Huajing Discrete Devices
Silicon
N-Channel
R
○
Power MOSFET
CS1N60 A4H
General Description:
VDSS
600
V
ID
0.8
A
VDMOSFETs, is obtained by the self-aligned planar Technology
PD (TC=25℃)
25
W
which reduce the conduction loss, improve switching
RDS(ON)Typ
11
Ω
CS1N60
A4H,
the
silicon
N-channel
Enhanced
performance and enhance the avalanche energy. The
transistor can be used in various power switching circuit for system
miniaturization and higher efficiency. The package form is TO-252,
which accords with the RoHS standard.
Features:
l Fast Switching
l Low ON Resistance(Rdson≤15Ω)
l Low Gate Charge
(Typical Data:4nC)
l Low Reverse transfer capacitances(Typical:2.6pF)
l 100% Single Pulse avalanche energy Test
Applications:
Power switch circuit of adaptor and charger.
Absolute(Tc= 25℃ unless otherwise specified):
Symbol
Parameter
VDSS
ID
a1
IDM
VGS
EAR
IAR
Units
Drain-to-Source Voltage
600
V
Continuous Drain Current
0.8
A
Continuous Drain Current TC = 100 °C
0.6
A
Pulsed Drain Current
3.2
A
±30
V
Single Pulse Avalanche Energy
20
mJ
Avalanche Energy ,Repetitive
6
mJ
1.1
A
5
V/ns
Power Dissipation
25
W
Derating Factor above 25°C
0.2
W/℃
150,–55 to 150
℃
300
℃
Gate-to-Source Voltage
a2
EAS
Rating
a1
a1
dv/dt
Avalanche Current
a3
PD
Peak Diode Recovery dv/dt
TJ,Tstg
Operating Junction and Storage Temperature Range
TL
MaximumTemperature for Soldering
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D .
Page 1 of 10
2012
Huajing Discrete Devices
CS1N60 A4H
R
○
Electrical Characteristics(Tc= 25℃ unless otherwise specified):
OFF Characteristics
Symbol
Parameter
VDSS
Drain to Source Breakdown Voltage
V GS =0V, I D =250µA
ΔBVDSS/ΔTJ
Bvdss Temperature Coefficient
ID=250uA,Reference25℃
Drain to Source Leakage Current
V DS = 600V, VGS = 0V,
T a = 25℃
V DS =480V, V GS = 0V,
IDSS
Rating
Test Conditions
Units
Min.
Typ.
Max.
600
--
--
V
--
0.55
--
V/℃
--
--
1
T a = 125℃
--
--
100
µA
IGSS(F)
Gate to Source Forward Leakage
V GS =+30V
--
--
100
nA
IGSS(R)
Gate to Source Reverse Leakage
V GS =-30V
--
--
-100
nA
ON Characteristics
Symbol
Parameter
RDS(ON)
Drain-to-Source On-Resistance
V GS =10V,I D =0.4A
VGS(TH)
Gate Threshold Voltage
V DS = V GS , I D = 250µA
Rating
Test Conditions
Units
Min.
Typ.
Max.
--
11
15
Ω
4.0
V
2.0
Pulse width tp≤380µs,δ≤2%
Dynamic Characteristics
Symbol
Parameter
gfs
Forward Transconductance
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rating
Test Conditions
V DS =15V, I D =0.8A
V GS = 0V V DS = 25V
f = 1.0MHz
Min.
Typ.
Max.
--
0.9
--
--
92
--
--
10.7
--
--
2.6
--
Units
S
pF
Resistive Switching Characteristics
Symbol
Parameter
td(ON)
Turn-on Delay Time
tr
Rise Time
td(OFF)
Turn-Off Delay Time
tf
Fall Time
Qg
Total Gate Charge
Qgs
Gate to Source Charge
Qgd
Gate to Drain (“Miller”)Charge
Rating
Test Conditions
I D =0.8A V DD = 300V
V GS = 10V RG = 25Ω
I D =0.8A V DD =300V
V GS = 10V
Min.
Typ.
Max.
--
6.3
--
--
6.3
--
--
21
--
--
15
--
--
4
--
0.7
--
2.1
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 2 o f 1 0
Units
ns
nC
2012
Huajing Discrete Devices
CS1N60 A4H
R
○
Source-Drain Diode Characteristics
Symbol
Parameter
IS
Rating
Test Conditions
Units
Min.
Typ.
Max.
