DATASHEET
ZL6105
FN6906
Rev 6.0
Jun 22, 2021
Digital DC/DC Controller with Drivers and Auto Compensation
The ZL6105 is a digital power controller with integrated
MOSFET drivers. Auto compensation eliminates the need for
manual compensation design work. Adaptive performance
optimization algorithms improve power conversion efficiency.
Zilker Labs Digital-DC™ technology enables a blend of power
conversion performance and power management features.
Features
The ZL6105 is designed to be a flexible building block for DC
power and can be easily adapted to designs ranging from a
single-phase power supply operating from a 3.3V to a
multiphase current sharing supply operating from a 12V input.
The ZL6105 eliminates the need for complicated power supply
managers as well as numerous external discrete components.
• Adaptive Light Load Efficiency Optimization
The ZL6105 uses the I2C/SMBus™ with PMBus™ protocol for
communication with a host controller and the Digital-DC bus
for communication between Zilker Labs devices.
• Fast Load Transient Response
The ZL6105 is pin for pin compatible with the ZL2008. The
POLA VOUT table and compensation table have been removed.
A new single resistor VOUT table and the Auto Compensation
feature have been added.
Power Conversion
• Efficient Synchronous Buck Controller
• Auto Compensating PID Filter
• 3V to 14V Input Range
• 0.54V to 5.5V Output Range (with margin)
• ±1% Output Voltage Accuracy
• Internal 3A MOSFET Drivers
• Current Sharing and Phase Interleaving
• Snapshot™ Parameter Capture
• Pb-Free (RoHs Compliant)
Power Management
• Digital Soft-start/stop
Applications
• Power-Good/Enable
• Servers/Storage Equipment
• Voltage Tracking, Sequencing and Margining
• Telecom/Datacom Equipment
• Voltage, Current and Temperature Monitoring
• Power Supply Modules
• I2C/SMBus Interface, PMBus Compatible
• Output Voltage and Current Protection
• Internal Non-volatile Memory (NVM)
EN PG PH_EN FC ILIM CFG UVLO V25
100
VR VDD
VOUT = 3.3V
VOUT = 1.5V
95
LDO
POWER
MANAGEMENT
DDC
DRIVER
NONVOLATILE
MEMORY
SCL
SDA
SALRT
I2 C
PWM
CONTROLLER
MONITOR
ADC
CURRENT
SENSE
TEMP
SENSOR
BST
GH
SW
GL
VSEN+
VSENISENA
ISENB
Efficiency (%)
90
V
SS
VTRK
MGN
SYNC
85
80
75
70
65
60
50
SA
XTEMP
PGND SGND DGND
FIGURE 1. BLOCK DIAGRAM
FN6906 Rev 6.0
Jun 22, 2021
VIN = 12V
fSW = 400kHz
Circuit of Figure 3
4
55
0
2
4
6
8
10
12
14
16
18
20
Load Current (A)
FIGURE 2. EFFICIENCY vs LOAD CURRENT
Page 1 of 35
© 2011 Renesas Electronics
ZL6105
Table of Contents
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ZL6105 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital-DC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Conversion Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Multi-mode Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
10
11
11
Power Conversion Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Bias Regulators and Input Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-side Driver Boost Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Resistor Output Voltage Setting Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Start-up Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft-Start Delay and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-Good . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Train Component Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current Limit Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loop Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-linear Response (NLR) Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Efficiency Optimized Driver Dead-time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adaptive Diode Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
12
12
12
13
13
13
14
15
15
16
19
20
22
22
22
Power Management Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Pre-Bias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Overcurrent Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Margining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C/SMBus Communications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C/SMBus Device Address Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital-DC Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fault Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Monitoring Using the XTEMP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Current Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Adding/Dropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Monitoring via I2C/SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Volatile Memory and Device Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
23
23
24
24
24
25
25
26
26
27
28
28
28
28
31
31
31
32
License Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
FN6906 Rev 6.0
Jun 22, 2021
Page 2 of 35
ZL6105
Typical Application Circuit
The following application circuit represents a typical implementation of the ZL6105. For enable using the PMBus, it is recommended to
tie the enable pin (EN) to SGND.
