PD - 50048D
GA500TD60U
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Features
• Generation 4 IGBT technology • UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode • Very low conduction and switching losses • HEXFRED™ antiparallel diodes with ultra- soft recovery • Industry standard package • UL approved
Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.9V
@VGE = 15V, IC = 500A
Benefits
• Increased operating efficiency • Direct mounting to heatsink • Performance optimized for power conversion: UPS, SMPS, Welding • Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25°C ICM ILM IFM VGE VISOL PD @ TC = 25°C PD @ TC = 85°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 500 1000 1000 500 ±20 2500 1550 800 -40 to +150 -40 to +125
Units
V A
V W °C
Thermal / Mechanical Characteristics
Parameter
RθJC RθJC RθCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3 S Weight of Module
Typ.
— — 0.1 — — 400
Max.
0.08 0.20 — 6.0 5.0 —
Units
°C/W N. m g
www.irf.com
1
05/15/02
GA500TD60U
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 — — VGE = 0V, IC = 1mA — 1.9 2.4 VGE = 15V, IC = 500A — 2.0 — V VGE = 15V, IC = 500A, TJ = 125°C Gate Threshold Voltage 3.0 — 6.0 IC = 3.0mA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 3.0mA Forward Transconductance T — 244 — S VCE = 25V, I C = 500A Collector-to-Emitter Leaking Current — — 2.0 mA VGE = 0V, VCE = 600V — — 20 VGE = 0V, VCE = 600V, TJ = 125°C Diode Forward Voltage - Maximum — 4.0 — V IF = 500A, VGE = 0V — 4.1 — IF = 500A, VGE = 0V, TJ = 125°C Gate-to-Emitter Leakage Current — — 250 nA VGE = ±20V
Dynamic Characteristics - TJ = 125°C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. — — — — — — — — — — — — — — — — — Typ. 2100 292 1050 1900 430 800 190 41 56 97 46800 2920 600 246 144 17655 1386 Max. Units Conditions 3200 VCC = 400V 440 nC IC = 500A 1580 TJ = 25°C — RG1 = 15Ω, RG2 = 0Ω, — ns IC = 500A — VCC = 360V — VGE = ±15V — mJ See Fig.17 through Fig.21 — 110 — VGE = 0V — pF VCC = 30V — ƒ = 1 MHz — ns IC = 500A — A RG1 = 15Ω — µC RG2 = 0Ω — A/µs VCC = 360V di/dt=1300A/µs
2
www.irf.com
GA500TD60U
250
F o r b o thwave: Square :
200
LOAD CURRENT (A)
D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G CE =d60% a s s p e c ifie d V a te riv e Rated
P o w e r D is s ip a tio n = 270 W
150
100
50
0 0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
25 TJ = 150 o C
TJ = 25 o C
I C , Collector-to-Emitter Current (A)
TJ = 150 oC 25
100
100
TJ = 25 oC
10 1.0
V = 15V 20µs PULSE WIDTH
GE 80µs 1.5 2.0 2.5 3.0
10 5 6 7 8
V = 50V 5µs PULSE WIDTH
CC CE 80µs
25V
9
10
11
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA500TD60U
600 2.5
500
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
400
2.0
IC = 500A IC = 500 A
300
IC = 250 A
1.5
200
100
IC = 125 A
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( ° C)
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
0.1
T he rm a l R es pon se (Zth JC )
D = 0 .5 0
0.20 0.01 0.10
P DM
t
0.05 S IN G LE P U LS E ( TH E RM AL R E SP O NS E ) 0.01 0.1 1
Notes: 1. Duty factor D = t
1 t2
0.01 0.0 2 0.001 0.0001 0.001
1 / t2
2. Peak TJ = PDM x Z thJC + TC
A
1000
10
100
t 1 , R ecta n g u la r Pulse D u ration ( se c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA500TD60U
100000
80000
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
Cies
60000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 500A
16
12
40000
C oes C res
8
20000
4
0 1 10 100
0 0 400 800 1200 1600 2000 2400
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
200
Total Switching Losses (mJ)
160
Total Switching Losses (mJ)
V CC = 360V V GE = 15V TJ = 125 ° C 180 I C = 500A 250A
1000
RG1=15OhmG2 = 0 Ω G = Ω;R VGE = 15V VCC = 360V
140
100
IIC = 500A C = 500 A IC = 250 A IC = 125 A
120
100
80 0 10 20 30 40 50
(Ω RG , Gate Resistance (Ohm) )
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA500TD60U
250
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
RG =15Ω;RG2 = 0 G1 = Ohm T J = 125 ° C VCC = 360V 200 VGE = 15V
Ω
1400
1200
V G E = 2 0V T J = 125°C V C E m easured at term inal ( Peak V olta g e )
1000
150
800
S AFE OPERATING AREA
100
600
400
50
200
0 0 200 400 600 800 1000
0 0 100 200 300 400 500 600
A
700
I C , Collector-to-emitter Current (A)
VCE , C ollector-to-Emitter Voltag e ( V )
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Reverse Bias SOA
30000
IF = 1000 A
Instantaneous Forward Current - IF ( A )
IF = 5 0 0 A IF = 250A
20000
100
TJ = 1 25°C TJ = 25°C
QRR - ( nC)
10000
VR = 3 6 0 V T J = 1 2 5 °C T J = 2 5 °C
10 0.0 2.0 4.0 6.0
0 500
1000
1500
2000
F o rw a rd V o lta g e D ro p - V FM (V )
dif/dt - (A/µs)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA500TD60U
400 250
I F = 1 00 0A I F = 5 00 A
300 200
I F = 25 0A
I F = 10 00 A I F = 50 0A I F = 2 50 A
trr - ( ns )
200
IRRM - ( A )
150
100
100 50
VR = 3 6 0 V T J = 1 2 5 °C TJ = 2 5 ° C
0 500 1000 1500 2000 0 500 1000
VR = 3 6 0 V T J = 1 2 5 °C T J = 2 5 °C
1500
2000
dif/dt - (A/µs)
dif/dt - (A/µs)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA500TD60U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
∫ Vce Ic dt
t1 + 5 µ S V c e ic d t t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
∫
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
∫
E re c =
∫
t4 V d idIc t dt Vd d t3
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA500TD60U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
L 1000V 50V 6000µ F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25°C
Figure 22. Clamped Inductive Load Test Circuit
Figure 23. Pulsed Collector Current Test Circuit
www.irf.com
9
GA500TD60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T Pulse width 80µs; single shot.
Case Outline — DUAL INT-A-PAK
107.30 4.224 106.30 4.185 3X M6 8 [.314] MAX.
[] 93.30 3.673 92.70 [3.650]
28.60 2X 27.40 1.079 [1.126] 4X 6.60 5.40 .213 [.260]
NOTES : 1. ALL DIMENS IONS ARE S HOWN IN MILLIMETERS [INCHES ]. 2. CONTROLLING DIMENS ION: MILLIMETER.
11 10 48.30 47.70 1.878 [1.902] 8 9 1 2 3
6 7 5 4 2X 15.59 14.39 .567 [.614] 4X FAS TON TAB (110) 2.8 x 0.5 [.110 x .020]
6.80 4X Ø 6.20
.244 [.267]
48.50 47.50
1.870 [1.909]
8.00 6.60
.260 [.315] 31.00 29.60 1.165 [1.220]
5.50 4.50
.177 [.217]
24.00 23.00
.906 [.945] 2.303 [2.343] 62.70 2.468 61.70 [2.429] 59.50 58.50
0.15 [.0059] CONVEX 104.50 103.50 4.075 [4.114]
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com