Continuous Source Current (Body Diode)
--
--
0.8
A
ISM
Maximum Pulsed Current (Body Diode)
--
--
3.2
A
VSD
Diode Forward Voltage
I S =0.8A,V GS =0V
--
--
1.5
V
trr
Reverse Recovery Time
I S =0.8A,T j = 25°C
--
400
ns
Reverse Recovery Charge
dI F/dt=100A/us,
V GS =0V
--
739
nC
Qrr
Pulse width tp≤380µs,δ≤2%
Symbol
Parameter
Typ.
Rθ JC
Junction-to-Case
5.0
℃/W
Rθ JA
Junction-to-Ambient
62
℃/W
Units
a1
:Repetitive rating; pulse width limited by maximum junction temperature
:L=10.0mH, ID=2A, Start TJ=25℃
a3
:ISD =0.8A,di/dt ≤100A/us,VDD≤BVDS, Start TJ=25℃
a2
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 3 o f 1 0
2012
Huajing Discrete Devices
CS1N60 A4H
R
○
Characteristics Curve:
Id,Drian current,Amps
1
Pd , Power Dissipation ,Watts
10
10μs
10ms
0 .1
100ms
0 .0 1
OPERATION IN THIS AREA
MAY BE LIMITED BY RDS(ON)
DC
TJ=150℃
TC=25℃
Single Pulse
0 .0 0 1
1
10
100
30
20
10
0
25
0
1000
V d s,D ra in -to -s o u rc e V o lta g e ,V o lts
Figure 1 Maximun Forward Bias Safe Operating Area
50
75
100
Tc , Case Temperature , C
150
Figure 2 Maximun Power Dissipation vs Case Temperature
1.6
1
VGS=10V
Id,Drain Source,Volts
1.4
Id , Drain Current , Amps
125
0.75
0.5
0.25
1.2
VGS=9V
1
VGS=8V
0.8
0.6
VGS=6V
0.4
VGS=5V
0.2
0
0
25
50
75
100
Tc,Case Temperature,C
125
150
0
5
Figure 3 Maximum Continuous Drain Current vs Case Temperature
10
15
20
Vds,Drain Source Voltage,Volts
25
30
Figure 4 Typical Output Characteristics
1
Thermal Impedance,Normanlized
50%
20%
0.1
10%
5%
0.01
2%
0.001
PDM
1%
NOTES:
DUTY FACTOR :D=t1/ t2
PEAK Tj=PDM*ZthJC*RthJC+TC
0.0001
Single pulse
0.00001
0.00001
t1
t2
0.0001
0.001
0.01
0.1
1
10
100
Rectangular Pulse Duration,Seconds
Figure 5 Maximum Effective Thermal Impendance , Junction to Case
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 4 o f 1 0
2012
Huajing Discrete Devices
R
○
CS1N60 A4H
10
Idm , Peak Current , Amps
TRANSCONDUCTANCE MAY LIMIT
CURRENT IN THIS REGION
FOR TEMPERATURES
ABOVE 25℃ DERATE PEAK
CURRENT AS FOLLOWS:
150 − TC
I = I 25
125
1
VGS=10V
0.1
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
Pulse W idth , Seconds
Figure 6 Maximun Peak Current Capability
1.00E+00
1.00E+01
t
17
Rds(on), Drain to Source ON
Resistance , Ohms
Id Drain to Source Current,Amps
1.5
1.2
VDS=25V
0.9
0.6
0.3
0
16
ID= 0.8A
15
ID= 0.4A
14
ID= 0.2A
13
12
11
0
2
4
6
8
Vgs,Gate to Source Voltage,Volts
10
Figure 7 Typical Transfer Characteristics
13
VGS=10V
12
11
10
9
0
0.3
0.6
0.9
Id,Drain Current,Amps
4
6
8
10
12
14
Vgs , Gate to Source Voltage,Volts
Figure 8 Typical Drain to Source ON Resistance vs Gate Voltage
and Drain Current
2.5
Rds(on),Drain to Source ON
Resistance,Normalized
14
Rds(on),Drain to source ON
Resistance. Ohms
PULSE DURATION = 10μs
DUTY FACTOR = 0.5%MAX
Tc =25 ℃
1.2
Figure 9 Typical Drain to Source ON Resistance
vs Drain Current
1.5
2
VGS=10V
ID=250μA
1.5
1
0.5
0
-100
-50
0
50
100
Tj,Junction Temperature,C
150
Figure 10 Typical Drian to Source on Resistance
vs Junction Temperature
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 5 o f 1 0
2012
200
Huajing Discrete Devices
1.15
Breakdown Voltage,Normalized
Vgs(th),Threshold Voltage
1.2
VDS=VGS
ID=250μA
1.1
1
0.9
0.8
0.7
0.6
-100
-50
0
50
100
150
200
1.1
ID=250μA
1.05
1.0
0.95
0.9
0.85
-100
-50
0
50
100
Tj,Junction Temperature,C
Tj,Junction Temperature,C
Figure 11 Typical Theshold Voltage vs Junction Temperature
150
200
