Bulletin I-27256 09/06
CPV364M4KPbF
IGBT SIP MODULE
• Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10μs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) • Totally Lead-Free and RoHs Compliant
Short Circuit Rated UltraFast IGBT
1
Features
3
Q1
D1 9 4 D2 12
Q3
D3 15 10 D4 18
Q5
D5 16
6
Q2
Q4
Q6
D6
7
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive 11 ARMS per phase (3.1 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Isolated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM tsc VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 min Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw.
Max.
600 24 13 48 48 9.3 ±20 2500 63 25 -55 to +150 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in ( 0.55-0.8 N•m)
Units
V A
μs V VRMS W
°C
Thermal Resistance
Parameter
RθJC (IGBT) RθJC (DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module
Typ.
––– ––– 0.10 20 (0.7)
Max.
2.2 3.7 ––– –––
Units
°C/W g (oz)
www.irf.com
1
CPV364M4KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES Parameter Collector-to-Emitter Breakdown Voltage ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage Min. 600 ––– ––– ––– ––– 3.0 ––– 11 ––– ––– ––– ––– ––– Typ. ––– 0.63 1.80 1.80 1.56 ––– -13 18 ––– ––– 1.3 1.2 ––– Max. Units Conditions ––– V VGE = 0V, IC = 250μA ––– V/°C VGE = 0V, IC = 1.0mA 2.3 IC = 13A VGE = 15V ––– V IC = 24A See Fig. 2, 5 1.73 IC = 13A, T J = 150°C 6.0 VCE = VGE, IC = 250μA ––– mV/°C VCE = VGE, IC = 250μA ––– S VCE = 100V, IC = 10A 250 μA VGE = 0V, VCE = 600V 3500 V GE = 0V, VCE = 600V, TJ = 150°C 1.7 V IC = 15A See Fig. 13 1.6 IC = 15A, T J = 150°C ±100 n A VGE = ±20V
VGE(th)
ΔVGE(th)/ΔTJ
gfe ICES V FM IGES
Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current Diode Forward Voltage Drop Gate-to-Emitter Leakage Current
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc td(on) tr td(off) tf Ets LE Cies Coes Cres t rr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak Reverse Recovery Current Diode Reverse Recovery Charge Diode Peak Rate of Fall of Recovery During t b Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. 110 14 49 50 30 110 91 0.56 0.28 0.84 — 47 30 250 150 1.28 7.5 1600 130 55 42 74 4.0 6.5 80 220 188 160 Max. Units Conditions 170 IC = 13A 21 nC VCC = 400V See Fig.8 74 V GE = 15V — — TJ = 25°C ns 170 IC = 13A, V CC = 480V 140 VGE = 15V, RG = 10 Ω — Energy losses include "tail" — mJ and diode reverse recovery 1.1 See Fig. 9,10, 18 — μs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω , V CPK < 500V — TJ = 150°C, See Fig. 11,18 — IC = 13A, V CC = 480V ns — VGE = 15V, RG = 10 Ω — Energy losses include "tail" — mJ and diode reverse recovery — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 15A 6.0 A TJ = 25°C See Fig. 10 TJ = 125°C 15 VR = 200V 180 nC TJ = 25°C See Fig. 16 di/dt = 200Aμs 600 TJ = 125°C — A/ μ s TJ = 25°C See Fig. — TJ = 125°C 17
2
www.irf.com
CPV364M4KPbF
18 16 14
5.27
4.10 3.51 2.93 2.34 1.76 1.17 0.59 0.00
12 10 8 6 4 2 0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
100
I C , Collector-to-Emitter Current (A)
TJ = 150 °C
I C , Collector-to-Emitter Current (A)
T = 150 °C J
10
10
TJ = 25 °C
T = 25 °C J
1
V GE = 15V 20µs PULSE WIDTH
1 10
1
V CC = 50V 5µs PULSE WIDTH
5 6 7 8 9 10
VCE , Collector-to-Emitter Voltage (V)
VGE, Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
Total Output Power (kW)
LOAD CURRENT (A)
Tc = 90°C Tj = 125°C Power Factor = 0.8 Modulation Depth = 1.15 Vcc = 50% of Rated Voltage
