Bulletin I27194 rev. A 01/06
40MT120UHA 40MT120UHTA
"HALF-BRIDGE" IGBT MTP
Features
Technology • Positive VCE(ON)Temperature Coefficient • 10µs Short Circuit Capability • HEXFRED TM Antiparallel Diodes with UltraSoft Reverse Recovery and Low VF • Square RBSOA • Al2O3 DBC • Optional SMD Thermistor (NTC) • Very Low Stray Inductance Design for High Speed Operation
• UltraFast Non Punch Through (NPT)
UltraFast NPT IGBT
VCES = 1200V IC = 80A
Benefits
Applications • Rugged with UltraFast Performance • Benchmark Efficiency above 20KHz • Outstanding ZVS and Hard Switching Operation • Low EMI, requires Less Snubbing • Excellent Current Sharing in Parallel Operation • Direct Mounting to Heatsink • PCB Solderable Terminals • Very Low Junction-to-Case Thermal Resis tance
• Optimized for Welding, UPS and SMPS
MMTP
Absolute Maximum Ratings Parameters
V CES IC I I I
CM LM
Max
1200 @ T C = 22°C @ TC = 104°C 80 40 160 160 @ TC = 105°C 21 160 ± 20 2500 463 185 @ T C = 25°C @ TC = 100°C
Units
V A
Collector-to-Emitter Breakdown Voltage Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal to Case, t = 1 min Maximum Power Dissipation (only IGBT)
IF
FM
V GE V ISOL PD
V W
www.irf.com
1
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
V(BR)CES ∆V(BR)CES/ ∆TJ V CE(ON)
Min Typ Max Units Test Conditions
+1.1 3.36 4.53 3.88 5.35 -12 35 0.4 0.2 250 1.0 10 ±250 3.59 4.91 4.10 5.68 6 V V/°C V V GE = 0 V, I C = 2 50µA V GE = 0 V, I C = 3 mA (25-125°C) = = = = = = = = = = = 1 5V, I C = 4 0A 1 5V, I C = 8 0A 1 5V, I C = 4 0A T J = 1 50°C 1 5V, I C = 8 0A TJ = 1 50°C V GE , I C = 5 00µA V GE , I C = 1 mA (25-125°C) 5 0V, I C = 4 0A, PW = 0 V, V CE = 1 200V, T J 0 V, V CE = 1 200V, T J 0 V, V CE = 1 200V, T J ± 2 0V 80µs = 2 5°C = 1 25°C = 1 50°C
Collector-to-Emitter Breakdown Voltage 1200 Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage
V GE(th) ∆ V GE(th) / ∆TJ g fe I CES
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Transconductance Zero Gate Voltage Collector Current
4
V GE V GE V GE V GE V V CE mV/°C V CE S µA mA nA V CE V GE V GE V GE V GE
I GES
Gate-to-Emitter Leakage Current
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot Cies Coes Cres RBSOA Total Gate Charge (turn-on) Gate-Emitter Charge (turn-on) Gate-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
Min Typ Max Units Test Conditions
399 43 187 1142 1345 2487 1598 1618 3216 599 65 281 1713 2018 3731 2397 2427 4824 µJ nC I C = 40A V CC = 600V VGE = 15V VCC = 600V, IC = 40A VGE = 15V, Rg = 5Ω , L = 200µH T J = 25°C, Energy losses include tail and diode reverse recovery VCC = 600V, IC = 40A VGE = 15V, Rg = 5Ω , L = 200µH T J = 125°C, Energy losses include tail and diode reverse recovery VGE = 0V VCC = 30V f = 1.0 MHz T J = 150°C, IC = 160A VCC = 1000V, Vp = 1200V Rg = 5Ω, VGE = +15V to 0V T J = 150°C VCC = 900V, Vp = 1200V Rg = 5Ω, VGE = +15V to 0V
µJ
5521 8282 380 570 171 257 full square
pF
SCSOA
Short Circuit Safe Operating Area
10
µs
2
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Diode Characteristics @ TJ = 25°C (unless otherwise specified)
Parameters
V FM Diode Forward Voltage Drop
Min