VIN 12V
F.B.1
ENABLE
CIN
3 x 10 µF
25 V
4.7 µF
25 V
PHASE ENABLE
DDC Bus 3
POWER GOOD OUTPUT
CV25
10 µF
4V
CB
BST 26
3 SA0
GH 25
4 SA1
SW 24
ZL6105
5 ILIM
18 VSEN-
EPAD
SGND
17 VSEN+
ISENB 19
16 VRTK
9 SALRT
15 SS
ISENA 20
14 UVLO
8 SDA
13 V1
VR 21
12 V0
7 SCL
11 FC1
GL 22
VOUT
LOUT
2.2 µH
PGND 23
6 CFG0
10 FC0
1 µF
16 V
VDD 27
2 SYNC
I2C/SMBus 2
DB
BAT54
V25 28
DDC 30
XTEMP 29
MGN 31
EN 33
CFG1 32
PH_EN 34
PG 36
1 DGND
V25
CFG2 35
QH
COUT
2 x 47 µF
6.3 V
QL
470 µF
2.5 V
POS-CAP
CVR
4.7 µF
2*220 µF
6.3 V
100 m
RTN
6.3 V
Ground unification
Notes:
1. Ferrite bead is optional for input noise suppression
2. The I2C/SMBus requires pull-up resistors. Please refer to the I2C/SMBus specifications for more details.
3. The DDC bus requires a pull-up resistor. The resistance will vary based on the capacitive loading of the bus (and on the number of devices
connected). The 10 kΩ default value, assuming a maximum of 100 pF per device, provides the necessary 1 µs pull-up rise time. Please refer to the
DDC Bus section for more details.
FIGURE 3. 12V TO 1.8V/16A APPLICATION CIRCUIT
FN6906 Rev 6.0
Jun 22, 2021
Page 3 of 35
ZL6105
Input Voltage Bus
>
PG
EN
MGN
CFG(0,1,2)
ILIM
SS
V(0,1)
FC(0,1)
VDD
VR
VTRK
Power Management
SYNC
GEN
BST
NVM
MOSFET
Drivers
Digital
Compensator
D-PWM
SW
VOUT
NLR
PLL
SYNC
ADC
-
VSEN
+
REFCN
ISENB
ISENA
ADC
DAC
VDD
DDC
I2C
SALRT
SDA
SCL
SA(0,1)
Voltage
Sensor
MUX
ADC
VSEN+
VSENXTEMP
Communication
TEMP
Sensor
FIGURE 4. ZL6105 BLOCK DIAGRAM
Pin Configuration
28 V25
29 XTEMP
30 DDC
31 MGN
32 CFG1
33 EN
34 PH_EN
35 CFG2
36 PG
ZL6105
(36 LD QFN)
TOP VIEW
DGND 1
27 VDD
SYNC 2
26 BST
SA0 3
25 GH
SA1 4
24 SW
EXPOSED PADDLE*
ILIM 5
23 PGND
VSEN- 18
VSEN+ 17
19 ISENB
VTRK 16
SALRT 9
SS 15
20 ISENA
UVLO 14
SDA 8
V1 13
21 VR
V0 12
SCL 7
FC1 11
22 GL
FC0 10
CFG0 6
*CONNECT TO SGND
FN6906 Rev 6.0
Jun 22, 2021
Page 4 of 35
ZL6105
Pin Descriptions
PIN
LABEL
TYPE (Note 1)
DESCRIPTION
1
DGND
PWR
2
SYNC
I/O,M (Note 2)
3
SA0
I, M
Serial address select pins. Used to assign unique SMBus address to each IC or to enable certain
management features.
Current limit select. Sets the overcurrent threshold voltage for ISENA and ISENB.
Digital ground. Common return for digital signals. Connect to low impedance ground plane.
Clock synchronization input. Used to set switching frequency of internal clock or for synchronization to
external frequency reference.
