0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CPV362M4F

CPV362M4F

  • 厂商:

    IRF

  • 封装:

  • 描述:

    CPV362M4F - IGBT SIP MODULE - International Rectifier

  • 数据手册
  • 价格&库存
CPV362M4F 数据手册
PD -5.046 CPV362M4F IGBT SIP MODULE Features • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses TM • HEXFRED soft ultrafast diodes • Optimized for medium operating (1 to 10 kHz) See Fig. 1 for Current vs. Frequency curve 3 Q1 D1 9 4 6 Q2 D2 12 Q4 D4 18 Q3 1 D3 15 10 Q6 D6 Fast IGBT D5 16 Q5 Product Summary 7 13 Output Current in a Typical 5.0 kHz Motor Drive 11 ARMS per phase (3.1 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1) 19 Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM VGE VISOL PD @ T C = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current  Clamped Inductive Load Current ‚ Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw Max. 600 8.8 4.8 26 26 3.4 26 ±20 2500 23 9.1 -40 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55-0.8 N•m) Units V A V VRMS W °C Thermal Resistance Parameter Rθ JC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. ––– ––– 0.1 20 (0.7) Max. 5.5 9.0 ––– ––– Units °C/W g (oz) 9/16/97 CPV362M4F Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES V FM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltageƒ 600 ––– Temperature Coeff. of Breakdown Voltage ––– 0.72 Collector-to-Emitter Saturation Voltage ––– 1.41 ––– 1.66 ––– 1.42 Gate Threshold Voltage 3.0 ––– Temperature Coeff. of Threshold Voltage ––– -11 Forward Transconductance „ 2.9 5.0 Zero Gate Voltage Collector Current ––– ––– ––– ––– Diode Forward Voltage Drop ––– 1.4 ––– 1.3 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 1.7 IC = 4.8A VGE = 15V See Fig. 2, 5 ––– V IC = 8.8A ––– IC = 4.8A, TJ = 150°C 6.0 VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 250µA ––– S VCE = 100V, IC = 4.8A 250 µA VGE = 0V, VCE = 600V 1700 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 8.0A See Fig. 13 1.6 IC = 8.0A, TJ = 150°C ±100 nA VGE = ±20V Max. Units Conditions 45 IC = 4.8A 6.0 nC VCC = 400V 20 See Fig. 8 ––– TJ = 25°C ––– ns IC = 4.8A, VCC = 480V 300 VGE = 15V, RG = 50Ω 320 Energy losses include "tail" and ––– diode reverse recovery ––– mJ See Fig. 9, 10, 18 0.70 ––– TJ = 150°C, See Fig. 10,11, 18 ––– ns IC = 4.8A, VCC = 480V ––– VGE = 15V, RG = 50Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 55 ns TJ = 25°C See Fig. 90 TJ = 125°C 14 IF = 8.0A 50 A TJ = 25°C See Fig. 15 VR = 200V 8.0 TJ = 125°C 138 nC TJ = 25°C See Fig. 16 di/dt = 200A/µs 360 TJ = 125°C ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets Cies Coes Cres t rr Irr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 30 4.0 13 49 22 200 214 0.23 0.33 0.45 48 25 435 364 0.93 340 63 5.9 37 55 3.5 4.5 65 124 240 210 Notes:  Repetitive rating; VGE =20V, pulse width limited by max. junction temperature. ( See fig. 20 ) ‚ VCC=80%(VCES), VGE=20V, L=10µH, „ Pulse width 5.0µs, single RG= 50Ω, ( See fig. 19 ) shot. ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. CPV362M4F 9 8 7 2.63 2.05 1.75 1.46 1.17 0.88 0.58 0.29 0.00 6 5 4 3 2 1 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 100 I C , Collector-to-Emitter Current (A) TJ = 25 oC TJ = 150 oC 10 I C, Collector-to-Emitter Current (A) TJ = 150 oC 10 TJ = 25 oC 1 1 V GE = 15V 20µs PULSE WIDTH 10 1 5 6 7 8 9 VCC = 50V 5µs PULSE WIDTH 10 11 12 13 14 V CE, Collector-to-Emitter Voltage (V) VGE, Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics Total Output Power (kW) LOAD CURRENT (A) T c = 9 0° C T j = 1 25 ° C P ow er F ac tor = 0 .8 M o d ula tio n D ep th = 1 .15 V c c = 50 % o f R a ted V o lta g e 2.34 CPV362M4F 10 2.5 VGE = 15V 80 us PULSE WIDTH I C = 9.6A 8 V CE, Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 2.0 6 4 I C = 4.8A 1.5 2 I C = 2.4A 0 25 50 75 100 125 150 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 ° T C , Case Temperature ( C) C) TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature 10 T h erm al R esp onse (Z th JC ) D = 0.50 1 0.20 0.10 0.05 0.02 0.01 PD M 0 .1 S INGLE PULSE (T H ERMA L RES PO NSE) Notes : 1. Du ty fact or D = t t 1 t 2 1 /t 2 0.01 0.000 01 2. P e ak TJ = P D M x Z th JC + T C 0.00 01 