0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CPV364M4F

CPV364M4F

  • 厂商:

    IRF

  • 封装:

  • 描述:

    CPV364M4F - IGBT SIP MODULE - International Rectifier

  • 数据手册
  • 价格&库存
CPV364M4F 数据手册
PD -5040 PRELIMINARY CPV364M4F Fast IGBT 1 D1 9 4 6 Q2 D2 12 Q4 D4 18 D3 15 10 Q6 D6 D5 16 3 Q1 Q3 Q5 IGBT SIP MODULE Features • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses TM • HEXFRED soft ultrafast diodes • Optimized for medium operating (1 to 10 kHz) See Fig. 1 for Current vs. Frequency curve Product Summary 7 13 Output Current in a Typical 5.0 kHz Motor Drive 18 ARMS per phase (4.6 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1) 19 Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES I C @ T C = 25°C I C @ T C = 100°C I CM I LM I F @ TC = 100°C I FM VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current  Clamped Inductive Load Current ‚ Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. 600 27 15 80 80 9.3 80 ±20 2500 63 25 -40 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55-0.8 N•m) Units V A V VRMS W °C Thermal Resistance Parameter Rθ JC (IGBT) Rθ JC (DIODE) Rθ CS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. ––– ––– 0.10 20 (0.7) Max. 2.0 3.0 ––– ––– Units °C/W g (oz) 12/30/96 CPV364M4F Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Collector-to-Emitter Breakdown Voltageƒ 600 Temperature Coeff. of Breakdown Voltage ––– Collector-to-Emitter Saturation Voltage ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance „ 9.2 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.69 1.35 1.60 1.35 ––– -12 12 ––– ––– 1.3 1.2 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 1.5 IC = 15A VGE = 15V See Fig. 2, 5 ––– V IC = 27A ––– IC = 15A, TJ = 150°C 6.0 VCE = VGE , IC = 250µA ––– mV/°C VCE = VGE , IC = 250µA ––– S VCE = 100V, IC = 27A 250 µA VGE = 0V, VCE = 600V 2500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 15A See Fig. 13 1.6 IC = 15A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Charge Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 100 15 37 42 18 220 160 0.46 0.86 1.32 39 19 410 290 2.5 2200 140 29 42 74 4.0 6.5 80 220 188 160 Max. Units Conditions 160 IC = 15A 23 nC VCC = 400V 56 VGE = 15V See Fig. 8 ––– TJ = 25°C ––– ns IC = 15A, VCC = 480V 330 VGE = 15V, RG = 10Ω 240 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 11, 18 1.8 ––– TJ = 150°C, See Fig. 9, 10, 11, 18 ––– ns IC = 15A, VCC = 480V ––– VGE = 15V, RG = 10Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 14 IF = 15A 120 TJ = 125°C 6.0 A TJ = 25°C See Fig. 15 VR = 200V 10 TJ = 125°C 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt =200Aµs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 CPV364M4F 25 7.34 20 5.87 15 4.40 10 2.94 5 1.47 0 0.1 1 10 100 0.00 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 100 I C , Collector-to-Emitter Current (A) T J = 25°C T J = 150°C I C , Collector-to-Emitter Current (A) T J = 150°C 10 10 T J = 25°C 1 1 V G E = 15V 20µs PULSE WIDTH 10 A 1 5 6 7 V C C = 50V 5µs PULSE WIDTH 8 9 Total Output Power (kW) A 10 LOAD CURRENT (A) T c = 9 0° C T j = 1 25 ° C P ow er F ac tor = 0 .8 M o d ula tio n D ep th = 1 .15 V c c = 50 % o f R a ted V o lta g e V C E , Collector-to-Emitter Voltage (V) VG E , Gate-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics CPV364M4F 30 3.0 VGE = 15V 80 us PULSE WIDTH IC = 30A Maximum DC Collector Current(A) 25 20 15 VCE, Collector-to-Emitter Voltage(V) 2.0 IC = 15A 10 5 IC = 7.5A 0 25 50 75 100 125 150 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 T C , Case Temperature ( ° C) TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature 10 T herm al R esp onse (Z th JC ) 1 D = 0.50 0.20 0.10 0.05 PD M 0 .1 0.02 0.01 S ING LE P ULS E (T HERMA L RE SPO NS E) N otes: 1 . D uty fac tor D = t t 1 t 2 1 /t 2 0.01 0.0000 1 2. P eak TJ = P D M x Z thJ C + T C 0.000 1 0 .00 1 0.01 0.1 1 10 t 1 , R e c ta ng ula r P u ls e D ur at io n (se c) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case CPV364M4F 4000 VGE, Gate-to-Emitter Voltage (V) A VGE = 0V f = 1 MHz Cies = Cge + Cgc + Cce Cres = Cce Coes = Cce + Cgc 20 SHORTED VCC = 400V I C = 15A 16 3000 C i es 2000 12 8 1000 C o es C r es 4 0 1 10 0 0 20 40 60 80 100 120 100 VC E , Collector-to-Em itter Voltage (V) QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 1.45 V CC = 480V V GE = 15V TJ = 25 °C I C = 15A 10 RG = 10Ohm Ω VGE = 15V VCC = 480V IC = 30A Total Switching Losses (mJ) Total Switching Losses (mJ) IC = 15A IC = 7.5A 1 1.40 1.35 1.30 0 10 20 30 40 50 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 RG , Gate Resistance (Ohm) Ω TJ , Junction Temperature ( ° ) C Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Junction Temperature CPV364M4F 6.0 4.0 3.0 2.0 I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) RG = 10Ohm Ω T J = 150 °C VCC = 480V 5.0 VGE = 15V 1000 VGE = 20V T J = 125 o C 100 10 1.0 SAFE OPERATING AREA 0.0 0 5 10 15 20 25 30 1 1 10 100 1000 I C , Collector-to-emitter Current (A) VCE , Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 100 Fig. 12 - Turn-Off SOA In stanta neous F orw ard C u rrent - I F (A ) 10 TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C 1 0.8 1.2 1.6 2.0 2.4 Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current F orwa rd V olta ge D rop - V FM (V ) CPV364M4F 100 100 VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C 80 VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C I F = 30A I F = 30 A 60 I IR R M - (A ) t rr - (ns) 10 IF = 15 A I F = 1 5A 40 I F = 5 .0A I F = 5 .0A 20 100 d i f /dt - (A /µs) 1000 1 100 1000 di f /dt - (A / µs) Fig. 14 - Typical Reverse Recovery vs. di f/dt 800 Fig. 15 - Typical Recovery Current vs. dif /dt 1000 VR = 2 0 0 V TJ = 1 2 5 ° C T J = 2 5 °C 600 VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C IF = 30 A di(rec)M /dt - (A /µs) Q R R - (nC ) 400 I F = 5 .0A I F = 15 A I F = 3 0A I F = 1 5A IF = 5.0 A 200 0 100 di f /dt - (A/ µs) 1000 100 100 1000 di f /dt - (A /µ s) Fig. 16 - Typical Stored Charge vs. di f/dt Fig. 17 - Typical di(rec)M/dt vs. dif/dt CPV364M4F 90% Vge + Vg e Same t ype device as D.U.T. V ce Ic 80% of Vce 430µF D.U.T. 10 % Vc e Ic 90% Ic 5% Ic td (off) tf E off = ∫ t1 +5µ S V ce ic d t t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon , Eoff(diode), t rr, Qrr, Irr, t d(on), t r, t d(off), t f t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G ATE VO LTA G E D .U .T. 1 0% +V g +V g trr Ic Q rr = ∫ trr id dt tx tx 10% V cc V ce Vcc 10% Ic 9 0% Ic DUT V O LTA G E AN D C URR E NT Ipk Ic 10 % Ir r V cc V pk Irr td( on) tr 5% Vc e t2 E on = V c e ie dt t1 t2 DIO D E RE V E RS E RE C O V ER Y EN ER G Y t3 DIO DE RE CO V E RY W AV E FO RM S ∫ Er ec = ∫ t4 V d id d t t3 t1 t4 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon , td(on), tr Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Q rr, Irr CPV364M4F V g G ATE S IG N AL DE VICE UNDE R TE S T CURR EN T D .U .T. VO L TA G E IN D.U.T. CURR EN T IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 10 00V 50V 60 00µ F 100 V V c* D.U.T. RL = 0 - 480V 480V 4 X I C @25°C Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit CPV364M4F Notes:  Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) ‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (figure 19) ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%. „ Pulse width 5.0µs, single shot. Case Outline — IMS-2 62.43 (2.458) 3.91 ( .154) 2X 53.85 ( 2.120) 7.87 (.310) 5.46 ( .215) 21.97 (.865) 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 1 6 17 18 19 0.38 (.015) NO TE S: 1. Tolerance unless otherwis e spec ified ± 0.254 (.010) . 2. Controlling D imension: Inch. 3. Dimens ions ar e shown in Millimeter ( Inc hes) . 4. Term inal numbers are shown for refer enc e only. 3.94 (.155) 1.27 ( .050) 3.05 ± 0.38 (.120 ± .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240) 4.06 ± 0.51 (.160 ± .020) 5.08 (.200) 6X 1.27 (.050) 13X 2.54 (.100) 6X IMS-2 Package Outline (13 Pins) D im e n s io n s in M illim e te rs a n d (In c h e s) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 12/96
CPV364M4F 价格&库存

很抱歉,暂时无法提供与“CPV364M4F”相匹配的价格&库存,您可以联系我们找货

免费人工找货