4
SA1
5
ILIM
I, M
6
CFG0
I, M
Configuration pin. Used to setup current sharing and non-linear response.
7
SCL
I/O
Serial clock. Connect to external host and/or to other ZL devices.
8
SDA
I/O
Serial data. Connect to external host and/or to other ZL devices.
9
SALRT
O
Serial alert. Connect to external host if desired.
10
FC0
I
Loop compensation configuration pins.
11
FC1
I
Output voltage selection pins. Used to set VOUT set-point and VOUT max.
12
V0
13
V1
14
UVLO
I, M
Undervoltage lockout selection. Sets the minimum value for VDD voltage to enable VOUT.
15
SS
I, M
Soft start pin. Sets the output voltage ramp time during turn-on and turn-off. Sets the delay from when EN
is asserted until the output voltage starts to ramp.
16
VTRK
I
17
VSEN+
I
Output voltage feedback. Connect to output regulation point.
18
VSEN-
I
Output voltage feedback. Connect to load return or ground regulation point.
19
ISENB
I
Differential voltage input for current limit.
20
ISENA
I
Differential voltage input for current limit. High voltage tolerant.
21
VR
PWR
22
GL
O
23
PGND
PWR
Power ground. Connect to low impedance ground plane.
24
SW
PWR
Drive train switch node.
Tracking sense input. Used to track an external voltage source.
Internal 5V reference used to power internal drivers.
Low side FET gate drive.
25
GH
O
26
BST
PWR
27
VDD (Note 3)
PWR
Supply voltage.
28
V25
PWR
Internal 2.5V reference used to power internal circuitry.
29
XTEMP
I
30
DDC
I/O
31
MGN
I
32
CFG1
I, M
High-side FET gate drive.
High-side drive boost voltage.
External temperature sensor input. Connect to external 2N3904 diode connected transistor.
Digital-DC Bus. (Open Drain) Interoperability between Zilker Labs devices.
Signal that enables margining of output voltage.
Configuration pin. Used to setup clock synchronization and sequencing.
33
EN
I
Enable input (active high). Pull-up to enable PWM switching and pull-down to disable PWM switching.
34
PH_EN
I
Phase enable input (active high). Pull-up to enable phase and pull-down to disable phase for current
sharing.
35
CFG2
I, M
36
PG
O
ePad
SGND
PWR
Configuration pin. Sets the phase offset (single-phase) or current sharing group position (multi-phase).
Power-good output.
Exposed thermal pad. Common return for analog signals; internal connection to SGND. Connect to low
impedance ground plane.
NOTES:
1. I = Input, O = Output, PWR = Power or Ground. M = Multi-mode pin dependents. (Refer to “Multi-mode Pins” on page 11).
2. The SYNC pin can be used as a logic pin, a clock input or a clock output.
3. VDD is measured internally and the value is used to modify the PWM loop gain.
FN6906 Rev 6.0
Jun 22, 2021
Page 5 of 35
ZL6105
Ordering Information
PART NUMBER
(Notes 5, 6)
ZL6105ALAF
PART
MARKING
PACKAGE
DESCRIPTION
(RoHS Compliant)
PKG.
DWG. #
6105
36 Ld QFN
L36.6x6A
ZL6105ALAFT
ZL6105ALAFTK
CARRIER TYPE
(Note 4)
TEMP. RANGE
Tube
-40 to +85°C
Reel, 100
Reel, 1k
NOTES:
