are always at the MSb (bit 7) end. Note (2): The target register pair are overlapped, ignoring the ‘reserved’ bits in one where used bits occur in the same location in the other. Thus the mapping from the NVR register is: 1.C001.[15:12], 3.C001.11, 1.C001.[10:8]. Note (3): The mapping from the NVR register is: 1.C004.[11:8], 3.C004.[3:0] 52 ISL35822 JTAG & AC-JTAG Operations Five pins – TMS, TCK, TDO, TRST, and TDI – support IEEE Standards 1149.1-2001 JTAG and 1149.6-2003 AC-JTAG testing. The JTAG test capability has been implemented on all signal pins. Note that the 1149.1-2001 specification has removed the previous requirement that the [000...0] instruction be an entry into EXTEST, and deprecated its use for anything but a non-test function (e.g. BYPASS). The ISL35822 fully conforms to this revision. The AC-JTAG test capability has been implemented on the high-speed differential output and input terminals. The output configuration corresponds to Figure 51 in IEEE 1149.6-2003, except that there is no provision to bring the ‘mission’ signal into the scan chain, since this 3.125Gbps signal has no meaningful value at the (asynchronous) JTAG TCK rate, and the ISL35822 does not support INTEST. The receiver configuration corresponds to Figure 48, using the DC detection mode only, according to method 2 of 6.2.3.1 rule a), and omitting the components needed only for the unsupported INTEST instruction. The EXTEST_PULSE and EXTEST_TRAIN instruction timings are illustrated in Figures 37, 38 and 44 while the (DC) EXTEST waveforms are indicated in Figure 42 in IEEE 1149.6-2003. Provided that the TCK period is sufficiently longer than the AC-coupling time constant, controlled by the (external) capacitors and the input impedance of the ISL35822, (see IEEE 1149.6-2003 clause 6.2.3.1 rule k), the combination of (DC) EXTEST and EXTEST_PULSE or EXTEST_TRAIN scans can detect open or shorted capacitors or wires. The supported boundary scan operation instruction codes are listed in Table 93: Table 93. JTAG OPERATIONS INSTRUCTION BYPASS (1) Sample/Preload HighZ Clamp ID Code EXTEST UDR0 EXTEST_PULSE EXTEST_TRAIN BYPASS Note (1): All non-listed codes are also BYPASS. The Manufacturers ID Code returned when reading the ID Code from the JTAG pins is as follows:V0006351’h where ‘V’ is an internal 4-bit version number. Consult the “Intersil Corporation Contact Information” on page 75 for information as to the meaning of the revision number. Note that the JTAG and AC-JTAG capability is not currently tested in production. BIST Operation In addition to the low, mid and high frequency test patterns defined in IEEE 802.3ae-2002, which are injected (at the 10bit level) directly into the serializers, and controlled via the “IEEE 10GBASE-X PCS TEST CONTROL REGISTER ” on page 40 and the “IEEE 10GBASE-X PHY XGXS TEST CONTROL REGISTER ” on page 47, and to further facilitate the exercise of all the BT3821 blocks, the device includes a Built In Self Test (BIST) function. The BIST Data Package Generator sends out a continuous data stream to emulate network traffic. The available BIST data patterns are enabled via the bits in Table 72. The patterns available are: 1. CRPAT pattern per IEEE802.3ae-2002 Annex 48A 2. CJPAT pattern per IEEE802.3ae-2002 Annex 48A 3. A full PRBS23 pattern (223–1 coded bytes, 10 times that many bits) with nine /K/ “comma” characters as interval on each XAUI/CX4 lane. 4. A Short Pseudo-Random data pattern (13458 byte long) with nine /K/ “comma” characters as interval on each XAUI/CX4 lane. 5. Emulation of an Ethernet Jumbo frame: ||S|| + preamble + Random data (4 x 13458 byte long) + ||T|| + IPG; The ‘PRBS23’-based patterns are derived from a PRBS generator that, after an Inter-Packet Gap (‘IPG’) of 9 /K/ characters, creates a pseudo-random 223 – 1 byte sequence. The full sequence is used for the ‘PRBS23’ pattern, while the ‘Short PRBS23’ pattern is truncated after 13458 bytes. Each will start again from the beginning, repeating indefinitely. This pattern is generated on each lane, and checked (except for the /K/s, of which one is required for byte synchronization, but all the others are ignored) in the same way. The ‘Jumbo Ethernet Packet’ is similar, except that the ‘Short PRBS23’ pattern is preceded by an /S/ & one preamble on Lane 0, two preambles on Lanes 1 & 2, and a preamble and SFD on Lane 3, and followed by a /T/ on lane 0. Apart from providing byte sync (byte alignment), the /K/filled IPG allows for lane alignment (using the IDLE-toNONIDLE transition alignment engine) and elasticity (by deleting or adding the requisite number of /K/s). The latter, in particular, allows one ISL35822 to check the ‘Short PRBS23’ or ‘Jumbo Ethernet Packet’ generated by another ISL35822 running on an independent clock within ±100 ppm. The full PRBS23 pattern could be over 300 bytes off in one repeat CODE 0000 0001 0010 0011 0110 1000 1001 1011 1100 1111 53 ISL35822 under these circumstances, greatly exceeding the elasticity FIFO’s range, unless the clocks were synchronized. The CJPAT and CRPAT patterns are those defined by IEEE 802.3ae-2002 Annex 48. Either the BIST_EN bit (see Table 72 or the BIST_ENA pin (see Table 99 on Page 56) will cause the Serial Transmitter selected by the BIST_DIR bit to put out the pattern selected by the BIST_PAT bits (see Table 72). The BIST_DET bit will enable the Serial Receiver selected by the BIST_SRC bit to search its incoming bit stream for the pattern (separately) selected by the BIST_CHK bits (see Table 72). Once the comma group or IPG has set the byte alignment, the BIST error detector will be enabled, and the decoded pattern will be then be checked. Any bit error will set the error detector for the corresponding lane, and increment the BIST_ERR_CNT counters (see Table 73). These detectors may be monitored via the MF[3:0] pins (see Table 99) and both they and the counters may be read via the MDIO system (see Table 81). The separate setup for BIST generation and checking means that two ISL35822s may be tested with a different pattern in each direction on the link between them. The signal flows provided for these BIST patterns are shown in Figure 6. The generator output may be injected (in place of the ‘normal’ signal flow) into the AKR Randomizer in either the PCS or PHY XS, as controlled by the "BIST CONTROL REGISTER" (see Table 72). The signal may be looped back using the PMA or PHY XS loopbacks (respectively), and checked at the output of the respective Elastic FIFO, or continue on to the other loopback, and checked at the output of the other Elastic FIFO. The internal loopback(s) may be replaced by external loopbacks, and in each ‘full loop’ case this will test virtually the complete device; if both possible full loops are checked, both complete signal paths are tested. Note that if any external loopback changes the clock domain, the full ‘PRBS23’ pattern cannot be checked. FIGURE 6. BLOCK DIAGRAM OF BIST OPERATION Egress RXPnP/N