0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISL8205MEVAL1Z

ISL8205MEVAL1Z

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    -

  • 描述:

    ISL8205EVALBOARD

  • 数据手册
  • 价格&库存
ISL8205MEVAL1Z 数据手册
DATASHEET 5A Single Channel High Efficiency DC/DC Step-Down Power Module ISL8205M Features The ISL8205M power module is a single channel synchronous step-down complete power supply, capable of delivering up to 5A of continuous current. Operating from a single 2.6V to 5.5V input power rail and integrating controller, power inductor and MOSFETs, the ISL8205M only requires a few external components to operate and is optimized for space constrained and portable battery operated applications. • 5A single channel complete power supply - Integrates controller, MOSFETs and inductor - Pin/function compatible with the 3A ISL8202M • 2.6V to 5.5V input voltage range • Adjustable output voltage range - As low as 0.6V with ±1.6% accuracy over line/load/temperature - Up to 95% efficiency Based on current mode PWM control scheme, the ISL8205M provides a fast transient response and excellent loop stability as well as a very low duty cycle with an adjustable output voltage as low as 0.6V and better than 1.6% accuracy over line and load conditions. Operation frequency is selectable through an external resistor, with a 1.8MHz default setting, or may be synchronized with an external clock signal up to 3.5MHz. The ISL8205M also implements a selectable PFM mode to improve light-load efficiency and a 100% duty cycle LDO mode to extend battery life. A programmable soft-start reduces the inrush current required from the input supply while an automatic output discharge ensures a soft stop. Dedicated enable pin and power-good flag allow for easy system power rails sequencing. • Default 1.8MHz current mode control operations - 680kHz to 3.5MHz resistor adjustable - External synchronization up to 3.5MHz - Selectable light-load efficiency mode - 100% duty cycle LDO mode • Programmable soft-start • Soft-stop output discharge • Dedicated enable pin and power-good flag • UVLO, over-temperature, overcurrent, overvoltage and negative overcurrent protections - Overcurrent/short-circuit hiccup mode An array of protection features, including input Undervoltage Lockout (UVLO), over-temperature, overcurrent/short-circuit with hiccup mode, overvoltage and negative overcurrent, guarantees safe operations under abnormal operating conditions. • 4.5mmx7.5mmx1.85mm 22 Ld QFN package Applications The ISL8205M is available in a compact RoHS compliant 22 Ld 4.5x7.5x1.85mm QFN package. • DC to DC POL power module Related Literature • Portable equipment • TB389, “PCB Land Pattern Design and Surface Mount Guidelines for QFN Packages” • Battery operated equipment • µC/µP, FPGA and DSP power 100.0 ISL8205M CIN 2x22µF VIN VOUT EN SW PG VSENSE FB FS RFS 124k 90.0 COUT 2x22µF COMP SYNC SS EPAD SGND 95.0 1.2V 5A OUTPUT PGND RSET 100k EFFICIENCY (%) 2.6V TO 5.5V INPUT 85.0 80.0 75.0 Vout=1.2V, Fsw=1.6MHz PWM Vout=1.2V, Fsw=1.6MHz PFM Vout=3.3V, Fsw=3MHz PFM Vout=3.3V, Fsw=3MHz PWM 70.0 CFF 820pF 65.0 60.0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 LOAD CURRENT (A) FIGURE 1. TYPICAL APPLICATION DIAGRAM AT 5VIN, 1.2VOUT, 1.6MHz fSW, 5A May 10, 2016 FN8755.1 1 FIGURE 2. EFFICIENCY vs LOAD 5VIN CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2016. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL8205M Table of Contents Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Output Voltage Ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Load Transient Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Short-Circuit Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Control Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PFM (SKIP) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative Current Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft Start-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Synchronization Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discharge Mode (Soft-Stop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100% Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 15 15 16 16 16 16 16 16 16 16 16 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming the Output Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feed-Forward Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Consideration and Current Derating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 17 17 17 17 18 18 PCB Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB Layout Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Vias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 20 20 20 20 20 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Submit Document Feedback 2 FN8755.1 May 10, 2016 ISL8205M Functional Block Diagram SS COMP FS SYNC 18 16 13 SHUTDOWN SOFTSTART 17 SHUTDOWN EN FB 15 BANDGAP OSCILLATOR VREF COMP EAMP PWM/PFM LOGIC CONTROLLER PROTECTION HS DRIVER L LS DRIVER 19 11 VIN 21 SW 6 VOUT 9 SW 3 PGND 20 PGND 14 PGND 4 VSENSE 2 VSENSE 22 SGND 0.8V FB SLOPE COMP 1 OV CSA 51 OCP UV 0.85 x VREF ISET THRESHOLD SKIP PG 12 1ms DELAY NEGATIVE CURRENT SENSING ZERO-CROSSING SENSING SCP 0.5V 100 SGND PGND SHUTDOWN 100k0.5% FIGURE 3. FUNCTIONAL BLOCK DIAGRAM Submit Document Feedback 3 FN8755.1 May 10, 2016 ISL8205M Pin Configuration ISL8205M (22 LD QFN) TOP VIEW PGND SYNC PG EN 15 FS 16 SS 17 COMP 18 FB 19 13 NC SW 11 10 9 12 m 7.5m mm 4.5 14 VIN 1 .8 5 20 21 PGND 22 mm SW 8 NC 7 NC SGND 1 2 3 FB VSENSE PGND 4 5 VSENSE NC 6 VOUT Pin Descriptions PIN NUMBER PIN NAME 1, 19 FB Voltage setting pin. Module output voltage is set by connecting a resistor, RSET, from this pin to SGND. A ceramic capacitor is also recommended to be placed in parallel with RSET from FB to SGND to ensure system stability in extreme operation conditions. Refer to Table 2 on page 14 for the resistor and capacitor values for various typical output voltage. 2, 4 VSENSE Voltage sense pin. Pins 2 and 4 are shorted together internally. An internal 51Ω resistor is connected from VOUT (Pad 6) to VSENSE for local output voltage feedback in case remote sensing is not present. To achieve best regulation performance at point of load, remote sensing trace needs to be directly routed to VSENSE. 3, 14 PGND Power ground. Power ground pins. Place output capacitor across VOUT and PGND close to Pin 3 since it is the return path for output current. 