4. See TB347 for details about reel specifications.
5. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
6. For Moisture Sensitivity Level (MSL), see the ZL6105 device information page. For more information on MSL, see TB363.
FN6906 Rev 6.0
Jun 22, 2021
Page 6 of 35
ZL6105
Absolute Maximum Ratings (Note 7)
Thermal Information
DC Supply Voltage for VDD Pin . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 17V
MOSFET Drive Reference for VR Pin @ 120mA . . . . . . . . . . . -0.3V to 6.5V
2.5V Logic Reference for V25 Pin @ 120mA . . . . . . . . . . . . . . . -0.3V to 3V
Logic I/O Voltage for CFG(0,1,2), DDC, EN,
FC(0, 1), ILIM, MGN, PG, PH_EN, SA(0, 1), SALRT,
SCL, SDA, SS, SYNC, UVLO, V(0,1) Pins . . . . . . . . . . . . . . . . -0.3V to 6.5V
Analog Input Voltages for ISENB, VSEN, VTRK,
XTEMP Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 6.5V
Analog Input Voltages for ISENA Pin . . . . . . . . . . . . . . . . . . . . . -1.5V to 30V
High Side Supply Voltage for BST Pin . . . . . . . . . . . . . . . . . . . . -0.3V to 30V
Boost to Switch Voltage for BST - SW Pins . . . . . . . . . . . . . . . . . -0.3V to 8V
High Side Drive Voltage for GH Pin
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(VSW - 0.3V) to (VBST + 0.3V)
Low Side Drive Voltage for GL Pin . . . . . . . . . . (PGND - 0.3V) to VR + 0.3V
Switch Node for SW Pin
Continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(PGND - 0.3V) to 30V
Transient ( 6V, IVR < 20mA
4.5
5.2
5.5
V
V25 Reference Output Voltage
VR > 3V, IV25 < 20mA
2.25
2.5
2.75
V
0.6
–
5.0
V
Output Characteristics
Output Voltage Adjustment Range (Note 12)
VIN > VOUT
Output Voltage Set-point Resolution
Set using resistors
–
10
–
mV
Set using I2C/SMBus
–
±0.025
–
% FS
(Note 13)
Includes line, load, temp
-1
–
1
%
Output Voltage Accuracy (Note 14)
Vsen Input Bias Current
VSEN = 5.5V
–
110
200
µA
Current Sense Differential Input
Voltage (Ground Referenced)
VISENA -VISENB
-100
–
100
mV
Current Sense Differential Input Voltage (Vout
Referenced, Vout < 4.0V)
VISENA -VISENB
-50
–
50
mV
Current Sense Input Bias Current
Ground referenced
-100
–
100
µA
FN6906 Rev 6.0
Jun 22, 2021
Page 7 of 35
ZL6105
Electrical Specifications
VDD = 12V, TA = -40°C to +85°C unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply over
the operating temperature range, -40°C to +85°C. (Continued)
PARAMETER
CONDITIONS
MIN
(Note 19)
TYP
MAX
(Note 19)
UNIT
–
1
µA
Current Sense Input Bias Current
(Vout Referenced, Vout < 4.0V)
ISENA
-1
ISENB
-100
–
100
µA
Soft-start Delay Duration Range
Set using SS pin or resistor (Note 15)
5
–
30
ms
Set using I2C/SMBus (Note 15)
Soft-start Delay Duration Accuracy
Soft-start Ramp Duration Range
0.005
–
500
s
Turn-on delay (Note 15)
-
-0.25/+4
-
ms
Turn-off delay (Note 15)
-
-0.25/+4
-
ms
Set using SS pin or resistor
2
–
20
ms
Set using I2C
0
–
200
ms
–
100
–
µs
-250
–
250
nA
–
–
0.8
V
–
1.4
–
V
Soft-start Ramp Duration Accuracy
Logic Input/Output Characteristics
Logic Input Leakage Current
EN, SCL, SDA pins
Logic Input Low, VIL
Logic Input OPEN (N/C)
Multi-mode logic pins
2.0
–
–
V
Logic Output Low, VOL
IOL 4mA (Note 20)
–
–
0.4
V
Logic Output High, VOH
IOH -2mA (Note 20)
2.25
–
–
V
200
–
1400
kHz
Logic Input High, VIH