4.68
3
CPV364M4KPbF
160
Maximum DC Collector Current (A)
4.0
140 120 100 80 60 40 20 0 0 5
TC, Case Temperature (°C)
VCE , Collector-to-Emitter Voltage(V)
VGE = 15V 80 us PULSE WIDTH
3.0
IC = 26A
DC
Square wave (D=0.50) 80% rated Vr applied
2.0
IC = 13A IC = 6.5A
see note (2)
10
15
20
25
30
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
10
Thermal Response (Z thJC )
1
D = 0.50
0.20 0.10
P
0.05
DM
0.1
0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty factor D = t
t
1 t2
1
/t
2
0.01 0.00001
2. Peak TJ = P DM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
CPV364M4KPbF
3000
2500
VGE , Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 13A
16
C, Capacitance (pF)
2000
Cies
1500
12
8
1000
500
4
Coes Cres
1 10 100
0
0 0 20 40 60 80 100 120
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
1.5
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 480V VGE = 15V TJ = 25 ° C I C = 13A
10
RG = 10Ω Ohm VGE = 15V VCC = 480V IC = 26 A
IC = 13 A
1
1.0
IC = 6.5 A
0.5 0 10 20 30 40 50
0.1 -60 -40 -20
0
20
40
60
80 100 120 140 160
RG GGate Resistance (Ohm) R, , Gate Resistance ( Ω )
TJ , Junction Temperature ( ° ) C
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
CPV364M4KPbF
4.0
3.0
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
RG TJ VCC VGE
10 Ω = Ohm = 150 °C = 480V = 15V
1000
VGE = 20V TJ = 125°C
100
2.0
SAFE OPERATING AREA
10
1.0
0.0
0
5
10
15
20
25
30
1 1 10 100
A
1000
I C , Collector-to-emitter Current (A)
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
100
Fig. 12 - Turn-Off SOA
Instantaneous Forward Current - I F (A)
10
TJ = 150°C TJ = 125°C TJ = 25°C
1 0.8
1.2
1.6
2.0
2.4
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
Forward Voltage Drop - V FM (V)
6
www.irf.com
CPV364M4KPbF
100
100
VR= 200V T J = 125°C T J = 25°C
80
VR = 200V TJ = 125°C TJ = 25°C
I F = 30A
t rr - (ns)
I F = 30A
60
I IRRM - (A)
10
IF = 15A
I F = 15A
40
I F = 5.0A
I F = 5.0A
20 100
di f /dt - (A/µs)
1000
1 100
di f /dt - (A/µs)
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
800
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
VR = 200V TJ = 125°C TJ = 25°C
600
VR = 200V TJ = 125°C TJ = 25°C
IF = 30A
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
I F = 5.0A I F = 15A I F = 30A
I F = 15A IF = 5.0A
200
0 100
di f /dt - (A/µs)
1000
100 100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
www.irf.com
7
CPV364M4KPbF
90% Vge +Vge
Same type device as D.U.T.
10% Vce
Vce
90% Ic Ic 5% Ic
Ic
80% of Vce
430µF D.U.T.
td(off) tf
Eoff =
∫
t1+5µS Vce ic dt t1
Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T. 10% +Vg +Vg
trr Ic
Qrr =
∫
trr id dt tx
tx 10% Vcc Vce Vcc 10% Ic 90% Ic DUT VOLTAGE AND CURRENT Ipk
10% Irr Vcc
Vpk
Irr
Ic DIODE RECOVERY WAVEFORMS
td(on)
tr
5% Vce t2 Eon = Vce ie dt t1
∫
t1
t2
DIODE REVERSE RECOVERY ENERGY t3
t4 Erec = Vd id dt t3
∫
t4
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
CPV364M4KPbF
Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000µF 100V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current Test Circuit
www.irf.com
9
CPV364M4KPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10μH, RG = 10Ω (Figure 19) Pulse width ≤ 80μs; duty factor ≤ 0.1%. Pulse width 5.0μs, single shot.
Case Outline — IMS-2
IMS-2 Package Outline (13 Pins)
Dimensions in Millimeters and (inches)
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 09/06
10
www.irf.com