PD- 5.042
PRELIMINARY
CPV364M4K
Short Circuit Rated UltraFast IGBT
1 3 Q1 D1 9 4 6 Q2 D2 12 Q4 D4 18 Q3 D3 15 10 Q6 D6 Q5 D5 16
IGBT SIP MODULE
Features
• Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
7
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive 11 ARMS per phase (3.1 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 min Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
600 24 13 48 48 9.3 ±20 2500 63 25 -55 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in ( 0.55-0.8 N•m)
Units
V A
µs V VRMS W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module
Typ.
––– ––– 0.10 20 (0.7)
Max.
2.0 3.0 ––– –––
Units
°C/W g (oz)
7/18/97
CPV364M4K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES
Parameter Min. Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage ––– Collector-to-Emitter Saturation Voltage ––– ––– ––– Gate Threshold Voltage 3.0 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance 11 Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current –––
Typ. ––– 0.63 1.80 1.80 1.56 ––– -13 18 ––– ––– 1.3 1.2 –––
Max. Units Conditions ––– V VGE = 0V, IC = 250µA ––– V/°C VGE = 0V, IC = 1.0mA 2.3 IC = 13A VGE = 15V See Fig. 2, 5 ––– V IC = 24A ––– IC = 13A, TJ = 150°C 6.0 VCE = VGE , IC = 250µA ––– mV/°C VCE = VGE , IC = 250µA ––– S VCE = 100V, IC = 10A 250 µA VGE = 0V, VCE = 600V 3500 VGE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 15A See Fig. 13 1.6 IC = 15A, TJ = 150°C ±100 nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Q ge Q gc t d(on) tr t d(off) tf Eon Eoff Ets t sc t d(on) tr t d(off) tf Ets LE Cies Coes Cres t rr I rr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During t b Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 110 170 IC = 13A 14 21 nC VCC = 400V See Fig.8 49 74 VGE = 15V 50 — 30 — TJ = 25°C ns 110 170 IC = 13A, VCC = 480V 91 140 VGE = 15V, RG = 10Ω 0.56 — Energy losses include "tail" 0.28 — mJ and diode reverse recovery 0.84 1.1 See Fig. 9,10, 18 — — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10 Ω , VCPK < 500V 47 — TJ = 150°C, See Fig. 11,18 30 — IC = 13A, VCC = 480V ns 250 — VGE = 15V, RG = 10Ω 150 — Energy losses include "tail" 1.28 — mJ and diode reverse recovery 7.5 — nH Measured 5mm from package 1600 — VGE = 0V 130 — pF VCC = 30V See Fig. 7 55 — ƒ = 1.0MHz 42 60 ns TJ = 25°C See Fig. 14 IF = 15A 74 120 TJ = 125°C 4.0 6.0 A TJ = 25°C See Fig. 15 VR = 200V 6.5 10 TJ = 125°C 80 180 nC TJ = 25°C See Fig. 220 600 TJ = 125°C 16 di/dt = 200Aµs 188 — A/µs TJ = 25°C See Fig. 160 — TJ = 125°C 17
CPV364M4K
18 16 14 5.27
4.10 3.51 2.93 2.34 1.76 1.17 0.59 0.00
12 10 8 6 4 2 0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C, Collector-to-Emitter Current (A)
TJ = 150 °C
I C, Collector-to-Emitter Current (A)
TJ = 150 °C
10
10
TJ = 25 °C
TJ = 25 °C
1 1
V GE = 15V 20µs PULSE WIDTH
10
1 5 6 7
VCC = 50V 5µs PULSE WIDTH
8 9 10
V CE, Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
Total Output Power (kW)
LOAD CURRENT (A)
T c = 9 0° C T j = 1 25 ° C P ow er F ac tor = 0 .8 M o d ula tio n D ep th = 1 .15 V c c = 50 % o f R a ted V o lta g e
4.68
CPV364M4K
25
M a xim um D C C ollecto r C urre nt (A )
V GE = 1 5 V
4.0
VGE = 15V 80 us PULSE WIDTH
20
VCE, Collector-to-Emitter Voltage(V)
3.0
I C = 26A
15
10
2.0
I C = 13A I C = 6.5A
5
0 25 50 75 100 125
A
150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , C ase Te m peratu re (°C )
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
T herm al R espon se (Z thJC )
1
D = 0.50
0.20 0.10 0.05
PD M
0 .1
0.02 0.01
t
S INGLE PULSE ( TH ERMA L RES PO NSE )
1 t2
Notes : 1. D uty fac tor D = t
1
/t
2
0.01 0.0000 1
2. P ea k TJ = P D M x Z thJ C + T C
0.0001
0.001
0 .01
0 .1
1
10
