0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AUIRF2905ZSTRL

AUIRF2905ZSTRL

  • 厂商:

    IRF

  • 封装:

  • 描述:

    AUIRF2905ZSTRL - HEXFET® Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
AUIRF2905ZSTRL 数据手册
PD - 96320 AUTOMOTIVE GRADE AUIRFR2905Z HEXFET® Power MOSFET V(BR)DSS Features l l l l l l l D 55V 11.1mΩ 14.5mΩ 59A k 42A Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * RDS(on) typ. G S max. ID (Silicon Limited) ID (Package Limited) D Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak AUIRFR2905Z G D S G D S Absolute Maximum Ratings Gate Drain Source Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Parameter Max. ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (Tested ) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy(Thermally limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw ™ Ù h d g 59 42 42 240 110 0.72 ± 20 55 82 See Fig.12a, 12b, 15, 16 -55 to + 175 k k Units A W W/°C V mJ A mJ °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Thermal Resistance RθJC Junction-to-Case RθJA Junction-to-Ambient (PCB mount) RθJA Junction-to-Ambient HEXFET® is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ y y j Parameter Typ. Max. 1.38 50 110 Units °C/W i ––– ––– ––– www.irf.com 1 07/20/10 AUIRFR2905Z Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs RG IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Gate Input Resistance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 55 ––– ––– 2.0 20 ––– ––– ––– ––– ––– ––– 0.053 11.1 ––– ––– 1.3 ––– ––– ––– ––– ––– ––– 14.5 4.0 ––– ––– 20 250 200 -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 36A V VDS = VGS, ID = 250µA S VDS = 25V, ID = 36A Ω f = 1MHz, open drain VDS = 55V, VGS = 0V µA VDS = 55V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V e Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 29 7.7 12 14 66 31 35 4.5 7.5 1380 240 120 820 190 300 44 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– nC Conditions ID = 36A VDS = 44V VGS = 10V VDD = 28V ID = 36A RG = 15 Ω VGS = 10V Between lead, e e ns D 6mm (0.25in.) from package G pF S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V f Diode Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 23 16 42 k Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 36A, VGS = 0V TJ = 25°C, IF = 36A, VDD = 28V di/dt = 100A/µs A Ù 240 1.3 35 24 V ns nC e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com AUIRFR2905Z Qualification Information † Automotive (per AEC-Q101) Qualification Level †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D PAK MSL1 Class M3(400V) (per AEC-Q101-002) Class H1A(500V) (per AEC-Q101-001) Class C5 (1125V) (per AEC-Q101-005) Yes Moisture Sensitivity Level Machine Model Human Body Model Charged Device Model RoHS Compliant ESD † Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/ †† Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRFR2905Z 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 4.5V 1 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 0.1 0.1 1 10 100 1 0.1 0 1 1 ≤ 60µs PULSE WIDTH Tj = 175°C 10 10 100 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 50 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) T J = 175°C 40 100.0 T J = 175°C 30 T J = 25°C 20 10.0 T J = 25°C VDS = 25V ≤ 60µs PULSE WIDTH 1.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 10 VDS = 15V 380µs PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current 4 www.irf.com AUIRFR2905Z 2400 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 20 ID= 36A VDS= 44V VDS= 28V VDS= 11V 2000 VGS, Gate-to-Source Voltage (V) 16 C, Capacitance (pF) 1600 Ciss 1200 12 8 800 400 Coss Crss 4 FOR TEST CIRCUIT SEE FIGURE 13 0 1 10 100 0 0 10 20 30 40 50 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 2.2 VSD, Source-toDrain Voltage (V) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 10 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 1 10 1msec 10msec 0.1 100 1000 VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area www.irf.com 5 AUIRFR2905Z 70 60 ID , Drain Current (A) 2.0 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) RDS(on) , Drain-to-Source On Resistance (Normalized) LIMITED BY PACKAGE ID = 36A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τ1 τ2 Ri (°C/W) τi (sec) 0.3962 0.00012 0.5693 0.00045 0.4129 0.0015 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Ci= τi /Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com AUIRFR2905Z EAS, Single Pulse Avalanche Energy (mJ) 15V 240 200 VDS L DRIVER ID 36A 8.6A BOTTOM 4.8A TOP 160 RG 20V VGS D.U.T IAS tp + V - DD A 120 0.01Ω 80 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 40 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS QGD VGS(th) Gate threshold Voltage (V) 4.5 VG 4.0 Charge 3.5 Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. ID = 250µA 3.0 50KΩ 12V .2µF .3µF 2.5 D.U.T. VGS 3mA + V - DS 2.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature www.irf.com 7 AUIRFR2905Z 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 60 EAR , Avalanche Energy (mJ) 50 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com AUIRFR2905Z D.U.T Driver Gate Drive P.W. Period VGS=10V + P.W. Period D= ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • dv/dt controlled by R G • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD V DS V GS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -V DD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.irf.com 9 AUIRFR2905Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information Part Number AUFR2905Z IR Logo YWWA XX or XX Date Code Y= Year WW= Work Week A= Automotive, Lead Free Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com AUIRFR2905Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes:  Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L = 0.08mH RG = 25Ω, IAS = 36A, VGS =10V. Part not recommended for use above this value. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. † This value determined from sample failure population. 100% tested to this value in production. ‡ When mounted on 1" square PCB (FR-4 or G-10 Material) . application note #AN-994 ˆ Rθ is measured at TJ approximately 90°C ‰ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 42A www.irf.com 11 AUIRFR2905Z Ordering Information Base part AUIRFR2905Z Package Type DPak Standard Pack Form Tube Tape and Reel Tape and Reel Left Tape and Reel Right Quantity 75 2000 3000 3000 Complete Part Number AUIRFR2905Z AUIRFR2905ZTR AUIRF2905ZSTRL AUIRF2905ZSTRR 12 www.irf.com AUIRFR2905Z IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR’s Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 www.irf.com 13
AUIRF2905ZSTRL 价格&库存

很抱歉,暂时无法提供与“AUIRF2905ZSTRL”相匹配的价格&库存,您可以联系我们找货

免费人工找货