5, 7, 8, 10 NC 6 VOUT Power output. Power output of the module. Output capacitors should be placed across this pad and Pin 3 PGND and close to the module. Apply load between this pin and PGND Pin 3. Output voltage range: 0.6V to 5V. 9, 21 SW Switching node. These pins can be used to monitor switch node waveform to examine switching frequency. These pins can also be used for snubber connection. To improve system efficiency, it is recommended to connect Pins 9 and 21 with wide copper shape. However, avoid connecting SW to large copper shape to minimize radiated EMI noise. 11 VIN Power input. Input voltage range: 2.6V to 5.5V. Tie directly to the input rail. It is required to have a minimum total input capacitance of 44µF at module input. Add additional capacitance if possible. Use X5R or X7R ceramic capacitors. It is critical to place input ceramic capacitors as close as possible to module input. Refer to “PCB Layout Recommendations” on page 19 for more information. 12 PG Power-good pin. Power-good is an open-drain output. Use a 10kΩ to 100kΩ pull-up resistor connected between VIN and PG. During power-up or EN pin start-up, PG rising edge is delayed by 1ms upon output reached within regulation. 13 SYNC Synchronization pin. Mode selection pin. Connect to logic high or input voltage VIN for PWM mode. Connect to logic low or ground for PFM mode. Connect to an external clock for synchronization with the positive edge trigger. There is an internal 1MΩ pull-down resistor to prevent an undefined logic state in case SYNC pin is floating. Therefore, PFM mode is enabled when SYNC is left floating. 15 EN Power enable pin. Enables the output, when driven high. Shuts down the output and discharges the output capacitor when driven low. Typically tie to VIN pin directly. Do not leave this pin floating. Submit Document Feedback DESCRIPTION No connection pins. These pins have no connections inside. Leave these pins floating. 4 FN8755.1 May 10, 2016 ISL8205M Pin Descriptions (Continued) PIN NUMBER PIN NAME 16 FS Frequency selection pin. This pin sets the module switching frequency. The default frequency is 1.8MHz if FS is connected to VIN. In spite of default setting, a resistor, RFS, can be connected from the FS pin to SGND to adjust switching frequency ranging from 680kHz to 3.5MHz. 17 SS Soft-start pin. SS is used to adjust the soft-start time. Connect to SGND for internal 1ms rise time. Connect a capacitor from SS to SGND to adjust the soft-start time. The capacitor value should be less than 33nF to ensure proper operation. 18 COMP Compensation pin. COMP is the output of the voltage feedback error amplifier. For most applications, the internal compensation network can be used to stabilize the system and achieve optimal transient response. This can be done by directly connecting COMP to VIN. For other applications where external compensation is desired, COMP needs to be disconnected from VIN and tied to the external compensation network. Exposed Pad 20 PGND The exposed pad is connected internally to PGND. Solid connection should be made between Pad 20 and PGND plane on PCB. Place as many vias as possible under the pad connecting to PGND plane(s) for optimal electrical and thermal performance. Refer to “PCB Layout Recommendations” on page 19 for more information. 22 SGND Signal ground pin. Connect PCB SGND plane to this pin. Internally, this pin is single-point connected to module PGND. DESCRIPTION Ordering Information PART NUMBER (Notes 1, 2, 3) PART MARKING TEMP. RANGE (°C) TAPE AND REEL (UNITS) PACKAGE (RoHS Compliant) PKG. DWG. # ISL8205MIRZ-T ISL8205M -40 to +85 4k 22 Ld QFN L22.4.5x7.5 ISL8205MIRZ-T7A ISL8205M -40 to +85 250 22 Ld QFN L22.4.5x7.5 ISL8205MEVAL1Z Evaluation Board NOTES: 1. Please refer to TB347 for details on reel specifications. 