Equalizer Signal Detect Deserializer & Comma Detector Serializer CDR 10B/8B Decoder RX FIFO Deskew TXFIFO & Error and Orderset Detector IEEE REG 3.25 PCS // Network Loopback (3.C004) 8B/10B Encoder, AKR Generator HF, LF, MixedF Generator Egress TCXn P/N Only One Lane of Four Shown Vendor REG 3.C003 CRPAT, CJPAT, PRBS23 Generater CRPAT, CJPAT, PRBS23 Checker PCS // = PHY XS Loopback 4.C004 & ~3.0.14) Vendor REG 3.C003 HF, LF, MixedF Generator Serializer IEEE REG 4.25 TXPn P/N 8B/10B Encoder, AKR Generator TXFIFO & Error and Orderset Detector RX FIFO Deskew PMA Loopback (1.0.14 & 1.C004) CDR Equalizer Signal Detect 10B/8B Decoder Only One Lane of Four Shown RCXn P/N PHY XS (Serial) Loopback (4.0.14 & 4.C004) Deserializer & Comma Detector Ingress Device Address 4 PHY XGXS Device Address 3 PCS Ingress Device Address 1 PMA/PMD 54 ISL35822 Pin Specifications Table 94. CLOCK PINS PIN# T9/T8 NAME RFCP/RFCN TYPE Input LVPECL Output 1.5V CMOS DESCRIPTION Differential Reference Input Clock. The reference input clock frequency is line rate clock frequency divided by 20 (full rate mode) or 10 (half rate mode). The pins are internally biased at VDDA/2, and should be AC coupled. Transmit Clock Output. Divided-by-20 transmit clock output. C10 TXCLK20 Table 95. XAUI (XENPAK/XPAK/X2) SIDE SERIAL DATA PINS PIN# T14/T15 P14/P15 M14/M15 K14/K15 H14/H15 F14/F15 D14/D15 B14/B15 NAME TXP0P/TXP0N TXP1P/TXP1N TXP2P/TXP2N TXP3P/TXP3N RXP0P/RXP0N RXP1P/RXP1N RXP2P/RXP2N RXP3P/RXP3N Input CML Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially terminated at 100Ω TYPE Output CML DESCRIPTION Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs. Table 96. PMA/PMD (CX4/LX4) SIDE SERIAL DATA PINS PIN# A2/A3 C2/C3 E2/E3 G2/G3 R2/R3 N2/N3 L2/L3 J2/J3 NAME TCX0P/TCX0N TCX1P/TCX1N TCX2P/TCX2N TCX3P/TCX3N RCX0P/RCX0N RCX1P/RCX1N RCX2P/RCX2N RCX3P/RCX3N Input CML Receive Differential Pairs, Lane 0 to 3. CML High speed serial inputs. Differentially terminated at 100Ω TYPE Output CML DESCRIPTION Transmit Differential Pairs, Lane 0 to 3. CML High speed serial outputs. Table 97. JTAG INTERFACE PINS PIN# D12 B12 D8 C12 C8 TDI TDO TMS TCLK TRSTN NAME TYPE Input (with pullup) Output (open drain) Input (with pullup) Input (with pulldown) Input (with pullup) DESCRIPTION JTAG Input Data. 1.5V CMOS JTAG Output Data. 1.5V CMOS, 2.5V Tolerant JTAG Mode Select. 1.5V CMOS JTAG Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger JTAG Reset. 1.5V CMOS 55 ISL35822 Table 98. MANAGEMENT DATA INTERFACE PINS PIN# P11 R11 R12 T12 P12 N12 T11 NAME MDIO MDC PADR[4] PADR[3] PADR[2] PADR[1] PADR[0] TYPE I/O (open drain output) Input Input DESCRIPTION Management Address/Data I/O. 1.2V CMOS input, 2.5V Tolerant Management Interface Clock. 1.2V CMOS, 2.5V Tolerant, with Schmitt trigger Management Port Address Setting 1.2V CMOS Table 99. MISCELLANEOUS PINS PIN# N11 P10 B9 A10 N10 D10 A11 NAME MF[0] MF[1] MF[2] MF[3] RSTN BIST_ENA LX4_MODE Input Chip Reset (FIFO Clear) Assert RSTN for at least 10µs from power up. Active low. Schmitt trigger input, 1.2V CMOS, 2.5V tolerant. TYPE Output 1.5V CMOS DESCRIPTION Multi-function Outputs, Lanes 0 - 3. The functions of these pins are enabled via the MDIO Interface. The default condition for these pins is PHY XGXS BIST_ERR. See Table 81 (bits MF_SEL and MF_CTRL) for further details. Input (with pulldown) Built-In Self Test Enable- Active High. When high, enables internal 223-1 byte PRBS test function generator and checker. 1.5V CMOS Input (with pulldown) CX4/LX4 Mode Select. When high, LX4 mode is selected. When low, CX4 mode is selected. This pin decides the trigger sources of LASI, and the default pre-emphasis and equalization strength of the high speed serial port on the PMA/PMD side. 1.5V CMOS Output (open drain) Link Alarm Status Interrupt Request. When low, pin indicates the existence of an incorrect condition. An external 10-22kΩ pull-up to 1.2V or 1.5V is recommended. 1.2V CMOS, 2.5V tolerant. TX Laser Bias Current. Optical monitoring input. Active level is latched into register bit 1.36868.9 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. Transceiver Temperature. Optical monitoring input. Active level is latched into register bit 1.36868.8 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. TX Laser Output Power. Optical monitoring input. Active level is latched into register bit 1.36868.7 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. TX Fault Condition. Transmitter (Egress) external fault input. Active level is latched into register bits 1.10 and 1.36868.6 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. Receive Optical Power. Optical monitoring input 4. Active level is latched into register bit 1.36867.5 and can be configured to trigger LASI. When this pin is not driven by an external device, it should be pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. Optical Receiver Loss Of Signal. Optical monitoring input 5 – 8. Active (loss) levels are latched into register 1.10 and can be configured to trigger LASI. When these pins are not driven by an external device, they should pulled inactive (default down). 1.5V CMOS, 2.5V tolerant. B11 LASI D7 OPTXLBC (1) Input D5 OPTTEMP(1) Input D6 OPTXLOP(1) Input N8 TX_FAULT(2) Input C5 OPRXOP(1) Input A6 A5 A7 B7 D11 OPRLOS[3] (1) OPRLOS[2] (1) OPRLOS[1] (1) OPRLOS[0] (1) XP_ENA Input Input XENPAK Enable. Enable XENPAK support. Active high. Activates 2-wire serial bus interface. 1.5V CMOS, 2.5V tolerant. 56 ISL35822 Table 99. MISCELLANEOUS PINS (Continued) PIN# D9 B5 B6 T5 R5 NAME TX_ENC(1) TX_ENA[3] (1) TX_ENA[2] (1) TX_ENA[1] (1) TX_ENA[0] (1) Input Output (open drain) TYPE DESCRIPTION Transmit enable input from XENPAK module input “TX ON/OFF”. Controls TX_ENA[3:0]. For normal operation, should be pulled active (default up). 1.2V CMOS Transmit Laser Driver Enables. They are set active only when TX_ENC pin is active and the corresponding bits in register 1.9 are set low. During RESET stage, these pins are always low. 1.5V CMOS, 2.5V compatible. Note (1): Active level of these pins is controlled by register 1.49181 (1.C01D’h), see Table 55. If unused, the TX_ENC pin can be tied high, and the register bit not altered. Other unused input pins should be tied low, and the corresponding register bit not altered, so the default value of the register will allow Byte Synch and cause a ‘No Fault’ indication in the LASI alarm status registers on RESET. See also Table 12, Table 27 and Table 28. Note (2): Active level of this pin is controlled by register 1.49170 (1.C012’h), see Table 49. Otherwise Note 1 applies. Table 100. I2C 2-WIRE SERIAL DATA INTERFACE PINS PIN# P9 P8 C7 R6 P7 N7 N6 P6 SDA SCL WRTP GPIO[4] GPIO[3] GPIO[2] GPIO[1] GPIO[0] NAME TYPE I/O (open drain) I/O (open drain) Input I/O (open drain) DESCRIPTION I2C Serial Address/Data I/O 1.5V CMOS, 2.5V Tolerant and Compatible I2C Serial Interface Clock. 1.5V CMOS, 2.5V Tolerant and Compatible I2C Serial Interface Write Protection. When high, no write to protected XENPAK basic NVR area is allowed. 