Oscillator and Switching Characteristics
Switching Frequency Range
Switching Frequency Set-point Accuracy
Predefined settings (See Table 11)
-5
–
5
%
Maximum Pwm Duty Cycle
Factory default
95
–
–
%
150
–
–
ns
-13
–
13
%
Minimum Sync Pulse Width
Input Clock Frequency Drift Tolerance
External clock source
Gate Drivers
–
4.5
–
V
High-side Driver Peak Gate Drive
Current (Pull-down)
High-side driver voltage (VBST -VSW)
(VBST -VSW) = 4.5V
2
3
–
A
High-side Driver Pull-up Resistance
(VBST -VSW) = 4.5V, (VBST -VGH) = 50mV
–
0.8
2
High-side Driver Pull-down Resistance
(VBST -VSW) = 4.5V, (VGH -VSW) = 50mV
–
0.5
2
Low-side Driver Peak Gate
Drive Current (Pull-up)
VR = 5V
–
2.5
–
A
Low-side Driver Peak Gate
Drive Current (Pull-down)
VR = 5V
–
1.8
–
A
Low-side Driver Pull-up Resistance
VR = 5V, (VR -VGL) = 50mV
–
1.2
2
Low-side Driver Pull-down Resistance
VR = 5V, (VGL -PGND) = 50mV
–
0.5
2
Gh Rise and Fall Time
(VBST -VSW) = 4.5V, CLOAD = 2.2nF
–
5
20
ns
Gl Rise and Fall Time
VR = 5V, CLOAD = 2.2nF
–
5
20
ns
Switching Timing
Tracking
VTRK Input Bias Current
VTRK = 5.5V
VTRK Tracking Ramp Accuracy
100% Tracking, VOUT -VTRK, no prebias
–
110
200
µA
-100
–
+ 100
mV
VTRK Regulation Accuracy
100% Tracking, VOUT -VTRK
-1
–
1
%
Configurable via I2C/SMBus
2.85
–
16
V
-150
–
150
mV
–
3
–
%
0
–
100
%
Fault Protection Characteristics
UVLO Threshold Range
UVLO Set-point Accuracy
UVLO Hysteresis
Factory default
Configurable via
FN6906 Rev 6.0
Jun 22, 2021
I2C/SMBus
Page 8 of 35
ZL6105
Electrical Specifications
VDD = 12V, TA = -40°C to +85°C unless otherwise noted. Typical values are at TA = +25°C. Boldface limits apply over
the operating temperature range, -40°C to +85°C. (Continued)
PARAMETER
CONDITIONS
UVLO Delay
MIN
(Note 19)
TYP
MAX
(Note 19)
UNIT
–
2.5
-
µs
Power Good VOUT Threshold
Factory default
–
90
–
% VOUT
Power Good VOUT Hysteresis
Factory default
–
5
–
%
Power Good Delay
Using pin-strap or resistor (Note 16)
0
–
200
ms
Configurable via I2C/SMBus
0
–
500
s
Factory default
–
85
–
% VOUT
Configurable via I2C/SMBus
0
–
110
% VOUT
Factory default
–
115
–
% VOUT
0
–
115
% VOUT
–
5
–
% VOUT
–
16
–
µs
VSEN Undervoltage Threshold
VSEN Overvoltage Threshold
Configurable via
I2C/SMBus
VSEN Undervoltage Hysteresis
VSEN Undervoltage/Overvoltage
Fault Response Time
Factory default
I2C/SMBus
5
–
60
µs
Current Limit Set-point Accuracy
(VOUT Referenced)
–
±10
–
% FS
(Note 17)
Current Limit Set-point Accuracy
(Ground Referenced)
–
±10
–
% FS
(Note 17)
Factory default
–
10
–
tSW
(Note 18)
Configurable via I2C/SMBus
1
–
32
tSW
(Note 18)
Current Limit Protection Delay
Configurable via
Temperature Compensation of
Current Limit Protection Threshold
Factory default
Thermal Protection Threshold
(Junction Temperature)
Factory default
Configurable via I2C/SMBus
Configurable via I2C/SMBus
Thermal Protection Hysteresis
4400
100
ppm/°C
12700
–
125
–
°C
-40
–
125
°C
–
15
–
°C
NOTES:
12. Does not include margin limits.
13. Percentage of Full Scale (FS) with temperature compensation applied.
14. VOUT measured at the termination of the VSEN+ and VSEN-sense points.
15. The device requires a minimum delay period following an enable signal and prior to ramping its output as described in “Soft-Start Delay and Ramp
Times” on page 14.