Typ Max Units Test Conditions
2.98 3.90 3.08 4.29 3.12 574 120 43 3.38 4.41 3.39 4.72 3.42 861 180 65 V I C = 4 0A I C = 8 0A I C = 4 0A, T J = 1 25°C I C = 8 0A, T J = 1 25°C I C = 4 0A, T J = 1 50°C VGE = 15V, Rg = 5Ω, L = 200µH VCC = 600V, IC = 40A T J = 1 25°C
Erec trr Irr
Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current
µJ ns A
Thermistor Specifications (40MT120UHTA only)
Parameters
R0 (1) β
(1) (1) (2)
Min Typ
30 4000
(2)
Max Units Test Conditions
kΩ K T0 = 25°C T0 = 25°C T1 = 85°C Temperatures in Kelvin
Resistance Sensitivity index of the thermistor material R0 R1
T0,T1 are thermistor's temperatures
= exp
[β(1 T
1
0
T1
)],
Thermal- Mechanical Specifications
Parameters
TJ TSTG R thJC R thCS Operating Junction Temperature Range Storage Temperature Range Junction-to-Case Case-to-Sink Clearance ( external Creepage ( shortest T Wt IGBT Diode Module
shortest distance in air distance along external
Min
- 40 - 40
Typ
Max
150 125 0.29 0.61
Units
°C °C/ W
0.06 5.5 8 3 ± 10% 66 Nm g (oz) mm
(Heatsink Compound Thermal Conductivity = 1 W/mK)
between two terminals) surface of the insulating material between 2 terminals)
Mounting torque to heatsink Weight
compound. Lubricated threads
(3)
(3) A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the
www.irf.com
3
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
100
600 500 400
PD (W)
80
60
IC (A)
300 200
40
20
100 0
0 0 20 40 60 80 100 120 140 160 T C (°C)
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
Fig. 2 - Power Dissipation vs. Case Temperature
1000
1000
100
100
10
IC (A)
10 µs 100 µs
IC (A)
10 1
1 10ms 0.1 DC
0.01 1 10 100 VCE (V) 1000 10000
10
100
1000
10000
VCE (V)
Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C
Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V
4
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
160 140 120 100
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
160 140 120 100
VGE VGE VGE VGE VGE
= 18V = 15V = 12V = 10V = 8.0V
80 60 40 20 0 0 2 4 6 VCE (V) 8 10
ICE (A)
80 60 40 20 0 0 2 4 6 VCE (V) 8 10
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
160 140 120 100
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
120 100 80
IF (A)
-40°C 25°C 125°C
80 60 40 20 0 0 2 4 6 VCE (V) 8 10
60 40 20 0 0.0 1.0 2.0 3.0 4.0 5.0 VF (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
www.irf.com
5
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
20 18 16 14
V CE (V)
20
ICE = 80A ICE = 40A ICE = 20A
18 16 14
V CE (V)
ICE = 80A ICE = 40A ICE = 20A
12 10 8 6 4 2 0 5 10 V GE (V) 15 20
12 10 8 6 4 2 0 5 10 V GE (V) 15 20
Fig. 9 - Typical VCE vs. VGE TJ = -40°C
Fig. 10 - Typical VCE vs. VGE TJ = 25°C
20 18 16 14
V CE (V)
350
ICE = 80A ICE = 40A ICE = 20A
300 250
ICE (A)
T J = 25°C T J = 125°C
12 10 8 6 4 2 0 5 10 V GE (V) 15 20
200 150 100 50 0 0 5 10 VGE (V) 15 20
Fig. 11 - Typical VCE vs. VGE TJ = 125°C
Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
6
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
4800 4200 3600
1000
tdOFF
Energy (µJ)
3000 2400 1800 1200 600 0 0 20 40 IC (A) 60 80 100 EON EOFF
Swiching Time (ns)
100
tR tdON tF