1.5V CMOS, 2.5V Tolerant General Purpose I/O Can be used for optical monitoring and status reporting, and to trigger LASI, or for external control functions. 1.5V CMOS, 2.5V Tolerant and Compatible Table 101. VOLTAGE SUPPLY PINS PIN# C6, C13, H13, J4, N5, N13 A4, A8, A9, A12, A13, B10, N9, P4, P5 NAME VDDPR VDD Supply Supply Analog Supply TYPE DESCRIPTION 2.5V Protection Voltage Supply. May be same level as VDD if no inputs or outputs go above the VDD level. 1.5V Digital and Core Supply 1.5V Analog Supply. Should be decoupled from VDD B4, C4, C14, D4, D13, E4, E13, VDDA F4, F13, G4, G13, K4, K13, L4, L13, M4, M13, N4, P13, R4, R13, T4, T13 R7, T7 R10, T10 VDDAV VDDAC Analog Supply Analog Supply Ground Analog supply for VCO. Should be decoupled from VDDA Analog supply for CMU. Should be decoupled from VDDA Ground. Electrically well grounded. Analog and Digital grounds are tied in the device, but it is recommended that some separation be provided in the PCB planes outside the device, to minimize the coupling between digital signals and the analog sections of the device. A1, A14, A15, A16, B1, B2, B3, GNDA B8, B13, B16, C1, C9, C11, C15, C16, D1, D2, D3, D16, E1, E14, E15, E16, F1, F2, F3, F16, G1, G14, G15, G16, H1, H2, H3, H4, H16, J1, J13, J14, J15, J16, K1, K2, K3, K16, L1, L14, L15, L16, M1, M2, M3, M16, N1, N14, N15, N16, P1, P2, P3, P16, R1, R8, R9, R14, R15, R16, T1, T2, T3, T6, T16 57 ISL35822 Pin Diagram 17x17mm (16*16 Ball Matrix) 192-pin EBGA-B Package FIGURE 7. TOP VIEW OF PINOUT A 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 B C D E F G H J K L M N P R T 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA VDD VDD LX4_ MODE MF3 VDD VDD OPR LOS1 OPR LOS3 OPR LOS2 VDD TCX0 N TCX0 P RXP3 N RXP3 P GNDA TDO LASI VDD MF2 GNDA OPR LOS0 TX_E NA2 TX_E NA3 VDDA GNDA GNDA GNDA VDDA VDD PR TCLK GNDA TXCL K20 GNDA TRST N WRTP VDD PR OPRX OP VDDA TCX1 N TCX1 P RXP2 N RXP2 P VDDA TDI XP_E NA BIST_ ENA TX_E NC TMS OPTX LBC OPTX LOP OPT TEMP VDDA GNDA GNDA VDDA TCX2 N TCX2 P VDDA GNDA GNDA VDDA GNDA TCX3 N TCX3 P GNDA GNDA VDD PR RCX3 N RCX3 P VDDA GNDA GNDA VDDA RCX2 N RCX2 P VDDA GNDA GNDA GNDA GNDA VDDA RXP1 N RXP1 P VDDA GNDA GNDA VDDA RXP0 N RXP0 P VDD PR GNDA GNDA GNDA TXP3 N TXP3 P VDDA GNDA GNDA VDDA TXP2 N TXP2 P VDDA GNDA GNDA VDD PR PADR 1 MF0 RSTN VDD TX_F AULT GPIO 2 GPIO 1 VDD PR VDDA RCX1 N RCX1 P TXP1 N TXP1 P VDDA PADR 2 MDIO MF1 SDA SCL GPIO 3 GPIO 0 VDD VDD GNDA GNDA GNDA GNDA VDDA PADR 4 MDC VDDA C GNDA GNDA VDDA V GPIO 4 TX_E NA0 VDDA RCX0 N RCX0 P TXP0 N TXP0 P VDDA PADR 3 PADR 0 VDDA C RFCP RFCN VDDA V GNDA TX_E NA1 VDDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA GNDA A B C D E F G H J K L M N P R T 58 ISL35822 Package Dimensions FIGURE 8. EBGA-192 PACKAGE DIMENSIONS 59 ISL35822 Electrical Characteristics Absolute Maximum Ratings Table 102. ABSOLUTE MAXIMUM RATINGS SYMBOL VDDPR VDDA, VDD, VDDAC, VDDAV V INCML IOUTCML V INCMS1 V INCMS2 V INCMS3 Tstg Tj TSOL V ESD PARAMETER 2.5V Protection Power Supply Voltage All Other Power Supply Voltages CML DC Input Voltage CML Output Current 1.2V CMOS Input Voltage 1.5V CMOS Input Voltage 2.5V Tolerant CMOS Input Voltage Storage Temperature Junction Temperature Soldering Temperature (10s) Maximum Input ESD (HBM) -2000 MIN -0.5, VDD - 0.5 -0.5 -0.5 - 50 -0.5 -0.5 -0.5 - 55 - 55 MAX 2.6, VDD + 2.0 1.65 VDD + 0.5 +50 VDD + 0.5 VDD + 0.5 2.6 125 125 220 2000 UNITS V V V mA V V V °C °C °C V Note (1): These ratings are those which if exceeded may cause permanent damage to the device. Operation at these or any other conditions in excess of those listed under Operating Conditions below is not implied. Continued exposure to these ratings may reduce device reliability. Operating Conditions All Standard Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5%, VDDPR = VDD or 2.4V ± 0.1V, unless otherwise specified. The Low Power Device specifications assume TC = 0°C to +85°C, VDDAC = VDDAV = VDD = VDDA = 1.355V ± 4%, VDDPR = VDD or 2.4V ± 0.1V, unless otherwise specified. Table 103. RECOMMENDED OPERATING CONDITIONS SYMBOL VDDA VDDAV, VDDAC & VDD VDDPR TA TC PARAMETER Core and Serial I/O Power Supply Voltages (Standard Device) (Low Power Device) MIN 1.425 1.300 VDD 0 0 NOM 1.5 1.355 (1) MAX 1.575 1.410 2.5 +70 +85 UNITS V V V °C °C Control I/O Protection Power Supply Voltage Ambient Operating Temperature(2) Case Operating Temperature 25 Note (1): The VDDPR supply should be tied to a level at or above VDD, and at the highest level expected on any “2.5V tolerant” control pin, consistent with the above ratings. Note (2): For reference only. All testing is performed based on Case Temperature. Table 104. POWER DISSIPATION AND THERMAL RESISTANCE SYMBOL PD Power Dissipation(2) PARAMETER (Standard Device, CX4 Mode) (Low Power Device, LX4 Mode) θJC θCA θCA Thermal Resistance, Junction to Case Thermal Resistance, Case to Ambient (still air, gap filler & cold plate) Thermal Resistance, Case to Ambient (still air only) TYP(1) 1650 1250 2.0 13.0 31.0 MAX(1) 1830 1350 UNITS mW mW °C/W °C/W °C/W Note (1): The ‘Max’ value is at the maximum supply voltages, while the ‘Typ’ value is at the nominal supply voltages. The power dissipation is not significantly affected by the VDDPR supply (see Table 111 for the distribution of power between the supplies). The “Mode” setting is assumed to be the default for that mode. Note (2): The operating power varies slightly with the data pattern. The part is tested using the PRBS23 (223-1 byte) pattern. 60 ISL35822 DC Characteristics Table 105. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, CX4 MODE (3) SYMBOL VP-PIN VP-POUT2 PARAMETER Peak-To-Peak Differential Voltage Input Requirement (1) Peak-To-Peak Differential Voltage Output (ZO = 100Ω differential load), definition as per IEEE 802.3ak-2004(2) , Standard Device Only Difference between VP-POUT2 from Lane to Lane on any group (CX4 or XAUI) (2) Output Common Mode Voltage Internal Input Common Mode Voltage MIN 100 800 TYP >60 1000 MAX 2000 1200 UNITS mV mV ∆VP-POUT2 VCMO VCMI 75 VDD-.5 0.4 150 mV V V Note (1): Measured at TP3 as defined in the IEEE 802.3ak-2004 specifications. This value is needed in each IPG to maintain the SIG_DET function active. The ISL35822 will provide a BER < 1 in 10-12 under the conditions of clause 54.6.4.1 of the specification. Note (2): Measured at TP2 as defined in the IEEE 802.3ak-2004 specifications. Note (3): CX4 Mode not specified for low power Vdd = 1.35V operation; “Standard Device” conditions are required. Table 106. PMA SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, LX4 MODE SYMBOL VP-PIN VP-POUT2 PARAMETER Peak-To-Peak Differential Voltage Input Requirement Peak-To-Peak Differential Voltage Output (ZO = 100Ω differential load) Output Common Mode Voltage Internal Input Common Mode Voltage (Standard) (LowPower)(1) UNITS mV mV mV V V MIN 100 800 650 VDD-.5 0.4 TYP >60 1100 MAX 2000 1600 VCMO VCMI Note (1): ISL35822LPIK