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 3. For Moisture Sensitivity Level (MSL), please see product information page for ISL8205M. For more information on MSL, please see Technical Brief TB363. TABLE 1. KEY DIFFERENCES BETWEEN FAMILY OF PARTS PART NUMBER MAX OUTPUT CURRENT IOUT (DC) ISL8205M 5A ISL8203M 3A dual, 6A single ISL8202M 3A Submit Document Feedback 5 FN8755.1 May 10, 2016 ISL8205M Absolute Maximum Ratings Thermal Information (Reference to GND) Thermal Resistance (Typical) JA (°C/W) JC (°C/W) 22 Ld QFN (Notes 4, 5) . . . . . . . . . . . . . . . . 27.4 4.8 Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +125°C Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493 VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 5.8V (DC) or 7V (20ms) EN, FS, PG, SYNC, VFB . . . . . . . . . . . . . . . . . . . . . . . .-0.3V (DC) to VIN +0.3V SW . . . . . . . . . . . . . . . -1.5V (100ns)/-0.3V (DC) to 6.5V (DC) or 7V (20ms) COMP, SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 2.7V ESD Ratings Human Body Model (Tested per JS-001-2010) . . . . . . . . . . . . . . . . . . 2kV Charged Device Model (Tested per JS-002-2014) . . . . . . . . . . . . . . 750V Machine Model (Tested per JESD22-A115C) . . . . . . . . . . . . . . . . . . 200V Latch-Up (Tested per JESD-78D; Class 2, Level A) . . . . . 100mA at +85°C Recommended Operating Conditions VIN Supply Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6V to 5.5V VOUT Voltage Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.6V to 5V Load Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0A to 5A Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 4. JA is measured in free air with the component mounted on the ISL8205MEVAL1Z evaluation board with “direct attach” features. Refer to ISL8205MEVAL1Z User Guide for evaluation board details. Also see Tech Brief TB379 for general thermal metric information. 5. For JC, “case temperature” location is at the center of the exposed metal pad on the package underside. Electrical Specifications Unless otherwise noted, typical specifications are measured at VIN = 3.6V, VOUT = 1.2V, TA = +25°C. Boldface limits apply across the operating temperature range, -40°C to +85°C. PARAMETER SYMBOL VIN Undervoltage Lockout Threshold (Note 7) VUVLO TEST CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT 2.3 2.5 V INPUT SUPPLY Rising, no load Falling, no load Quiescent Supply Current IVIN Shutdown Supply Current ISD 2.10 2.25 V SYNC = GND, EN = high, IOUT = 0A 50 µA SYNC = VIN, fSW = 1.6MHz, EN = high, IOUT = 0A 18 24 mA SYNC = GND, VIN = 5.5V, EN = low 5 20 µA 5 A OUTPUT REGULATION Output Continuous Current Range IOUT(DC) Line Regulation ΔVOUT/VOUT VIN = 2.6V to 5.5V, VOUT = 1.2V, fSW = 1.6MHz, IOUT = 0A, PWM mode 0.65 % VIN = 2.6V to 5.5V, VOUT = 1.2V, fSW = 1.6MHz, IOUT = 5A, PWM mode 0.46 % VIN = 5V, VOUT = 1.2V, fSW = 1.6MHz, IOUT = 0A to 5A, PWM mode 0.6 % VIN = 5V, VOUT = 3.3V, fSW = 3MHz, IOUT = 0A to 5A, PWM mode 0.62 % Load Regulation Output Voltage Accuracy (Note 8) Over line/load/temperature range, PWM mode, VOUT = 1.2V to 3.3V Output Ripple Voltage ΔVOUT Reference Voltage (Note 7) Submit Document Feedback VREF 6 -1.6 1.6 % VIN = 5V, 2x22µF ceramic output capacitor, PWM mode IOUT = 0A, VOUT = 1.2V, fSW = 1.6MHz 11 mVP-P IOUT = 5A, VOUT = 1.2V, fSW = 1.6MHz 12 mVP-P IOUT = 0A, VOUT = 3.3V, fSW = 3MHz 8 mVP-P IOUT = 5A, VOUT = 3.3V, fSW = 3MHz 10 mVP-P 0.594 0.600 0.606 V FN8755.1 May 10, 2016 ISL8205M Electrical Specifications Unless otherwise noted, typical specifications are measured at VIN = 3.6V, VOUT = 1.2V, TA = +25°C. Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued) PARAMETER SYMBOL VFB Bias Current (Note 7) IFB Soft-Start Ramp Time Cycle (Note 7) Soft-Start Charging Current (Note 7) TEST CONDITIONS MIN (Note 6) VFB = 0.75V SS = GND ISS VSS = 0.1V 1.45 TYP MAX (Note 6) UNIT 0.1 µA 1 ms 1.85 2.25 µA DYNAMIC CHARACTERISTICS Voltage Change for Positive Load Step ΔVOUT-DP Current slew rate = 1A/µs, VIN = 5V, 2 x 22µF ceramic output capacitor VOUT = 1.2V, IOUT = 0A to 5A, fSW = 1.6MHz 120 mVP-P 69 mVP-P VOUT = 1.2V, IOUT = 5A to 0A, fSW = 1.6MHz 127 mVP-P VOUT = 3.3V, IOUT = 5A to 0A, fSW = 3MHz 79 mVP-P VOUT = 3.3V, IOUT = 0A to 5A, fSW = 3MHz Voltage Change for Negative Load Step ΔVOUT-DP Current slew rate = 1A/µs, VIN = 5V, 2 x 22µF ceramic output capacitor OVERCURRENT PROTECTION (Note 7) Current Limit Blanking Time tOCON 17 Clock pulses Overcurrent and Auto Restart Period tOCOFF 8 SS cycle Positive Peak Overcurrent Limit IPLIMIT 7.5 9 11 A ISKIP 1 1.3 1.8 A 300 mA Positive Skip Limit Zero Cross Threshold -300 Negative Current Limit INLIMIT -4.5 -3 -1.5 A Rt 0.119 0.140 0.166 Ω COMPENSATION (Note 7) Current Sensing Gain Error Amplifier Transconductance Internal compensation 60 µA/V External compensation 120 µA/V VIN = 5V, IO = 200mA 36 63 mΩ VIN = 2.7V, IO = 200mA 52 89 mΩ VIN = 5V, IO = 200mA 13 30 mΩ VIN = 2.7V, IO = 200mA 17 36 mΩ SWITCH NODE (Note 7) P-Channel MOSFET ON-Resistance N-Channel MOSFET ON-Resistance SW Maximum Duty Cycle 100 SW Minimum On-Time SYNC = High % 115 ns 2070 kHz OSCILLATOR Nominal Switching Frequency fSW SYNC = VIN 1835 fSW with RFS = 261kΩ 800 kHz fSW with RFS = 124kΩ 1600 kHz SYNC Logic LOW to HIGH Transition Range 0.70 SYNC Hysteresis 0.75 0.80 0.15 SYNC Logic Input Leakage Current Submit Document Feedback 1600 7 VIN = 3.6V 3.6 V V 5 µA FN8755.1 May 10, 2016 ISL8205M Electrical Specifications Unless otherwise noted, typical specifications are measured at VIN = 3.6V, VOUT = 1.2V, TA = +25°C. Boldface limits apply across the operating temperature range, -40°C to +85°C. (Continued) PARAMETER SYMBOL TEST CONDITIONS MIN (Note 6) TYP MAX (Note 6) UNIT 0.3 V 0.10 µA PG (Note 7) Output Low Voltage PG Pin Leakage Current PG = VIN 0.01 OVP PG Rising Threshold 0.80 UVP PG Rising Threshold 80 UVP PG Hysteresis 85 V 90 30 PGOOD Delay Time (Rising Edge) Time from VOUT reaching regulation 0.5 PGOOD Delay Time (Falling Edge) 1 % mV 2 7.5 ms µs EN (Note 7) Logic Input Low 0.4 Logic Input High 0.9 V V Enable Logic Input Leakage Current Pulled up to 3.6V 0.1 1 µA Thermal Shutdown Temperature Rising 150 °C Thermal Shutdown Hysteresis Temperature Falling 25 °C NOTES: 6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7. Parameters with MIN and/or MAX limits are 100% tested for internal IC prior to module assembly, unless otherwise specified. Temperature limits established by characterization and are not production tested. 