10 0 20 40 60 80 100
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=250µH; VCE= 400V RG= 5Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=250µH; VCE= 400V RG= 5Ω; VGE= 15V
6000
10000
5000
EON EOFF
Swiching Time (ns)
tdOFF
1000
Energy (µJ)
4000
3000
100
2000
tdON tR tF
1000 0 10 20 30 40 50 60
10 0 10 20 30 40 50 60
R G ( Ω)
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=250µH; VCE= 600V ICE= 40A; VGE= 15V
Fig. 16 - Typ. Switching Time vs. R G TJ = 150°C; L=250µH; VCE= 600V ICE= 40A; VGE= 15V
www.irf.com
7
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
50
50
RG = 5.0Ω
40
RG = 10 Ω RG = 30 Ω R G = 50 Ω
40
IRR (A)
IRR (A)
30
30
20
20
10
0 10 20 30 40 50 60 70
10 0 10 20 30 40 50 60
IF (A)
R G ( Ω)
Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 40A
50 45 40 35
5.0 4.5 4.0 3.5
60A 40A
Q RR (µC)
IRR (A)
3.0 2.5 2.0 1.5 50Ω 30Ω 10 Ω 20A 5.0 Ω
30 25 20 15 10 0 200 400 600 800 1000
1.0 0.5 0.0 0 200 400 600 800 1000 1200
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C
Fig. 19- Typical Diode I RR vs. diF/dt VCC= 600V; VGE= 15V; ICE= 40A; TJ = 125°C
8
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
10000
Cies
Capacitance (pF)
1000
Coes
100
Cres
10 0 20 40 60 80 100
VCE (V)
Fig. 21- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
16 14 12 10
VGE (V)
600V
8 6 4 2 0 0 100 200 300 400 500 Q G , Total Gate Charge (nC)
Fig. 22 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600µH
www.irf.com
9
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
1
Thermal Response ( Z thJC )
0.1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τC τ τ2 τ3 τ3
0.01
Ri (°C/W) τi (sec) 0.043 0.001214 0.105 0.123 0.044929 1.1977
0.001
τ1
Ci= τi/Ri Ci= i/Ri
0.0001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.001 0.01 0.1 1 10
1E-005 1E-006 1E-005 0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20 0.10 0.05 0.02 0.01
τJ τJ τ1 R1 R1 τ2 R2 R2 τC τ1 τ2 τ
Ri (°C/W) τi (sec) 0.024 0.00008 0.549 0.000098
0.01
Ci= τi/Ri Ci i /Ri
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 0.001 0.01
0.001 1E-006 1E-005
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
10
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
L
L
0
DUT 1K
VCC
80 V Rg
DUT
1000V
Fig. CT.1 - Gate Charge Circuit (turn-off)
Fig. CT.2 - RBSOA Circuit
diode clamp / DUT
Driver
D C
L
900V
- 5V DUT / DRIVER
Rg
DUT
VCC
Fig. CT.3 - S.C. SOA Circuit
Fig. CT.4 - Switching Loss Circuit
www.irf.com
11
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Outline Table
Electrical Diagram
Dimensions in millimetres Note: unused terminals are not assembled in the package
12
www.irf.com
40MT120UHA, 40MT120UHTA
Bulletin I27194 rev. A 01/06
Ordering Information Table
Device Code
40
1
MT 120
2 3
U
4
H
5
T
6
A
7
1 2 3 4 5 6
-
Current rating Essential Part Number Voltage code Speed/ Type Special Option
(40 = 40A) (120 = 1200V) (U = Ultra Fast IGBT)
Circuit Configuration (H = Half Bridge) none = no special option T = Thermistor
7
-
A = Al2O3 DBC Substrate
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 2 33 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 01/06
www.irf.com
13