only Table 107. PHY XS SERIAL PIN I/O ELECTRICAL SPECIFICATIONS, XAUI MODE SYMBOL VP-PIN VP-POUT2 VCMO VCMI PARAMETER Peak-To-Peak Differential Voltage Input Requirement Peak-To-Peak Differential Voltage Output (1) (ZO = 100Ω differential load), definition as per 802.3ae-2002 Output Common Mode Voltage Internal Input Common Mode Voltage VDD-.6 0.4 V V MIN 100 800 TYP >60 1200 MAX 2000 1600 UNITS mV mV Note (1): Tested with CJPAT test pattern. Table 108. EXTERNAL 1.2V CMOS OPEN DRAIN I/O ELECTRICAL SPECIFICATIONS VPULL = External pullup Voltage, not to exceed VDD SYMBOL RPullup VOL VOH VIL VIH VHYST IIL IIH PARAMETER External pullup resistor for open drain O/P(1) Output Low Voltage Level (IOL = 4mA) (2) Output High Voltage Level (1) Input Low Voltage Level Input High Voltage Level Hysteresis on Schmitt Trigger Inputs (3) Input Low Current, VIN = 0.0V Input High Current, VIN = VDD MIN 10 0 VPULL -0.4 -0.2 0.840 100 -80 .1 10 150 120 TYP MAX 22 200 VPULL 0.360 VDD+0.2 UNITS kΩ mV V V V mV µA µA Note (1): XENPAK MSA recommended for LASI pin. Note (2): For MDIO and LASI pins. Note (3): Only for RSTN and MDC pins. 61 ISL35822 Table 109. 1.5V CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS SYMBOL VOL VOH VOH VIL VIH IILPU IIL IIHPD IIH PARAMETER Output Low Voltage Level (IOL = 2 mA) Open Drain Output High Voltage Level(1) Output High Voltage Level (IOH = 2mA)(2) Input Low Voltage Level Input High Voltage Level Input Low Current, VIN = 0.0V, with pull-up (3) Input Low Current, VIN = 0.0V Input High Current, VIN = VDD, w. pull-down (4) Input High Current, VIN = VDD MIN 0 VDD -0.4 VDD -0.4 -0.2 0.7*VDD -100 -10 40 -1 100 1 200 10 TYP 200 MAX 400 VDD VDD 0.3*VDD VDD+0.2 UNITS mV V V V V µA µA µA µA Note (1): Assumes pullup to VDD. Note (2): For MF[3:0] and TXCLK20 pins only Note (3): For TDI, TMS, TRSTN pins only Note (4): For TCLK, BIST_ENA, LX4_MODE pins only Table 110. 2.5V TOLERANT OPEN DRAIN CMOS INPUT/OUTPUT ELECTRICAL SPECIFICATIONS VPULL = External pullup Voltage, not to exceed 2.5V or VDDPR SYMBOL RPullup VOL VOH VIL VIH VHYST IIL IIH PARAMETER External pullup resistor for all I/P, open drain O/P Output Low Voltage Level (IOL = 2mA) Output High Voltage Level (IOH = 100µA) Input Low Voltage Level Input High Voltage Level Hysteresis on Schmitt Trigger Inputs (2) Input Low Current, VIN = 0.0V Input High Current, VIN = 1.5V Input High Current, VIN = 2.6V or VDDPR Note (1): Input voltage beyond RPullup pullup resistor; pin should not exceed VDDPR value Note (2): Only TCK pin. MIN 10 0 Least of 2.5 & VPULL -0.4 -0.2 0.7*VDD 100 -80 TYP 15 200 2.5 MAX 22 400 VPULL 0.3*VDD VDDPR+0.2(1) UNITS kΩ mV V V V mV µA 150 .1 10 100 µA µA Table 111. OTHER DC ELECTRICAL SPECIFICATIONS SYMBOL IDDAV + IDD + IDDA + IDDAC PARAMETER Total 1.5V Supply Current, TA = 25°C Total 1.5V Supply Current, TC = 0 to 85°C(1) Total 1.355V Supply Current, TC = 0 to 85°C(1,3) IDDPR IDDA IDDAV, IDDAC IDD Protection Voltage Supply Current Analog Supply Current VCO, CMU Supply Current Digital Core Supply Current 935 0.1 810 35 210 MIN TYP 1100(2) 1162(1,2) 960(1,3) 5 MAX UNITS mA mA mA mA mA mA mA Note (1): The Maximum limit is measured using a PRBS23 pattern. The supply current for the CRPAT test pattern is very slightly lower, and for the CJPAT pattern is typically 20mA lower. Note (2): This is measured in CX4 Mode, with bits 1.C01B.5:2 at F’h. Note (3): This Maximum limit refers to the LowPower part only, and is measured at 1.410V in LX4 mode, with bits 1.C01B.5:2 at 0’h. 62 ISL35822 AC and Timing Characteristics All specifications assume TC = 0°C to +85°C, and VDDAC = VDDAV = VDD = VDDA = 1.5V ± 5% (for the Standard Device) or VDDAC = VDDAV = VDD = VDDA = 1.35V ± 4%(for the Low Power Device), VDDPR between VDD and 2.5V, unless otherwise specified. Table 112. REFERENCE CLOCK REQUIREMENTS SYMBOL FREF ∆FREF TREFRF DTCREF ∆VREF VCM PARAMETER Ref clock frequency range(1) Ref clock frequency offset Ref clock Rise and Fall Time Ref clock duty cycle Ref Clock Voltage Swing(2) Internal Common Mode Voltage 45 300 VDD/2 50 MIN 124.4 -100 TYP MAX 159.375 +100 1.5 55 1000 UNITS MHz ppm ns % mV V Note (1): System requirements are normally much more restrictive, typically ± 100 ppm. This specification refers to the full reference clock frequency range over which the ISL35822 will operate. Note (2): Single-ended peak-to-peak swing. Table 113. TRANSMIT SERIAL DIFFERENTIAL OUTPUTS (SEE Figure 9, Figure 10 AND Figure 11) SYMBOL PARAMETER TCXnP/N and TXPxP/N output data rate TDR TDF TDTOL TODS Differential Rise time (20%-80%) Differential Fall time (20%-80%) Differential Skew Tolerance Lane to Lane Differential Skew (2) Differential Output Impedance Differential Return Loss (to 2.5GHz) TXRJ Random Jitter (RMS, 1100 pattern)(1) 2.488Gbps 3.125Gbps 3.1875 Total Jitter (RMS, PRBS7 pattern) 2.488Gbps 3.125Gbps 3.1875 Note (1): Strictly the 1100 pattern causes a small additional non-random jitter, so that the true random jitter is slightly less than that shown. Note (2): Parameter is guaranteed by design MIN 2.448 60 60 TYP MAX 3.1875 UNIT Gbps ps ps ps ps Ω dB 110 110 TBD 15 100 130 130 10 2 2.5 TBD 4.5 4.5 TBD 8 6 8 8 ps ps ps ps ps ps Table 114. RECEIVE SERIAL DIFFERENTIAL INPUT TIMING REQUIREMENTS (SEE Figure 11) SYMBOL PARAMETER RCXnP/N & RXPnP/N Input Data Rate Input Rate deviation from Reference Clock Bit Synchronization Time Frequency Lock after Power-up TDTOL TDJ Input Differential Skew Deterministic Jitter(1,2) 2.488Gbps 3.125Gbps 3.1875 TJI Total jitter tolerance 2.488Gbps 3.125Gbps 3.1875 Note (1): Jitter specifications include all but 10-12 of the jitter population. Note (2): Near end driven by ISL35822 Tx without pre-emphasis. MIN 2.448 -200 TYP MAX 3.1875 +200 2500 2 75 UNITS Gbps ppm bits µs ps UI UI UI UI UI UI TBD 0.7 TBD TBD 0.88 TBD 63 ISL35822 Table 115. MDIO INTERFACE TIMING (FROM IEEE802.3AE) (SEE Figure 15 TO Figure 17) SYMBOL TMDCD TMDS TMDH TMDC TMDV TUpdate CMD PARAMETER ISL35822 MDIO out delay from MDC Setup from MDIO in to MDC Hold from MDC to MDIO in Clock Period MDC (1) MDC Clock HI or LO time(1) Delay from last data bit to register update(2) Input Capacitance MIN 0 10 10 100 20 TYP 5.0 1.5 1.5 400 160 2 10 MAX 300 UNIT ns ns ns ns ns TMDC pF Note (1): The ISL35822 will accept a much higher MDC clock rate and shorter HI and LO times than the IEEE802.3 specification (section 22.2.2.11) requires. Such a faster clock may not be acceptable to other devices on the interface. Note (2): The ISL35822 MDIO registers will not be written until two MDC clocks have occurred after the frame end. These will normally count toward the minimum preamble before the next frame, except in the case of writing a RESET into [1,3,4].0.15, see Figure 17. Table 116. RESET AND MDIO TIMING (SEE Figure 17) SYMBOL TRSTBIT TMDRST Reset bit Active width Delay from Reset bit to first active preamble count 240 PARAMETER MIN TYP 2 256 282 MAX UNITS TMDC TREFCLK Table 117. RESET AND I2C SERIAL INTERFACE