0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
RF1S50N06LESM

RF1S50N06LESM

  • 厂商:

    INTERSIL(Intersil)

  • 封装:

  • 描述:

    RF1S50N06LESM - 50A, 60V, 0.022 Ohm, Logic Level N-Channel Power MOSFETs - Intersil Corporation

  • 数据手册
  • 价格&库存
RF1S50N06LESM 数据手册
RFG50N06LE, RFP50N06LE, RF1S50N06LESM Data Sheet October 1999 File Number 4072.3 50A, 60V, 0.022 Ohm, Logic Level N-Channel Power MOSFETs These N-Channel enhancement mode power MOSFETs are manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA49164. Features • 50A, 60V • rDS(ON) = 0.022Ω • Temperature Compensating PSPICE® Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information PART NUMBER RFG50N06LE RFP50N06LE RF1S50N06LESM PACKAGE TO-247 TO-220AB TO-263AB BRAND FG50N06L FP50N06L F50N06LE Symbol D G NOTE: When ordering, use the entire part number. Add the suffix 9A to obtain the TO-263AB variant in tape and reel, i.e. RF1S50N06LESM9A. S Packaging JEDEC STYLE TO-247 SOURCE DRAIN GATE DRAIN (BOTTOM SIDE METAL) DRAIN (FLANGE) JEDEC TO-220AB SOURCE DRAIN GATE JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFG50N06LE, RFP50N06LE, RF1S50N06LESM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified RFG50N06LE, RFP50N06LE, RF1S50N06LESM 60 60 ±10 50 Refer to Peak Current Curve Refer to UIS Curve 142 0.95 -55 to 175 300 260 UNITS V V V A Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg W W/oC oC oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications PARAMETER TC = 25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS IGSS rDS(ON) tON td(ON) tr td(OFF) tf tOFF Qg(TOT) Qg(5) Qg(TH) CISS COSS CRSS RθJC RθJA TO-247 TO-220AB and TO-263AB VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 48V, ID = 50A, RL = 0.96Ω Figures 21, 21 TEST CONDITIONS ID = 250µA, VGS = 0V, Figure 13 VGS = VDS, ID = 250µA, Figure 12 VDS = 55V, VGS = 0V VDS = 50V, VGS = 0V, TC = 150oC VGS = ±10V ID = 50A, VGS = 5V, Figure 11 VDD = 30V, ID = 50A, RL = 0.6Ω, VGS = 5V, RGS = 2.5Ω Figures 10, 18, 19 MIN 60 1 TYP 20 170 48 90 96 57 2.2 2100 600 230 MAX 3 1 250 10 0.022 230 165 120 70 2.7 1.05 30 80 UNITS V V µA µA µA Ω ns ns ns ns ns ns nC nC nC pF pF pF oC/W oC/W oC/W Drain to Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current Drain to Source On Resistance (Note 2) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 5V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient VDS = 25V, VGS = 0V, f = 1MHz Figure 14 Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Diode Reverse Recovery Time NOTES: 2. Pulse test: pulse width ≤ 80µs, duty cycle ≤ 2%. 3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3). SYMBOL VSD trr TEST CONDITIONS ISD = 45A ISD = 45A, dISD/dt = 100A/µs MIN TYP MAX 1.5 125 UNITS V ns 2 RFG50N06LE, RFP50N06LE, RF1S50N06LESM Typical Performance Curves 1.2 POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) Unless Otherwise Specified 60 50 ID, DRAIN CURRENT (A) 40 30 20 10 0 25 50 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 1 ZθJC, NORMALIZED THERMAL IMPEDANCE 0.5 0.2 0.1 0.1 0.05 0.02 0.01 SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 100 101 PDM t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 500 IDM, PEAK CURRENT CAPABILITY (A) TC = 25oC TJ = MAX RATED 1000 TC = 25oC VGS = 10V VGS = 5V 100 ID, DRAIN CURRENT (A) 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 200 THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I=I 25 10 10-5 150 10-1 100 101 10-4 10-3 10-2 t, PULSE WIDTH (s) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY 3 RFG50N06LE, RFP50N06LE, RF1S50N06LESM Typical Performance Curves 300 IAS, AVALANCHE CURRENT (A) Unless Otherwise Specified (Continued) 100 100 ID, DRAIN CURRENT (A) tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] If R ≠ 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R = 0 TC = 25oC VGS = 10V VGS = 5V VGS = 4V 75 STARTING TJ = 25oC 10 STARTING TJ = 150oC 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 3V 25 VGS = 2.5V 1 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100 0 0 1.5 3.0 4.5 VDS, DRAIN TO SOURCE VOLTAGE (V) 6.0 NOTE: Refer to Intersil Application Notes AN9321 and AN9322 FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING FIGURE 7. SATURATION CHARACTERISTICS IDS(ON), DRAIN TO SOURCE CURRENT (A) 