Figure 12 Typical Breakdown Voltage vs Junction Temperature
250
150
100
Ciss
50
Coss
Vgs,gate to Source Voltage , Volts
14
VGS=0V , f=1MHz
Ciss=Cgs+Cgd
Coss=Cds+Cgd
Crss=Cgd
200
Capacitance,Pf
CS1N60 A4H
R
○
12
10
VDS=480V
ID=0.8A
8
6
4
2
Crss
0
0
0
10
20
30
40
50
Vds,Drain to source Voltage,Volts
Figure 13 Typical Capacitance vs Drain to Source Voltage
0
2
3
4
5
Qg,Total gate charge, nc
6
7
Figure 14 Typical Gate Charge vs Gate to Source Voltage
1.2
10
1
0.8
0.6
+150℃
0.4
+25℃
0.2
-55℃
0
0.2
0.4
0.6
0.8
1
1.2
Vsd,Source-Drain to source voltages,volts
Figure 15 Typical Body Diode Transfer Characteristics
Id , Drain Current , Amps
Isd,Reverse Drain Current,Amps
1
STARTING Tj = 25℃
STARTING Tj = 150℃
1
0.1
If R=0: tAV=(L* IAS) / (1.38VDSS-VDD)
If R≠0: tAV=(L/R) In[IAS*R/ (1.38VDSS-VDD)+1]
R equals total Series resistance of Drain circuit
0.01
1.00E-06
1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01
tav , Time in Avalanche , Seconds
Figure 16 Unclamped Inductive Switching Capability
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 6 o f 1 0
2012
Huajing Discrete Devices
R
○
CS1N60 A4H
TestCircuitandWaveform
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 7 o f 1 0
2012
Huajing Discrete Devices
R
○
CS1N60 A4H
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 8 o f 1 0
2012
Huajing Discrete Devices
R
○
CS1N60 A4H
Package Information:
Items
Values(mm)
MIN
MAX
A
6.30
6.80
B
5.20
6.20
C
2.10
2.50
D
0.40
0.60
E1
0.60
0.80
E2
0.70
0.90
F
0.40
0.60
G
0.80
1.00
L1
9.70
10.20
L2
2.70
3.10
H
0.60
0.90
M
5.10
5.50
N
2.09
2.49
R
0.3
T
1.40
1.60
Y
5.10
6.30
TO-252 Package
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 9 o f 1 0
2012
Huajing Discrete Devices
R
○
CS1N60 A4H
The name and content of poisonous and harmful material in products
Hazardous Substance
Part’s Name
Pb
≤0.1%
Limit
Hg
Cd
Cr(VI)
PBB
PBDE
≤0.1%
≤0.01%
≤0.1%
≤0.1%
≤0.1%
Lead Frame
○
○
○
○
○
○
Molding Compound
○
○
○
○
○
○
Chip
○
○
○
○
○
○
Wire Bonding
○
○
○
○
○
○
Solder
×
○
○
○
○
○
○:means the hazardous material is under the criterion of SJ/T11363-2006.
Note
×:means the hazardous material exceeds the criterion of SJ/T11363-2006.
The plumbum element of solder exist in products presently, but within the allowed
range of Eurogroup’s RoHS.
Warnings
1.
2.
3.
4.
Exceeding the maximun ratings of the device in performance may cause damage to the device,
even the permanent failure, which may affect the dependability of the machine. It is suggested
to be used under 80 percent of the maximun ratings of the device.
When installing the heatsink, please pay attention to the torsional moment and the smoothness
of the heatsink.
VDMOSFETs is the device which is sensitive to the static electricity, it is necessory to protect
the device from being damaged by the static electricity when using it.
This publication is made by Huajing Microelectronics and subject to regular change without
notice.
WUXI CHINA RESOURCES HUAJING MICROELECTRONICS CO., LTD.
Add: No.14 Liangxi RD. Wuxi, Jiangsu, China Mail:214061
http://www. crhj.com.cn
Tel: +86 0510-85807228 Fax: +86- 0510-85800864
HTU
Marketing Part:
Post:214061
UTH
Tel: +86 0510-81805277/81805336
Fax: +86 0510-85800360/85803016
E-mail:sales@hj.crmicro.com
Application and Service:Post:214061 Tel / Fax:+86- 0510-81805243/81805110
W U X I C H I N A R E S O U R C E S H U A J I N G M I C R O E L E C T R O N I C S C O . , LT D . P a g e 1 0 o f 1 0
2012