TIMING (SEE Figure 18 AND Figure 24) SYMBOL TRESET TWAIT TTRAIN TCLAH_L TSCL_DAV TSDA_CLV CI2C RSTN Active width Delay from RSTN to I2C SCL Start I2C ‘training’ (external reset) Period of I2C SCL Clock Line (400kHz) Setup from I2C SDA Data Valid to SCL edge Setup, Hold from SDA for START, STOP Input Capacitance 2.5 100 600 10 PARAMETER MIN 10 10 30 TYP MAX UNITS µs ms TCLAH_L µs(1) ns ns pF Note (1): Assuming RFCP-N clock is 156.25MHz, and register bits 1.8005.6:4 set for 400kHz (Table 20). SCL clock period scales with reference clock frequency. Also, per the I2C specification, the SCL ‘High’ time is stretched by the time taken for SCL to go high after the ISL35822 releases it, to allow an I2C slave to demand additional time. Any RC delays on the SCL line will add to the SCL ‘High’ time, in increments of approximately 100ns. 64 ISL35822 Timing Diagrams FIGURE 9. DIFFERENTIAL OUTPUT SIGNAL TIMING TDR TCX[3:0]P-N, TXP[3:0]P-N TR TCX[3:0]P, TXP[3:0]P TDTOL TCX[3:0]N, TXP[3:0]N TDF TF FIGURE 10. LANE TO LANE DIFFERENTIAL SKEW TODS TXP[3:0]P/N, TCX[3:0]P/N TXP[3:0]P/N, TCX[3:0]P/N FIGURE 11. EYE DIAGRAM DEFINITION Unit Interval (UI) Vcm Vpp (single-ended) Total Jitter Eye Width 65 ISL35822 FIGURE 12. BYTE SYNCHRONIZATION None Not Comma Comma Idle Data RCX[3:0]P-N, RXP[3:0]P-N RT SYNC RT LAT Random RefCLK RXCLK Comma Idle Data Internal FIFO Data Internal Byte Clock Error FIGURE 13. LANE-LANE ALIGNMENT OPERATION RCX[3:0] -> TXP[3:0] shown, RXP[3:0] -> TCX[3:0] is identical Align Serialized RCX0 ----to---Serialized RCX2 Serialized RCX3 Idle Idle Data RTSKEWIN Data Align Data Data Data Data Idle Idle Align Idle Data Data Data Idle Idle Data Data Data Data Data Serialized TXP0 ----to---Serialized TXP3 Idle Idle Idle Idle RTSKEW Idle Data Data Idle Idle Idle Idle Idle Data Data FIGURE 14. RETRANSMIT LATENCY Idle Data RCX[3:0]P-N, RXP[3:0]P-N RTLAT Idle Data TXP[3:0]P-N, TCX[3:0]P-N 66 ISL35822 FIGURE 15. MDIO FRAME AND REGISTER TIMING Read Operations Shown in Red frame MDIO (from STA) MDC Prev Preamble ST OP Prt/Dev Ad TA Address/Data Idle/Preamble MDIO (from MMD) TPreamble TUpdate Old Data New Data Register Contents FIGURE 16. MDIO INTERFACE TIMING STA M MD TA (for READ Ops) MMD S TA MDIO MDD Sourced T MDC MDC MDIO STA Sourced T MDH TMDSU TMDCD 67 ISL35822 FIGURE 17. MDIO TIMING AFTER SOFT RESET (D.0.15) D.0.15 reset (Internal States, not observable) Bit reset T RSTBIT MDIO engine MDC T MDRST Engine reset, ignores preamble 1 st p reamble bit FIGURE 18. BEGINNING I2C NVR READ AT THE END OF RESET condition TUpdate TConfig TRESET RST wait train wait Read NVR Read DOM (done) TTRAIN RSTN SCL SDA TWAIT TWAIT Default Data Auto-Config Data Control Registers FIGURE 19. I2C BUS INTERFACE PROTOCOL SDA MSB acknowledgement signal from slave byte complete, interrupt within slave clock line held low while interrupts are served SCL S or Sr START or repeated START condition Sr or P STOP or repeated START condition acknowledgement signal from receiver 1 2 7 8 9 ACK 1 2 3-8 9 ACK 68 ISL35822 FIGURE 20. NVR/DOM SEQUENTIAL READ OPERATION A C K S slave addr A C K read data W word addr A C K read data A C K S slave addr A C K last read data R A C K read data A C K no ACK P FIGURE 21. NVR SEQUENTIAL WRITE ONE PAGE OPERATION A C K S slave addr A C K write data W word addr A C K A C K write data A C K write data A C K write data A C K no ACK last write data P FIGURE 22. I2C SINGLE BYTE READ OPERATION A C K S slave addr W word addr A C K S slave addr R A C K read data no ACK P FIGURE 23. SINGLE BYTE WRITE OPERATION A C K S slave addr W W word addr A C K write data A C K P 69 ISL35822 FIGURE 24. I2C OPERATION TIMING T SDA_CLV SCL SDA Start Data T SCL_DAV T SCLH_L T SDA_CLV D ata Stop Applications Information CX4/LX4/XAUI Re-timer Setup This section discusses the setup for the ISL35822 to be used as a XAUI/CX4/LX4 Retimer. The various descriptions and comments further assume that the device is initially configured in the default condition (i.e. exactly as found after a hardware reset). The BIST_ENA pin should be pulled LOW (to GND); the pin has an internal pulldown to this value. The LX4_MODE select pin should be tied to the appropriate level, depending on whether the ISL35822 is interfaced to a CX4 connection, or a XAUI/LX4 interface (where it is assumed that the electro-optical interface is XAUI-compatible). Although the ISL35822 will come out of reset with CX4 or LX4-directed values, some of these default register settings may need to be changed, for optimum operation in any specific application. All of these may be set via the AutoConfigure operation (See “Auto-Configuring Control Registers” on page 16). The default values of pre-emphasis and receive equalization set by the LX4_MODE select pin may need to be adjusted, particularly if the serial 3Gbps PCB traces on the ‘host’ side (the XAUI or the XENPAK/XPAK/X2 side) are long, (in which case the PHY XS values may need adjustment), or if the connection to a CX4 connector or laser driver and photo detector and limiting amplifier involve extra connectors, long traces, or enhanced edge rates (in which case the PMA/D values should be adjusted). Note that in LX4 mode, the PMA-side pre-emphasis will have to be enabled, and the power consumption of the device will be increased. The default value of the PMA/D and PHY XS XAUI_EN bits is set at ‘1’, and for normal XAUI or CX4/LX4 operation, this is usually the best setting for this use. Byte alignment will follow the IEEE 802.3ae PCS SYNC specification, Lane alignment will follow the DESKEW algorithm in the same specification, and the pseudo-random /A/K/R/ generation in IDLE will also be performed according to the same specifications. For certain non-10GBASE-X uses, or for debug and problem analysis purposes, and in particular for certain BIST testing, it may be advantageous to change some of the settings. To achieve this, the relevant (PMA/D and/or PHY XS) XAUI_EN bits must be turned off (to ‘0’), since otherwise they will override many of the other registers’ bits (see Table 65). For instance, if it desirable to change Byte Alignment to a simpler algorithm than the IEEE-defined one (if, for example, only three of the four lanes are working), the PCS_SYNC_EN bit(s) (Table 63 and/or Table 80) may be turned off, and (with the respective XAUI_EN bit off), byte (code group) alignment on the working lanes will now function. Similarly, setting the A_ALIGN_DIS bit in the PCS/PHY XS Control Register 2 ([3,4].C000’h) will cause lane alignment to occur on IDLE to non-IDLE transitions across all four lanes, instead of lane alignment on ||A|| (K28.3) character columns when this bit is set to a zero. The internal (pseudo-XGMII) ERROR character can be set to a value other than 1FE’h by writing the value (without the K bit) to register 3.C002’h or 4.C002’h. Similarly, the internal (pseudo-XGMII) IDLE character may be changed using registers 3.C003’h and/or 4.C003’h. The pseudo-random XAUI/CX4/LX4 IDLE /A/K/R/ generator can be disabled by clearing the AKR_SM_EN bit in register 3.C001’h (PCS) or 4.C001’h (PHY XS). To disallow complete regeneration of the Inter Packet Gap (IPG), it would be desirable to clear the TRANS_EN bit in register 3.C001’h/4.C001’h. Recommended Analog Power and Ground Plane Splits The ISL35822 high-speed analog circuits as well as highspeed I/O draw power from the analog power (VDDA) and (shared) ground GNDA pins/balls (pins or balls will be used inter-changeably through out this document). In order for the ISL35822 to achieve best performance, the VDDA and 70 ISL35822 GNDA should be kept as “quiet” as possible. There are also two further analog supplies, VDDAC and VDDAV for the CMU and VCO respectively. These two also need to be kept quiet. The VDDA, VDDAC, VDDAV and VDD voltage requirements of the standard ISL35822 are all 1.5V (for the Low Power LX4-only version 1.355V). The ripple noise on the VDDA# voltage rails should be as low as possible for best jitter performance. Therefore, in the layout, each VDDA should be decoupled from the main 1.5V(1.355V) supply by means of cut outs in the power plane, and the power to the individual VDDA areas supplied through ferrite beads (1A capability is recommended). The cut out spacing should be at least 20mil (0.5mm). A “quiet” analog ground also enhances the jitter performance of the ISL35822 as well. A similar cut out in the ground plane is recommended, to isolate the analog sections from the digital ones. VDDPR balls as possible. If the VDDPR supply can be applied faster or earlier than the VDD supply, it is recommended that a limiting clamp be provided to maintain the Absolute Maximum Rating limits of Table 102. A simple example of such a clamp is given in Figure 25, using a small shunt regulator. Since the power dissipation of the regulator is negligible except during the supply power-up time difference, no special heat dissipation precautions are needed. XENPAK/XPAK/X2 Interfacing The ISL35822 incorporates a number of features that facilitate interface to the (pin-function-compatible) XENPAK, XPAK and X2 interfaces. The relevant 3.125Gbps serial lines in the ISL35822IK are brought out in exactly the correct order to be connected to the edge connector, minimizing any layout problems, and the use of vias, in PCB design. Furthermore, the ISL35822 device also incorporates the logic required to handle the TX_ON/OFF and LASI pins, to interface (via an I2C bus) with an EEPROM (or similar device) to load the NVR space with all the MDIO register values specified in the XENPAK MSA R3.0 specification (which are referenced, with only minor OUI-number type changes in the XPAK and X2 specifications), and to transfer Digital Optical Monitoring (DOM) information from typical I2C-interface devices into the XENPAK (etc.) specified MDIO space. If the XP_ENA pin is high at the end of hardware or full MDIO reset, the I2C engine will attempt to read whatever device is on the bus at the A0:00’h address. If it succeeds, it will read the A0:01’h address, and so on, till it reaches A0:FF’h. If at any point the number of I2C Acknowledge (ACK) failures on any address exceeds the limit set in register 1.8005’h (see Table 20) the NVR load will fail, and the result of the operation in 1.8000’h will report the failure. If a suitable device with 256 bytes at the A0 device address (either a serial EEPROM device like the Atmel AT24C02A or a device such as the Micrel MIC3000 or the Dallas Semiconductor DS1852) is present, the data in it will thus be transferred to the MDIO register space. Most of this data is merely copied to the MDIO space, but a few specific items (listed in Table 22) have additional effects, for example providing the ‘Package OUI values for 1.14:15, or the DOM Capability bits in the 1.807A register. If these DOM Capability bits (listed in Table 23) indicate that the 2-wire bus has a device (again such as the Micrel MIC3000 or the Dallas Semiconductor DS1852) oriented to performing the SFF-8472-defined DOM function, the ISL35822 will attempt to read the data from that device into the MDIO DOM Alarm and Warning Thresholds registers (see Table 32), and the current A/D value and flag registers (see Table 33, Table 36 and Table 37). If the XENPAK DOM Operation Control and Status Register (see Table 38) is set appropriately, the DOM current A/D value and flag registers will be updated periodically from all the DOM device(s), via Recommended Power Supply Decoupling For the ISL35822, the decoupling for VDDA VDD, VDDAC, and VDDAV must all be handled individually. VDDA (1.5V/1.355V) provides power to most of the analog circuits as well as the high speed I/Os. The analog power supply VDDA must have an impedance of less than 0.4Ω from around 50kHz to over 1GHz. This can be achieved by using one 22µF (1210 case size, Ceramic), and eleven 0.1µF (0402 case size, ceramic), and eleven 0.01µF (0402 case size, ceramic) capacitors in parallel. The 0.01µF and 0.1µF 0402 case size capacitors must be placed right next to the VDDA balls as close as possible. Note that the 22µF capacitor must be ceramic for the lowest ESR possible, and must be of 1210 case size or better to achieve this. The 0.01µF capacitors should be of case size 0402 or better, offering the lowest ESL to achieve low impedance towards the GHz range. Also, note that the ground of these capacitors must be well connected to GNDA. Similarly VDDAC and VDDAV (also 1.5V/1.355V) supply the frequency (and hence jitter) determining sections of the ISL35822. They should each be decoupled using one 22µF ceramic lowest-ESR-possible capacitor, and one each of 0.01µF and 0.1µF. The latter especially should be close to the respective balls of the device, with a low impedance trace-path to the device and to GNDA. The VDD (1.5V/1.355V) supply is the power rail for the ISL35822core logic circuit. For this supply, at least three 0.1µF (0402 case size), three 0.01µF (0402 case size) and a 10µF (tantalum or ceramic) capacitor are recommended. Place the 0.01µF and 0.1µF capacitors as close to the VDD balls as possible. VDDPR (recommended 2.5V or less) is used for certain ESD protection circuits; at least two 0.01µF (0402 case size), and two 0.1µF (0402 case size) capacitors are recommended. Place the 0.01µF and 0.1µF capacitors as close to the 71 ISL35822 the DOM device pointers in Table 54 and Table 55. See "I2C Interfacing" below for more details. that may use logic levels compatible with 3.3V CMOS designs (such as specified in IEEE 802.3-2002 Clause 22), and newer systems compatible with the levels specified in the 10GE specification IEEE 802.3ae-2002 (based on 1.2V supplies), and systems using intermediate supply voltages. In general, no problems should occur in any such applications, provided the resistive pull-ups go to no higher than a nominal 2.6V. However, the ISL35822 is inherently a very high-speed device, and the falling-edge-rates generated by the part