0 .00 1 0.01 0.1 1 10 t 1 , R e ct an g ula r P u ls e D ur at io n (s e c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case CPV362M4F 1000 800 VGE, Gate-to-Emitter Voltage (V) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 20 VCC = 400V I C = 4.8A 16 C, Capacitance (pF) 600 Cies 12 400 8 200 Coes Cres 4 0 1 10 100 0 0 6 12 18 24 30 VCE , Collector-to-Emitter Voltage (V) QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 0.46 VCC = 480V VGE = 15V TJ = 25 °C I C = 4.8A 10 RG = 50Ohm 50Ω VGE = 15V VCC = 480V Total Switching Losses (mJ) 0.45 Total Switching Losses (mJ) IC = 9.6A 1 0.44 IC = 4.8A 0.43 IC = 2.4A 0.42 10 20 30 40 50 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 RG , Gate Resistance(Ω) (Ohm) TJ , Junction Temperature ( ° ) C Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature CPV362M4F 2.0 1.5 I C , C ollect or-to-E m itte r C urrent (A ) Total Switching Losses (mJ) RG = 50Ohm 50 Ω T J = 150 °C VCC = 480V VGE = 15V 10 0 VG E E 2 0 V G= T J = 125° C S A FE O PE RAT ING AR EA 10 1.0 0.5 0.0 0 2 4 6 8 10 1 1 10 100 1000 I C , Collector-to-emitter Current (A) V C E , C o llec to r-to -E m i tte r V olta ge (V ) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Fig. 12 - Turn-Off SOA Insta ntaneo us F orw ard Cu rrent - I F (A ) 10 TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C 1 0.1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 F orwa rd V olta ge D rop - V FM (V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current CPV362M4F 100 100 VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C 80 VR = 2 0 0 V TJ = 1 2 5 ° C T J = 2 5 °C IF = 16 A t r r - (n s) 60 I F = 8 .0 A I IR R M - (A ) I F = 16 A 10 40 IF = 8 .0A I F = 4.0 A IF = 4.0 A 20 0 100 di f /d t - (A /µ s) 1000 1 100 1000 di f /dt - (A / µs) Fig. 14 - Typical Reverse Recovery vs. dif/dt 500 Fig. 15 - Typical Recovery Current vs. dif/dt 10000 VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C 400 VR = 2 0 0 V TJ = 1 2 5 ° C T J = 2 5 °C 300 di(re c)M/d t - (A / µs) Q R R - (nC ) I F = 1 6A 200 IF = 4.0 A 1000 IF = 8.0A I F = 1 6A I F = 8 .0 A 100 IF = 4.0 A 0 100 100 100 di f / dt - (A /µs ) 1000 1000 di f /dt - (A /µs) Fig. 16 - Typical Stored Charge vs. dif/dt Fig. 17 - Typical di(rec)M /dt vs. dif/dt CPV362M4F Same t ype device as D.U.T. 9 0% V ge + Vg e Vce 80% of Vce 430µF D.U.T. Ic 1 0% V ce Ic 5% Ic td (off) tf 90 % Ic Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf E off = ∫ t1 +5µ S VceicIc tdt V ce d t1 t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G ATE VO LTA G E D .U .T. 1 0% +V g +V g trr Ic Q rr = ∫ trr id dt Ic dt tx tx 10% V cc V ce Vcc 10% Ic 9 0% Ic DUT V O LTA G E AN D C URR E NT Ipk Ic 10 % Ir r V cc V pk Irr td( on) tr 5% Vc e t2 Vce dt E on = V c e ieIc dt t1 t2 DIO D E RE V E RS E RE C O V ER Y EN ER G Y t3 DIO DE RE CO V E RY W AV E FO RM S ∫ Er ec = ∫ t4 V d idIc t dt Vd d t3 t1 t4 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr CPV362M4F V g G ATE S IG N AL DE VICE UNDE R TE S T CURR EN T D .U .T. VO L TA G E IN D.U.T. CURR EN T IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 10 00V 50V 60 00µ F 100 V V c* D.U.T. RL = 0 - 480V 480V 4 X I C @25°C Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit CPV362M4F Notes:  Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 22Ω (figure 19) ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. „ Pulse width 5.0µs, single shot. Case Outline — IMS-2 62.43 (2.458) 3.91 ( .154) 2X 53.85 ( 2.120) 7.87 (.310) 5.46 ( .215) 21.97 (.865) 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 1 6 17 18 19 0.38 (.015) NO TE S: 1. Tolerance unless otherwis e spec ified ± 0.254 (.010) . 2. Controlling D imension: Inch. 3. Dimens ions ar e shown in Millimeter ( Inc hes) . 4. Term inal numbers are shown for refer enc e only. 3.94 (.155) 1.27 ( .050) 3.05 ± 0.38 (.120 ± .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240) 4.06 ± 0.51 (.160 ± .020) 5.08 (.200) 6X 1.27 (.050) 13X 2.54 (.100) 6X IMS-2 Package Outline (13 Pins) D im e n s io n s in M illim e te rs a n d (In c h e s) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 9/97
CPV362M4F 价格&库存

很抱歉,暂时无法提供与“CPV362M4F”相匹配的价格&库存,您可以联系我们找货

免费人工找货