16. Factory default Power Good delay is set to the same value as the soft-start ramp time. Refer to “Soft-Start Delay and Ramp Times” on page 14 for
further restrictions on PG Delay.
17. Percentage of Full Scale (FS) with temperature compensation applied
18. tSW = 1/fSW, where fSW is the switching frequency.
19. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
20. Nominal capacitance of logic pins is 5pF.
FN6906 Rev 6.0
Jun 22, 2021
Page 9 of 35
ZL6105
The ZL6105 is an innovative mixed-signal power conversion and
power management IC based on Zilker Labs patented Digital-DC
technology that provides an integrated, high performance
step-down converter for a wide variety of power supply
applications.
Today’s embedded power systems are typically designed for optimal
efficiency at maximum load, reducing the peak thermal stress by
limiting the total thermal dissipation inside the system.
Unfortunately, many of these systems are often operated at load
levels far below the peak where the power system has been
optimized, resulting in reduced efficiency. While this may not cause
thermal stress to occur, it does contribute to higher electricity usage
and results in higher overall system operating costs.
Zilker Labs’ efficiency-adaptive ZL6105 DC/DC controller helps
mitigate this scenario by enabling the power converter to
automatically change their operating state to increase efficiency
and overall performance with little or no user interaction needed.
Auto compensation is available to eliminate the need for manual
compensation of the PID filter.
Its unique PWM loop utilizes an ideal mix of analog and digital
blocks to enable precise control of the entire power conversion
process with no software required, resulting in a very flexible
device that is also very easy to use. An extensive set of power
management functions are fully integrated and can be
configured using simple pin connections. The user configuration
can be saved in an internal non-volatile memory (NVM).
Additionally, all functions can be configured and monitored using
the SMBus hardware interface using standard PMBus
commands, allowing ultimate flexibility.
Once enabled, the ZL6105 is immediately ready to regulate
power and perform power management tasks with no
programming required. Advanced configuration options and
real-time configuration changes are available via the I2C/SMBus
interface if desired and continuous monitoring of multiple
operating parameters is possible with minimal interaction from a
host controller. Integrated sub-regulation circuitry enables single
supply operation from any supply between 3V and 14V with no
secondary bias supplies needed.
The ZL6105 can be configured by simply connecting its pins
according to the tables provided in the following sections.
Additionally, a comprehensive set of development tools and
application notes are available to help simplify the design
process. An evaluation board is also available to help the user
become familiar with the device. This board can be evaluated as
a standalone platform using pin configuration settings. A
Windows™ based GUI is also provided to enable full configuration
and monitoring capability via the I2C/SMBus interface using an
available computer and the included USB cable.
Application notes are available to assist the user in designing to
specific application demands. Please visit ZL6105 to access the
most up-to-date documentation.
FN6906 Rev 6.0
Jun 22, 2021
The ZL6105 operates as a voltage-mode, synchronous buck
converter with a selectable constant frequency pulse width
modulator (PWM) control scheme that uses external MOSFETs,
capacitors, and an inductor to perform power conversion.
VIN
DB
VR
QH
GH
ZL
CIN
BST
SW
CB
VOUT
C OUT
QL
GL
FIGURE 5. SYNCHRONOUS BUCK CONVERTER
Figure 5 illustrates the basic synchronous buck converter
topology showing the primary power train components. This
converter is also called a step-down converter, as the output
voltage must always be lower than the input voltage. In its most
simple configuration, the ZL6105 requires two external
N-channel power MOSFETs, one for the top control MOSFET (QH)
and one for the bottom synchronous MOSFET (QL). The amount
of time that QH is on as a fraction of the total switching period is
known as the duty cycle D, which is described by Equation 1:
D
VOUT
VIN
(EQ. 1)
During time D, QH is on and VIN – VOUT is applied across the
inductor. The current ramps up as shown in Figure 6.