t 1 , R e ct an gu la r P uls e D ura tio n (se c )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
CPV364M4K
3000 2500
V GE, Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 13A
16
C, Capacitance (pF)
2000
Cies
1500
12
8
1000
500
4
Coes Cres
0 1 10 100
0 0 20 40 60 80 100 120
VCE , Collector-to-Emitter Voltage (V)
Q G, Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.5
VCC = 480V VGE = 15V TJ = 25 °C I C = 13A
10
10Ω RG = Ohm VGE = 15V VCC = 480V IC = 26A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
IC = 13A
1
1.0
IC = 6.5A
0.5 0 10 20 30 40 50
0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160
RG , Gate Resistance (Ohm) RG , Gate Resistance ( Ω )
T J, Junction Temperature ( ° ) C
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
CPV364M4K
4.0
3.0
I C , C olle ctor-to-E m itter C u rrent (A )
Total Switching Losses (mJ)
RG TJ VCC VGE
10Ω = Ohm = 150 ° C = 480V = 15V
1000
V GE = 2 0 V TJ = 125°C
100
2.0
S AF E O P ER AT IN G AR EA
10
1.0
0.0 0 5 10 15 20 25 30
1 1 10 100
A
1000
I C , Collector-to-emitter Current (A)
VC E , C ollector-to -E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Inst antan eous F orw ard C urrent - I F (A )
10
TJ = 15 0°C TJ = 12 5°C TJ = 2 5°C
1 0.8 1.2 1.6 2.0 2.4
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
F orwa rd V olta ge D rop - V FM (V )
CPV364M4K
100 100
V R= 200V T J = 125°C T J = 25°C
80
VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C
I F = 30A I F = 30A
60
I IR R M - (A )
t rr - (ns)
10
IF = 15 A
I F = 15A
40
I F = 5 .0A I F = 5.0A
20 100
di f/dt - (A/µs)
1000
1 100
1000
di f /dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
800
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C
600
VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C
I F = 3 0A
di(re c)M /dt - (A / µs)
Q R R - (nC )
400
I F = 5 .0 A I F = 1 5A I F = 3 0A
I F = 15A IF = 5.0A
200
0 100
di f /d t - (A /µs )
1000
100 100
1000
d i f /dt - (A /µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M /dt vs. dif /dt
CPV364M4K
90% Vge + Vg e
Same t ype device as D.U.T.
V ce
Ic 80% of Vce 430µF D.U.T.
10 % Vc e Ic
90% Ic 5% Ic
td (off)
tf
E off =
∫
t1 +5µ S V ce ic d t t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon , Eoff(diode), t rr, Qrr, Irr, t d(on), t r, t d(off), t f
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T. 1 0% +V g +V g
trr Ic
Q rr =
∫
trr id dt tx
tx 10% V cc V ce Vcc 10% Ic 9 0% Ic DUT V O LTA G E AN D C URR E NT Ipk Ic
10 % Ir r V cc
V pk Irr
td( on)
tr
5% Vc e t2 E on = V c e ie dt t1 t2 DIO D E RE V E RS E RE C O V ER Y EN ER G Y t3
DIO DE RE CO V E RY W AV E FO RM S
∫
Er ec =
∫
t4 V d id d t t3
t1
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon , td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Q rr, Irr
CPV364M4K
V g G ATE S IG N AL DE VICE UNDE R TE S T CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 10 00V 50V 60 00µ F 100 V V c*
D.U.T.
RL = 0 - 480V
480V 4 X I C @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
CPV364M4K
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (Figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot.
Case Outline IMS-2
62.43 (2.458) 3.91 ( .154) 2X 53.85 ( 2.120)
7.87 (.310) 5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S: 1. Tolerance unless otherwis e spec ified ± 0.254 (.010) . 2. Controlling D imension: Inch. 3. Dimens ions ar e shown in Millimeter ( Inc hes) . 4. Term inal numbers are shown for refer enc e only.
3.94 (.155) 1.27 ( .050) 3.05 ± 0.38 (.120 ± .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240)
4.06 ± 0.51 (.160 ± .020) 5.08 (.200) 6X
1.27 (.050) 13X 2.54 (.100) 6X
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 7/97