0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AUIRFR3504Z

AUIRFR3504Z

  • 厂商:

    IRF

  • 封装:

  • 描述:

    AUIRFR3504Z - HEXFET® Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
AUIRFR3504Z 数据手册
PD - 97492 AUIRFR3504Z AUTOMOTIVE GRADE Features l l l l l l l HEXFET® Power MOSFET D Advanced Process Technology Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS RDS(on) max. ID (Silicon Limited) 40V 9.0mΩ 77A 42A G S ID (Package Limited) Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D G S D-Pak G D S Gate Drain Source Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A) is 25°C, unless otherwise specified. Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (tested ) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Max. 77 54 42 310 90 0.60 ± 20 77 110 See Fig.12a, 12b, 15, 16 -55 to + 175 Units A ™ Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy W W/°C V mJ A mJ °C Ù h d g Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting Torque, 6-32 or M3 screw Thermal Resistance RθJC RθJA RθJA 300 10 lbf in (1.1N m) y y Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient j Parameter Typ. ––– ––– ––– Max. 1.66 40 110 Units °C/W i HEXFET® is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ www.irf.com 1 04/12/2010 AUIRFR3504Z Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 40 ––– ––– 2.0 32 ––– ––– ––– ––– ––– 0.032 8.23 ––– ––– ––– ––– ––– ––– ––– ––– 9.0 4.0 ––– 20 250 200 -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 42A V VDS = VGS, ID = 250µA S VDS = 10V, ID = 42A µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V e Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 30 9.6 12 15 74 30 38 4.5 7.5 1510 340 190 1100 340 460 45 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– nC Conditions ID = 42A VDS = 32V VGS = 10V VDD = 20V ID = 42A RG = 15 Ω VGS = 10V Between lead, e e ns D nH 6mm (0.25in.) from package G pF S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 32V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 32V Diode Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time f Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 18 9.2 42 A 310 1.3 27 14 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 42A, VGS = 0V TJ = 25°C, IF = 42A, VDD = 20V di/dt = 100A/µs Ù e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes:  Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). ‚ Limited by TJmax, starting TJ = 25°C, L = 0.09mH, RG = 25Ω, IAS = 42A, VGS =10V. Part not recommended for use above this value. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. „ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. † This value determined from sample failure population, ‡ When mounted on 1" square PCB (FR-4 or G-10 Material) . ˆ Rθ is measured at TJ approximately 90°C. starting TJ = 25°C, L = 0.09mH, RG = 25Ω, IAS = 42A, VGS =10V. For recommended footprint and soldering techniques refer to application note #AN-994. 2 www.irf.com AUIRFR3504Z Qualification Information† Automotive (per AEC-Q101) Qualification Level †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D-PAK Class M4 AEC-Q101-002 Class H1C AEC-Q101-001 Class C5 AEC-Q101-005 Yes MSL1 Moisture Sensitivity Level Machine Model Human Body Model Charged Device Model RoHS Compliant ESD † Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/ †† Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRFR3504Z 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1000 TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID, Drain-to-Source Current (A) 100 BOTTOM ID, Drain-to-Source Current (A) 100 BOTTOM 10 10 1 4.5V 30µs PULSE WIDTH Tj = 175°C 4.5V 0.1 0.1 1 30µs PULSE WIDTH Tj = 25°C 10 100 1 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 60 ID, Drain-to-Source Current (Α) Gfs, Forward Transconductance (S) T J = 175°C 50 40 30 20 10 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 T J = 25°C VDS = 20V 30µs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 8.0 9.0 10.0 VDS = 10V 380µs PULSE WIDTH VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current 4 www.irf.com AUIRFR3504Z 2500 VGS, Gate-to-Source Voltage (V) 2000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 20 ID= 42A VDS= 32V VDS= 20V VDS= 8.0V 16 C, Capacitance (pF) Ciss 1500 12 1000 8 500 Coss Crss 4 FOR TEST CIRCUIT SEE FIGURE 13 0 1 10 100 0 0 10 20 30 40 50 VDS, Drain-to-Source Voltage (V) QG Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 2.2 VSD, Source-toDrain Voltage (V) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 0 1 10 10msec 0.1 100 1000 VDS , Drain-toSource Voltage (V) nce Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area www.irf.com 5 AUIRFR3504Z 80 LIMITED BY PACKAGE 60 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID = 42A VGS = 10V ID , Drain Current (A) 1.5 40 1.0 20 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 τJ τJ τ1 τ1 R1 R1 τ2 R2 R2 τC τ2 τ Ri (°C/W) τi (sec) 1.117 0.000536 0.5422 0.004428 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 0.001 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com AUIRFR3504Z 15V 320 EAS, Single Pulse Avalanche Energy (mJ) VDS L DRIVER 280 240 200 160 120 80 40 0 25 50 75 100 ID 5.0A 6.4A BOTTOM 42A TOP RG 20V VGS D.U.T IAS tp + V - DD A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS VG QG QGD VGS(th) Gate threshold Voltage (V) 4.5 4.0 Charge 3.5 ID = 250µA Fig 13a. Basic Gate Charge Waveform 3.0 2.5 L 0 2.0 DUT 1K VCC -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 14. Threshold Voltage Vs. Temperature Fig 13b. Gate Charge Test Circuit www.irf.com 7 AUIRFR3504Z 1000 Duty Cycle = Single Pulse 100 Avalanche Current (A) 0.01 10 0.05 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 80 EAR , Avalanche Energy (mJ) 60 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 42A 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 175 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com AUIRFR3504Z D.U.T Driver Gate Drive + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - „ +  RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD V DS V GS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -V DD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.irf.com 9 AUIRFR3504Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak Part Marking Information Part Number AUFR3504Z IR Logo YWWA XX or XX Date Code Y= Year WW= Work Week A= Automotive, LeadFree Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com AUIRFR3504Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR TRL 16.3 ( .641 ) 15.7 ( .619 ) 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. www.irf.com 11 AUIRFR3504Z Ordering Information Base part AUIRFR3504Z Package Type Dpak Standard Pack Form Tube Tape and Reel Tape and Reel Left Tape and Reel Right Complete Part Number Quantity 75 2000 3000 3000 AUIRFR3504Z AUIRFR3504ZTR AUIRFR3504ZTRL AUIRFR3504ZTRR 12 www.irf.com AUIRFR3504Z IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements. For technical support, please contact IR’s Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 www.irf.com 13
AUIRFR3504Z 价格&库存

很抱歉,暂时无法提供与“AUIRFR3504Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货