When QH turns off (time 1-D), the current flowing in the inductor
must continue to flow from the ground up through QL, during
which the current ramps down. Since the output capacitor COUT
exhibits a low impedance at the switching frequency, the AC
component of the inductor current is filtered from the output
voltage so the load sees nearly a DC voltage.
VIN - VOUT
ILPK
IO
0
-VOUT
CURRENT (A)
Digital-DC Architecture
Power Conversion Overview
VOLTAGE (V)
ZL6105 Overview
ILV
D
1-D
TIME
FIGURE 6. INDUCTOR WAVEFORM
Typically, buck converters specify a maximum duty cycle that
effectively limits the maximum output voltage that can be realized
for a given input voltage. This duty cycle limit ensures that the
low-side MOSFET is allowed to turn on for a minimum amount of
time during each switching cycle, which enables the bootstrap
capacitor (CB in Figure 6) to be charged up and provide adequate
Page 10 of 35
ZL6105
gate drive voltage for the high-side MOSFET. See “High-side Driver
Boost Circuit” on page 12 for more details.
In general, the size of components L1 and COUT as well as the
overall efficiency of the circuit are inversely proportional to the
switching frequency, fSW. Therefore, the highest efficiency circuit
may be realized by switching the MOSFETs at the lowest possible
frequency; however, this will result in the largest component size.
Conversely, the smallest possible footprint may be realized by
switching at the fastest possible frequency but this gives a
somewhat lower efficiency. Each user should determine the
optimal combination of size and efficiency when determining the
switching frequency for each application.
The block diagram for the ZL6105 is illustrated in Figure 4. In this
circuit, the target output voltage is regulated by connecting the
differential VSEN pins directly to the output regulation point. The
VSEN signal is then compared to a reference voltage that has
been set to the desired output voltage level by the user. The error
signal derived from this comparison is converted to a digital
value with a low-resolution, analog to digital (A/D) converter. The
digital signal is applied to an adjustable digital compensation
filter, and the compensated signal is used to derive the
appropriate PWM duty cycle for driving the external MOSFETs in a
way that produces the desired output.
The ZL6105 has several features to improve the power
conversion efficiency. A non-linear response (NLR) loop improves
the response time and reduces the output deviation as a result of
a load transient. The ZL6105 monitors the power converter’s
operating conditions and continuously adjusts the turn-on and
turn-off timing of the high-side and low-side MOSFETs to optimize
the overall efficiency of the power supply. Adaptive performance
optimization algorithms such as dead-time control, diode
emulation, and frequency control are available to provide greater
efficiency improvement.
Power Management Overview
The ZL6105 incorporates a wide range of configurable power
management features that are simple to implement with no
external components. Additionally, the ZL6105 includes circuit
protection features that continuously safeguard the device and
load from damage due to unexpected system faults. The ZL6105
can continuously monitor input voltage, output voltage/current,
internal temperature, and the temperature of an external
thermal diode. A Power-Good output signal is also included to
enable power-on reset functionality for an external processor.
All power management functions can be configured using either
pin configuration techniques (see Figure 8) or via the I2C/SMBus
interface. Monitoring parameters can also be pre-configured to
provide alerts for specific conditions. See Application Note
AN2033 for more details on SMBus monitoring.
Multi-mode Pins
PIN-STRAP SETTINGS
This is the simplest implementation method, as no external
components are required. Using this method, each pin can take
on one of three possible states: LOW, OPEN, or HIGH. These pins
can be connected to the V25 pin for logic HIGH settings as this
pin provides a regulated voltage higher than 2V. Using a single
pin, one of three settings can be selected. Using two pins, one of
nine settings can be selected.