8. A 0.1% tolerance resistor is used for RSET. Submit Document Feedback 8 FN8755.1 May 10, 2016 ISL8205M Typical Performance Characteristics Efficiency TA = +25°C. 100.0 100.0 95.0 95.0 EFFICIENCY (%) EFFICIENCY (%) 90.0 85.0 80.0 75.0 Vout=1V, Fsw=1.3MHz Vout=1.2V, Fsw=1.6MHz Vout=1.8V, Fsw=2MHz Vout=2.5V, Fsw=2.5MHz 70.0 65.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 85.0 80.0 Vout=1V, Fsw=1.3MHz Vout=1.2V, Fsw=1.6MHz Vout=1.8V, Fsw=2MHz Vout=2.5V, Fsw=2.5MHz Vout=3.3V, Fsw=3MHz 75.0 70.0 65.0 60.0 60.0 0 90.0 0 5 0.5 1 1.5 100.0 100.0 95.0 95.0 90.0 90.0 85.0 80.0 Vout=1V, Fsw=1.3MHz Vout=1.2V, Fsw=1.6MHz 70.0 Vout=1.8V, Fsw=2MHz 65.0 2.5 3 3.5 4 4.5 5 FIGURE 5. EFFICIENCY TA = +25°C, VIN = 5V PFM MODE EFFICIENCY (%) EFFICIENCY (%) FIGURE 4. EFFICIENCY TA = +25°C, VIN = 3.3V PFM MODE 75.0 2 LOAD CURRENT (A) LOAD CURRENT (A) 85.0 80.0 Vout=1V, Fsw=1.3MHz Vout=1.2V, Fsw=1.6MHz Vout=1.8V, Fsw=2MHz Vout=2.5V, Fsw=2.5MHz Vout=3.3V, Fsw=3MHz 75.0 70.0 65.0 Vout=2.5V, Fsw=2.5MHz 60.0 60.0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 LOAD CURRENT (A) FIGURE 6. EFFICIENCY TA = +25°C, VIN = 3.3V PWM MODE Output Voltage Ripple 1µs/DIV FIGURE 8. VIN = 5V, VOUT = 3.3V, IOUT = 0A, fSW = 3MHz, COUT = 2 x 22µF CERAMIC CAPACITORS 9 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 LOAD CURRENT (A) FIGURE 7. EFFICIENCY TA = +25°C, VIN = 5V PWM MODE TA = +25°C. 20mV/DIV Submit Document Feedback 5 20mV/DIV 1µs/DIV FIGURE 9. VIN = 5V, VOUT = 3.3V, IOUT = 5A, fSW = 3MHz, COUT = 2 x 22µF CERAMIC CAPACITORS FN8755.1 May 10, 2016 ISL8205M Typical Performance Characteristics (Continued) 20mV/DIV 20mV/DIV 1µs/DIV 1µs/DIV FIGURE 10. VIN = 5V, VOUT = 1.2V, IOUT = 0A, fSW = 1.6MHz, COUT = 2 x 22µF CERAMIC CAPACITORS FIGURE 11. VIN = 5V, VOUT = 1.2V, IOUT = 5A, fSW = 1.6MHz, COUT = 2 x 22µF CERAMIC CAPACITORS 20mV/DIV 20mV/DIV 1µs/DIV 1µs/DIV FIGURE 12. VIN = 3.3V, VOUT = 2.5V, IOUT = 0A, fSW = 2.5MHz, COUT = 2 x 22µF CERAMIC CAPACITORS Load Transient Response TA = +25°C, load current step slew rate: 1A/µs. IOUT 2A/DIV IOUT 2A/DIV VOUT 50mV/DIV VOUT 50mV/DIV 100µs/DIV 100µs/DIV FIGURE 14. VIN = 5V, VOUT = 1V, IOUT = 0 TO 5A, fSW = 1.3MHz, COUT = 2 x 22µF CERAMIC CAPACITORS Submit Document Feedback FIGURE 13. VIN = 3.3V, VOUT = 2.5V, IOUT = 5A, fSW = 2.5MHz, COUT = 2 x 22µF CERAMIC CAPACITORS 10 FIGURE 15. VIN = 5V, VOUT = 1.2V, IOUT = 0 TO 5A, fSW = 1.6MHz, COUT = 2 x 22µF CERAMIC CAPACITORS FN8755.1 May 10, 2016 ISL8205M Typical Performance Characteristics (Continued) IOUT 2A/DIV IOUT 2A/DIV VOUT 50mV/DIV VOUT 50mV/DIV 100µs/DIV 100µs/DIV FIGURE 16. VIN = 5V, VOUT = 2.5V, IOUT = 0 TO 5A, fSW = 2.5MHz, COUT = 2 x 22µF CERAMIC CAPACITORS Start-Up FIGURE 17. VIN = 5V, VOUT = 3.3V, IOUT = 0 TO 5A, fSW = 3MHz, COUT = 2 x 22µF CERAMIC CAPACITORS TA = +25°C, Resistor load is used in the test. SW 5V/DIV SW 5V/DIV VOUT 500mV/DIV VOUT 500mV/DIV IOUT 2A/DIV PGOOD 5V/DIV PGOOD 5V/DIV IOUT 1A/DIV 500µs/DIV 500µs/DIV FIGURE 18. SOFT-START WITH 0A LOAD PWM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 0A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POSCAP + 2 x 22µF CERAMIC CAPACITORS FIGURE 19. SOFT-START WITH 5A LOAD PWM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 5A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POSCAP + 2 x 22µF CERAMIC CAPACITORS SW 5V/DIV SW 