100 VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 75 -55oC 80 25oC ON RESISTANCE (mΩ) 175oC rDS(ON), DRAIN TO SOURCE 60 ID = 12.5A ID = 50A ID = 100A 50 40 ID = 25A 20 VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 25 0 0 1.5 3.0 4.5 VGS, GATE TO SOURCE VOLTAGE (V) 6.0 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT 600 500 SWITCHING TIME (ns) 400 300 tf 200 100 0 td(ON) tr NORMALIZED DRAIN TO SOURCE ON RESISTANCE VDD = 30V, ID = 50A, RL= 0.6Ω 2.5 VGS = 5V, ID = 50A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.0 td(OFF) 1.5 1.0 0.5 0 10 20 30 40 50 -80 -40 0 40 80 120 160 200 RGS, GATE TO SOURCE RESISTANCE (Ω) TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 RFG50N06LE, RFP50N06LE, RF1S50N06LESM Typical Performance Curves 2.0 VGS = VDS, ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE Unless Otherwise Specified (Continued) 1.2 ID = 250µA 1.1 NORMALIZED GATE THRESHOLD VOLTAGE 1.5 1.0 1.0 0.5 0.9 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 0.8 -80 -40 160 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 200 FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 2500 CISS 2000 C, CAPACITANCE (pF) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VDS , DRAIN TO SOURCE VOLTAGE (V) 60 VDD = BVDSS 45 VDD = BVDSS 3.75 5.0 1500 RL =1.2Ω IG(REF) = 1.2mA VGS = 5V PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS I G ( REF ) I G ( REF ) 30 2.5 1000 COSS 500 CRSS 0 0 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) 25 15 1.25 0 0 20 --------------------I G ( ACT ) t, TIME (µs) 80 --------------------I G ( ACT ) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD + 0V IAS 0.01Ω 0 tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS 5 VGS , GATE TO SOURCE VOLTAGE (V) RFG50N06LE, RFP50N06LE, RF1S50N06LESM Test Circuits and Waveforms (Continued) tON VDS VDS VGS RL + tOFF td(OFF) tr tf 90% td(ON) 90% DUT RGS VGS - VDD 0 10% 90% 10% VGS 0 10% 50% PULSE WIDTH 50% FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS RL VDD VDS Qg(10) OR Qg(5) + Qg(TOT) VGS VGS = 20V VGS = 10V FOR L2 DEVICES VGS = 10V VGS = 5V FOR L2 DEVICES VDD DUT Ig(REF) VGS VGS = 2V 0 VGS = 1V FOR L2 DEVICES Qg(TH) Ig(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS 6 RFG50N06LE, RFP50N06LE, RF1S50N06LESM PSPICE Electrical Model SUBCKT 50N06LE 2 1 3 ; CA 12 8 3.73e-9 CB 15 14 3.73e-9 CIN 6 8 2.08e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD 10 rev 8/11/95 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 DRAIN 2 RSLC1 51 ESLC 50 RSLC2 5 51 ESG 6 8 + LGATE GATE 1 RLGATE CIN EVTEMP RGATE + 18 22 9 20 EVTHRES + 19 8 6 IT 8 17 1 LDRAIN 2 5 4.0e-9 LGATE 1 9 6.0e-9 LSOURCE 3 7 3.0e-9 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.75e-3 RGATE 9 20 1.0 RLDRAIN 2 5 40 RLGATE 1 9 60 RLSOURCE 3 7 30 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD MSTRO LSOURCE 8 RSOURCE RLSOURCE 7 SOURCE 3 S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B CB + EDS 5 8 14 IT 15 17 - - VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),4))} .MODEL DBODYMOD D (IS = 1.70e-12 RS = 3.20e-3 TRS1 = 1.75e-3 TRS2 = 1.75e-6 CJO = 2.55e-9 IKF = 13 XTI = 5.2 TT = 7.00e-8 M = 0.47) .MODEL DBREAKMOD D (RS = 1.70e-1 IKF = 0.1 TRS1 = 2.00e-3 TRS2 = 8.00e-7) .MODEL DPLCAPMOD D (CJO = 2.00e-9 IS = 1e-30 VJ = 1.1 M = 0.83 N = 10) .MODEL MMEDMOD NMOS (VTO = 2.00 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.0) .MODEL MSTROMOD NMOS (VTO = 2.42 KP = 128 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.13e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 6.00e-5) .MODEL RSLCMOD RES (TC1 = 2.00e-3 TC2 = 1.00e-6) .MODEL RSOURCEMOD RES (TC1 = 2.00e-3 TC2 =-1.00e-5) .MODEL RVTHRESMOD RES (TC1 = -2.50e-3 TC2 = -8.50e-6) .MODEL RVTEMPMOD RES (TC1 = -2.00e-3 TC2 = 5.00e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5.3 VOFF= -2.5) VON = -2.5 VOFF= -5.3) VON = -1.4 VOFF= 0.5) VON = 0.5 VOFF= -1.4) NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 + - EBREAK 11 7 17 18 66.5 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RDRAIN 21 16 DBODY MWEAK MMED RBREAK 18 RVTEMP 19 VBAT + 8 22 RVTHRES RFG50N06LE, RFP50N06LE, RF1S50N06LESM All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029 8
RF1S50N06LESM 价格&库存

很抱歉,暂时无法提供与“RF1S50N06LESM”相匹配的价格&库存,您可以联系我们找货

免费人工找货