TABLE 1. MULTI-MODE PIN CONFIGURATION
PIN TIED TO
VALUE
LOW
(Logic LOW)
< 0.8 VDC
OPEN
(N/C)
No connection
HIGH
(Logic HIGH)
> 2.0 VDC
Resistor to SGND
Set by resistor value
Logic
high
Open
ZL
ZL
Multi- mode Pin
Multi- mode Pin
RSET
Logic
low
Pin-strap
Settings
Resistor
Settings
FIGURE 7. PIN-STRAP AND RESISTOR SETTING EXAMPLES
RESISTOR SETTINGS
This method allows a greater range of adjustability when connecting
a finite value resistor (in a specified range) between the multi-mode
pin and SGND. Standard 1% resistor values are used, and only every
fourth E96 resistor value is used so the device can reliably recognize
the value of resistance connected to the pin while eliminating the
error associated with the resistor accuracy. Up to 31 unique
selections are available using a single resistor.
I2C/SMBUS METHOD
Almost any ZL6105 function can be configured via the I2C/SMBus
interface using standard PMBus commands. Additionally, any value
that has been configured using the pin-strap or resistor setting
methods can also be re-configured and/or verified via the
I2C/SMBus. See Application Note AN2033 for more details.
The SMBus device address and VOUT_MAX are the only
parameters that must be set by external pins. All other device
parameters can be set via the I2C/SMBus. The device address is
set using the SA0 and SA1 pins. VOUT_MAX is determined as
10% greater than the voltage set by the V0 and V1 pins.
In order to simplify circuit design, the ZL6105 incorporates patented
multi-mode pins that allow the user to easily configure many
aspects of the device with no programming. Most power
management features can be configured using these pins. The
multi-mode pins can respond to four different connections as shown
in Table 1. These pins are sampled when power is applied or by
issuing a PMBus Restore command (see Application Note AN2033).
FN6906 Rev 6.0
Jun 22, 2021
Page 11 of 35
ZL6105
Power Conversion Functional
Description
Internal Bias Regulators and Input Supply
Connections
The ZL6105 employs two internal low dropout (LDO) regulators to
supply bias voltages for internal circuitry, allowing it to operate
from a single input supply. The internal bias regulators are as
indicated in the following:
VR - The VR LDO provides a regulated 5V bias supply for the
MOSFET driver circuits. It is powered from the VDD pin. A 4.7µF
filter capacitor is required at the VR pin.
V25 - The V25 LDO provides a regulated 2.5V bias supply for
the main controller circuitry. It is powered from an internal 5V
node. A 10µF filter capacitor is required at the V25 pin.
When the input supply (VDD) is higher than 5.5V, the VR pin should
not be connected to any other pins. It should only have a filter
capacitor attached as shown in Figure 8. Due to the dropout voltage
associated with the VR bias regulator, the VDD pin must be
connected to the VR pin for designs operating from a supply below
5.5V. Figure 8 illustrates the required connections for both cases.
VIN
VIN
VDD
ZL
VDD
ZL
VR
TABLE 2. OUTPUT VOLTAGE PIN-STRAP SETTINGS
V0
V1
LOW
OPEN
HIGH
LOW
0.6V
0.8V
1.0V
OPEN
1.2V
1.5V
1.8V
HIGH
2.5V
3.3V
5.0V
The resistor setting method can be used to set the output voltage
to levels not available in Table 2. Resistors R0 and R1 are
selected to produce a specific voltage between 0.6V and 5.0V in
10mV steps. Resistor R1 provides a coarse setting and resistor
R0 provides a fine adjustment, thus eliminating the additional
errors associated with using two 1% resistors (this typically adds
approximately 1.4% error).
To set VOUT using resistors, follow the steps indicated to calculate
an index value and then use Table 3 to select the resistor that
corresponds to the calculated index value as follows:
1. Calculate Index1:
(EQ. 2)
Index1 = 4 x VOUT (VOUT in 10mV steps)
2. Round the result down to the nearest whole number.
3. Select the value of R1 from Table 3 using the Index1 rounded
value from step 2.
4. Calculate Index0:
(EQ. 3)
Index0 = 100 x VOUT - (25 x Index1)
VR
5. Select the value of R0 from Table 3 using the Index0 value
from step 4.
3V ≤VIN ≤ 5.5V
5.5V