can be quite high. To avoid problems with excessive coupling between the MDIO line and the MDC line, and consequent generation of false clock-edges on the MDC line, and hence incorrect MDIO operation, the MDC line has been given a Schmitt trigger input. Note that the MDIO registers will not be written till AFTER up to three additional clocks after the end of a WRITE frame (see Figure 15). It is recommended that MDC run continuously, but if this is not possible, extra clocks should be added after a WRITE. These will count toward the preamble for the next frame (except when the byte written caused a Soft Reset, see Figure 17, and extra preambles may be required). CX4 Interfacing The relevant 3.125Gbps serial lines in the ISL35822IK are brought out in exactly the correct order to be connected to the CX4 connector, using either the top layer of the PCB for striplines, or an inner layer for microstrip lines, without any necessity for crossing the various leads. There are GNDA pins between each serial line pair, and special care has been taken to facilitate the optimal separation of the TX3 and RX3 line pairs. Increasing the PCB trace separation between these pairs, and adding a strip of GNDA, will decrease the crosstalk effects, which are normally most severe for this pair. Note that the CX4 output will not reliably meet the CX4 specification with the VDDA VDD, VDDAC, and VDDAV supplies as low as 1.344V (1.4V-4%), so the Low Power version device is not recommended for this usage. LX4 Interfacing In LX4 mode, the serial PMA/PMD outputs are by default set up without pre-emphasis, since it is anticipated that the laser driver circuits will be located only a short distance away. This can be overridden by the Auto-configure capability, if desired, to accommodate a lossy or long interconnect, and to provide enhanced high-frequency drive if needed by the laser driver. However, the Predrivers will need to be powered up, increasing the device power dissipation. Similarly, the receiver inputs are set up by default without equalization. Again, this can be overridden by the Auto-configure capability, if desired, to accommodate a lossy or long interconnect, and to compensate for poor high-frequency performance in the photodetectors. Under ‘Standard’ part conditions, these signals are XAUI-compatible. Under the ‘Low Power’ supply voltage conditions, the output drive may fall below the XAUI specification. This is normally not a problem for laser drivers, but if Low Power operation is desired, this should be checked. Many lasers and laser drivers require setting of the laser bias and modulation currents, to optimize the performance. This is frequently done via digitally controlled resistors or current sources, many of which have I2C interfaces for setting the values, often as a function of temperature. By ensuring that the Device Addresses of these circuits are distinct from those of the NVR, and any separate DOM circuits provided, the I2C interface of the ISL35822 can be used to initialize the setups of these circuits. The technique described under “Byte Writes to EEPROM space” on page 19 can always be used in this case. This can be done after a module is fully assembled, if necessary using one of the ‘spare’ pins on the XENPAK connector, or a GPIO pin, to enable writing to the relevant circuits. I2C Interfacing The I2C interface, normally used to provide the NVR requirements for XENPAK/XPAK/X2 MSA modules, consists of two lines, SCL and SDA. These conform to the I2C specification (‘THE I2C-BUS SPECIFICATION, Version 2.1’, at URL http://www.semiconductors.philips.com/acrobat/literature/93 98/39340011.pdf) for Standard-mode (to 100kHz) and Fastmode (to 400kHz) operation. The ISL35822 is a bus master, and expects to see the NVR EEPROM and/or DOM circuits as slaves. Particularly if Fast-mode operation is desired, the capacitance of and coupling between the SCL and SDA lines should be minimized. Since these lines are ‘open drain’, the rise time of the SCL line will inherently stretch the ‘low’ time of the line, as seen by the ISL35822, due to the effect of the RC time constant of the pull-up resistor and the line capacitance. This will slow down the operation of the interface. If the other I2C devices on this bus are 3.3V devices, their VIH levels should be checked to ensure satisfactory logic operation if the pull-up resistors are taken to a nominal 2.5V. If they will work from a lower voltage, the resistors can be taken to any such voltage down to the VDD level. The above reference includes charts for the values of the resistors, based on the capacitance of the line, and the desired clock rate. For the default operation speed of nominally 100kHz, a value of 5kΩ to 15kΩ will normally be suitable, while for Fast-mode operation, 2kΩ to 4kΩ will normally be needed. If a 2.5V supply is not available, resistive dividers may be used to ensure that the signals on the ISL35822 lines do not exceed that level. Some examples are shown in Figure 26. MDIO/MDC Interfacing The MDIO and MDC lines in the ISL35822 have been designed to maximize compatibility both with older systems, 72 ISL35822 DOM Interfacing The NVR interface has already been discussed above (“XENPAK/XPAK/X2 Interfacing” on page 71). The ISL35822 also includes a flexible DOM interface. See “DOM Registers” on page 16 for details. Most laser drivers and receivers (TOSA and ROSA) include monitor outputs reflecting the Laser Bias Current, the Laser Output Power, and/or Received Optical Power. Some of these analog outputs are referenced to GND, others to an appropriate VDD. For use in the optional DOM system, these values need to be converted to digital values, compared with alarm and warning levels, and made available as both digital values and as flag registers and alarm signals. Since the WDM 4-lane DOM interface ideally needs to find ‘furthest-out-of-range’ values, it will operate most effectively using a single DOM control and conversion device. Suitable parts include the Cygnal C8051F311 device, which can handle the 12 monitored values, 4 VDD signal reference levels, the SCL and SDA signals, and the LASI-driving TX_FAULT, OPTTEMP, OPTXLBC, OPTXLOP, and OPRXOP signals. The device includes a 10-bit differential ADC, a temperature sensor, an onboard clock oscillator, and an I2C bus controller (called the SMBUS system by Cygnal), which should be set up as a slave. The NVR information can all be stored in the on-board Flash EEPROM memory, making for a single NVR/DOM/LASI device. If additional I/O signals are required, the similar C8051F310 has them available, for an increase in board area. Alternatively, an analog multiplexer such as the Maxim MAX4694 could be used to switch inputs between different lanes, under I/O pin control. A similar series of parts are available from Cyex as the SLC series. These parts also include DACs for Laser control functions. If this type of device is used, the ISL35822 should be set up in ‘Direct DOM’ mode (see Table 51 and "DOM Registers"), and it will then be able to download the complete DOM block as required. An alternative is to use a device specifically designed as a DOM device, such as the Micrel MIC3000 or the Maxim/Dallas Semiconductor DS1852. Each of these is a single lane device, and is oriented to fulfilling the requirements for SFP modules and the SFF-8472 specification. Although very similar, the latter has some small differences from the XENPAK DOM specification, which can cause problems. If a single device is used, it can be configured as a single DOM device, typically at device address A2, and used to monitor, for example, the average (sum) of the desired values. The thresholds, monitored values, and alarm and warning flags will conform to the required behavior for single-lane monitoring (see Note 2 to Table 27 in section 11.2.6 of the XENPAK R3.0 specification). If the ISL35822 is set up in ‘Direct DOM’ mode (see Table 51 and "DOM Registers"), the single-lane values will be transferred to the MDIO register space. Such an arrangement may be very suitable for use in a CX4 module, where it could be desirable to measure the temperature, 73 although the “Laser Bias Current”, “Received Optical Power”, etc. have no meaning (and “Digital Optical Monitoring” is a misnomer!). Note that the DS1852 does not provide a sufficient NVR block for XENPAK, and an additional 256-byte EEPROM such as an Atmel AT24C02A will be needed. Using four of the single-lane devices mentioned previously, the system can monitor all four lanes. A first download of a single device would load the full 256-byte space, and the ISL35822 should then be set in ‘Indirect Mode’ (see Table 51 and "DOM Registers"), with the pointers appropriately reset. For the MIC3000, three of the four devices should have their ‘I2CADR’ values changed (e.g. to B2, C2 & D2), leaving the fourth at the default DOM address A2. The NVR space will be provided by the A0 space in that last device, while the DOM spaces for each of the four lanes are accessed via the indirect Device Address pointers in 1.C01B:C’h, which would be set to A2, B2, C2 & D2 in the above scenario. The memory address values in 1.C019:A’h would be left at the default 60’h value. To utilize the DS1852, an EEPROM is needed for the NVR at the A0 address space, and one lane’s DS1852 should have the D0h Device Address value at the A2 default value, and its ASEL pin should be high. The others (also with ASEL high) should have the D0h values set to an array of different Device Address values, for instance B2, C2 & D2 (as in the previous example), or A4, A6 & A8, and the same values also set in 1.C01B:C’h. A first pass will read the EEPROM space in A2.00:5F’h from the DS1852 device at A2, followed by the A/D and flag values from A2.60:75’h, and various other values to A2.7F’h. The space from A2.80:FF’h depends on the DS1852 Table select byte (7F’h); if this is 0, the source data is empty; if it is set for Table 03, the actual Alarm and Warning threshold values will be returned; if 01 or 02, the various EEPROM banks, depending on the Access Level set. See the DS1852 data sheet for details. Subsequent DOM reads performed with Indirect Access can load the standard XENPAK 4-lane A/D space from the four DOM devices. Open drain outputs from the DOM devices can be pulled up via resistors to VDD, or any voltage between that and a nominal 2.5V. If a 2.5V supply is not available, resistive dividers may be used to ensure that the signals on the ISL35822 lines do not exceed that level. Active pullup devices should have their outputs divided before reaching the ISL35822 pins. Some examples of each are shown in Figure 26. LASI Interface The ISL35822 incorporates all the logic needed to control and enable the full XENPAK/X2/XPAK Link Alarm Status Interrupt (LASI) system, with several optional incorporated enhancements. Many of the (specified and optional extra) inputs are derived from the status registers in the ISL35822 (See “LASI Registers & I/O ” on page 17, and Figure 5), and the others are derived from a set of input pins (see Table 99) ISL35822 that would normally be driven by the corresponding status outputs of the either the TOSA and ROSA devices, or (if implemented) the DOM devices. The active polarity of these pins can be controlled via the ISL35822 registers. Since many TOSA, ROSA and lane-oriented DOM devices have open-drain outputs that go high on an alarm condition, wireAND-ing these together for a four-lane indication is not possible (any ‘working’ lane masks the ‘alarmed’ lane(s)), some external gating may be required (typically a 4-input OR or NOR gate per alarm). Note that the default polarity of these alarm inputs (active high) will be set after power-up, RESET or a hard (D.0.15) software reset, until the device is reconfigured. If a host-driven configuration is being used, the polarities (controlled by 1.C01D, Table 55) should be set before the LASI enables (1.9002, Table 27). If the AutoConfigure system is used (See “Auto-Configuring Control Registers” on page 16 and Table 92), the configuration may take typically about 100 msec (see Figure 18 and Table 117), and there will normally be a brief interval during which the LASI interrupt is likely to be (incorrectly) activated. LASI host operations would probably normally ignore such ‘glitches’, since the Byte Synch and Lane Alignment will initially be in ‘Fault’ condition after such a RESET (per the IEEE 802.3ae specification), and so the relevant latched Local Fault indications will need to be cleared before LASI is meaningful, but it could be advisable to ensure that the additional indications are ignored or cleared in the same way before the full LASI system is activated. FIGURE 25. VDDPR CLAMP CIRCUIT P3V3 From MSA Conn To ISL35822, Pull-Up Resistors R1 68 B Cathode D1 VDD33 R2 10K 3 U1 1 Cathode Reference Anode Anode ZHCS400 A 2 VDD R3 12K LMV431 FIGURE 26. RESISTIVE DIVIDER CIRCUITS RAW_3V3 Rpu 12k TX_FAULT - - - etc. - - OPRXOP Rpd 10k Rpd 10k Rpu From 3.3V OSA (Open Drain only) TX_FAULT - - - etc. - - OPRXOP Rpd 10k Rpd 12k 10k 12k Rpu TX_FAULT_3P3 - - - etc. - - OPRXOP_3P3 TX_FAULT_3P3 - - - etc.- - OPRXOP_3P3 RAW_3V3 Rpu From ISL35822 From / To ISL35822 RAW_3V3 Rpu 12k TX_ENA# Rpd 16k 18k f or MI C3000 TX_ENA3P3_# To 3.3V TOSA 12k SDA, SCL - - - each- Rpd 30k SDA, SCL 74 To / From 3.3V EEPROM From 3.3V OSA (Active Pullup) 12k Rpu ISL35822 Ordering Information PRODUCT ISL35822 ISL35822LP Low Power FREQUENCY 2.488Gbps3.1875Gbps 2.488Gbps3.1875Gbps PACKAGE ORDER PART NUMBER 192 Ld EBGA-B ISL35822IK package; 17x17mm ISL35822LPIK Intersil Corporation Contact Information Technical information can be found via the Web page at http://www.intersil.com/design/ Contact Intersil Technical Support by phone at 1-888-INTERSIL or 1-888-468-3774. All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 75
ISL35822LP 价格&库存

很抱歉,暂时无法提供与“ISL35822LP”相匹配的价格&库存,您可以联系我们找货

免费人工找货