5V/DIV VOUT 500mV/DIV VOUT 500mV/DIV PGOOD 5V/DIV IOUT 2A/DIV PGOOD 5V/DIV IOUT 2A/DIV 500µs/DIV FIGURE 20. SOFT-START WITH 0A LOAD PFM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 0A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POScap + 2 x 22µF CERAMIC CAPACITORS Submit Document Feedback 11 500µs/DIV FIGURE 21. SOFT-START WITH 5A LOAD PFM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 5A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POSCAP + 2 x 22µF CERAMIC CAPACITORS FN8755.1 May 10, 2016 ISL8205M Typical Performance Characteristics (Continued) SW 5V/DIV SW 5V/DIV VOUT 500mV/DIV VOUT 500mV/DIV PGOOD 5V/DIV PGOOD 5V/DIV IOUT 2A/DIV IOUT 2A/DIV 500µs/DIV 500µs/DIV FIGURE 23. PREBIAS SOFT-START WITH 0A LOAD PFM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 0A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POSCAP + 2 x 22µF CERAMIC CAPACITORS FIGURE 22. PREBIAS SOFT-START WITH 0A LOAD PWM MODE, VIN = 5V, VOUT = 1.2V, IOUT = 0A, COUT = 2 x 22µF CERAMIC CAPACITORS, CIN = 100µF POSCAP + 2 x 22µF CERAMIC CAPACITORS Short-Circuit Protection TA = +25°C, VIN = 5V, VOUT = 1.2V, CIN = 100µF POScap + 22µF ceramic capacitors, COUT = 2 x 22µF ceramic capacitors, output short-circuit during normal operation. SW 2V/DIV SW 2V/DIV VOUT 500mV/DIV VOUT 500mV/DIV IIN 2A/DIV IIN 2A/DIV PGOOD 2V/DIV PGOOD 2V/DIV 10µs/DIV 3.2ms/DIV FIGURE 24. OUTPUT SHORT-CIRCUIT PROTECTION FIGURE 25. OUTPUT SHORT-CIRCUIT PROTECTION, HICCUP MODE SW 2V/DIV VOUT 500mV/DIV IIN 2A/DIV PGOOD 2V/DIV 3.2ms/DIV FIGURE 26. OUTPUT SHORT-CIRCUIT RECOVER FROM HICCUP Submit Document Feedback 12 FN8755.1 May 10, 2016 ISL8205M Typical Performance Characteristics Overvoltage Protection (Continued) TA = +25°C, VIN = 5V, VOUT = 1.2V, CIN = 100µF POScap + 22µF ceramic capacitors, COUT = 2 x 22µF ceramic capacitors. SW 2V/DIV VOUT 500mV/DIV PGOOD 5V/DIV 500µs/DIV FIGURE 27. OUTPUT OVERVOLTAGE PROTECTION Power Loss TA = +25°C, CIN = 100µF POScap + 22µF ceramic capacitors, COUT = 2 x 22µF ceramic capacitors. 2.0 Vout=1.2V, Fsw=1.6MHz PWM 1.8 Vout=3.3V, Fsw=3MHz PWM 2.2 1.6 POWER LOSS (W) POWER LOSS (W) 2.2 1.4 1.2 1.0 0.8 0.6 2.0 Vout=1.2V, Fsw=1.6MHz PWM 1.8 Vout=2.5V, Fsw=2.5MHz PWM 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.4 0.2 0.2 0.0 0.0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 LOAD CURRENT (A) FIGURE 28. POWER LOSS AT VIN = 5V, TA = +25°C 2.5 3 3.5 4 4.5 5 FIGURE 29. POWER LOSS AT VIN = 3.3V, TA = +25°C All of the following curves were plotted at TJ = +120°C. 6.0 6.0 5.0 5.0 LOAD CURRENT (A) LOAD CURRENT (A) Derating 2 LOAD CURRENT (A) 4.0 3.0 2.0 200 LFM 1.0 4.0 3.0 2.0 200 LFM 1.0 0 LFM 0 LFM 0.0 0.0 0 10 20 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) FIGURE 30. DERATING CURVES AT VIN = 5V, VOUT = 1.2V Submit Document Feedback 13 0 10 20 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) FIGURE 31. DERATING CURVES AT VIN = 5V, VOUT = 3.3V FN8755.1 May 10, 2016 ISL8205M (Continued) 6.0 6.0 5.0 5.0 LOAD CURRENT (A) LOAD CURRENT (A) Typical Performance Characteristics 4.0 3.0 2.0 200 LFM 1.0 4.0 3.0 2.0 200 LFM 1.0 0 LFM 0 LFM 0.0 0.0 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) AMBIENT TEMPERATURE (°C) FIGURE 32. DERATING CURVES AT VIN = 3.3V, VOUT = 1.2V FIGURE 33. DERATING CURVES AT VIN = 3.3V, VOUT = 2.5V TABLE 2. ISL8205M DESIGN GUIDE MATRIX (REFER TO Figure 1) VIN (V) VOUT (V) fSW (MHz) CIN (µF) COUT (µF) RFS (kΩ) RSET (kΩ) CFF (pF) 5 0.6 0.8 2x22 1x100 261 OPEN 390 5 0.9 1.2 2x22 3x22 169 200 560 5 1 1.3 2x22 3x22 154 150 560 5 1.2 1.6 2x22 2x22 124 100 820 5 1.5 1.7 2x22 2x22 115 66.5 560 5 1.8 2 2x22 2x22 95.3 49.9 470 5 2.5 2.5 2x22 2x22 75 31.6 330 5 3.3 3 2x22 2x22 59 22.1 330 3.3 0.6 0.8 2x22 1x100 261 OPEN 390 3.3 0.9 1.2 2x22 3x22 169 200 560 3.3 1 1.3 2x22 3x22 154 150 560 3.3 1.2 1.6 2x22 2x22 124 100 820 3.3 1.5 1.7 2x22 2x22 115 66.5 560 3.3 1.8 2 2x22 2x22 95.3 49.9 470 3.3 2.5 2.5 2x22 2x22 75 31.6 330 PWM PFM PWM CLOCK 16 CYCLES PFM CURRENT LIMIT IL LOAD CURRENT 0 NOMINAL +1.2% VOUT NOMINAL NOMINAL -2.5% FIGURE 34. PFM MODE OPERATION WAVEFORMS Submit Document Feedback 14 FN8755.1 May 10, 2016 ISL8205M Functional Description The ISL8205M is a single channel 5A step-down high efficiency power module optimized for FPGA, DSP and Li-ion battery power devices. The module switches at 1.8MHz by default when the FS pin is shorted to VIN. The switching frequency is also adjustable from 680kHz to 3.5MHz through a resistor, RFS, from FS to SGND. To boost light-load efficiency, ISL8205M can also be configured to operate in PFM mode by pulling the SYNC pin to SGND. Peak current mode control scheme is implemented for fast transient response. By shorting the COMP pin to VIN, the module utilizes internal compensation to stabilize system and optimize transient response. Other excellent features include external synchronization, 100% duty cycle operation and very low quiescent current. PWM Control Scheme Pulling the SYNC pin high (>0.8V) forces the module into PWM mode, regardless of output current. The ISL8205M employs the current-mode Pulse-Width Modulation (PWM) control scheme for fast transient response and pulse-by-pulse current limiting. As shown in Figure 3 on page 3, the current loop consists of the oscillator, the PWM comparator, current sensing circuit and the slope compensation for the current loop stability. The slope compensation is 440mV/Ts, which changes with frequency. The gain for the current sensing circuit is typically 140mV/A. The control reference for the current loops comes from the Error Amplifier's (EAMP) output. The PWM operation is initialized by the clock from the oscillator. The P-channel MOSFET is turned on at the beginning of a PWM cycle and the current in the MOSFET starts to ramp-up. When the sum of the current amplifier, CSA and the slope compensation reaches the control reference of the current loop, the PWM comparator COMP sends a signal to the PWM logic to turn off the PFET and turn on the N-channel MOSFET. The NFET stays on until the end of the PWM cycle. Figure 35 shows the typical operating waveforms during the PWM operation. The dotted lines illustrate the sum of the slope compensation ramp and the Current-Sense Amplifier’s (CSA) output. start-up and will be discussed separately, please refer to “Soft Start-Up” on page 16. The error amplifier is a transconductance amplifier that converts the voltage error signal to a current output. When the COMP is tied to VIN, the voltage loop is internally compensated with the 55pF and 100kΩ RC network. PFM (SKIP) Mode Pulling the SYNC pin LOW (
ISL8205MEVAL1Z 价格&库存

很抱歉,暂时无法提供与“ISL8205MEVAL1Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货