Bulletin I27278 01/07
GB10RF120K
IGBT PIM MODULE
Features
• Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF • 10μs Short Circuit Capability • Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate • Low Stray Inductance Design • TOTALLY LEAD-FREE
VCES = 1200V IC = 13A @ TC=80°C tsc > 10μs @ TJ =150°C ECONO2 PIM VCE(on) typ. = 2.68V
Benefits
• • • • • • • Benchmark Efficiency for Motor Control Rugged Transient Performance Low EMI, Requires Less Snubbing Direct Mounting to Heatsink PCB Solderable Terminals Low Junction to Case Thermal Resistance UL Approved E78996
R 23 24
Absolute Maximum Ratings
Parameter
Inverter Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Diode Maximum Forward Current Power Dissipation Input Rectifier Repetitive Peak Reverse Voltage Average Output Current Surge Current (Non Repetitive) I2 t (Non Repetitive) Brake Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Power Dissipation Maximum Operating Junction Temperature Storage Temperature Range Isolation Voltage
Symbol
VCES VGES IC ICM IFM PD V RRM IF(AV) IFSM I2t VCES VGES IC ICM PD TJ TSTG VISOL
Test Conditions
Ratings
1200 ±20
Units
V
Continuos Pulsed Pulsed One IGBT 50/60Hz sine pulse
25°C / 80°C 25°C 25°C 25°C 80°C
20 / 13 40 40 88 1600 13 120 72 1200 ±20 A 2s V A W °C V W V A A
Rated VRRM applied, 10ms, sine pulse
Continuous Pulsed One IGBT
25°C / 80°C 25°C 25°C
20 / 13 40 88 150 -40 to +125
AC (1 min)
2500
Thermal and Mechanical Characteristics
Parameter
Junction-to-Case Inverter IGBT Thermal Resistance Junction-to-Case Inverter FRED Thermal Resistance Junction-to-Case Brake DIODE Thermal Resistance Junction-to-Case Brake IGBT Thermal Resistance Junction-to-Case Input Rectifier Thermal Resistance Case-to-Sink, flat, greased surface Mounting Torque (M5) Weight RθCS RθJC
Symbol
Min
2.7
Typical
0.05 170
Maximum
1.42 1.97 1.97 1.42 1.11 3.3
Units
°C/W
Nm g
1
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Inverter IGBT BV(CES) V CE(ON) Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 1200 V VGE = 0 IC = 500μA VGE(th) ICES IGES QG QGE QGC EON EOFF ETOT EON EOFF ETOT td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Gate Threshold Voltage Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area 4 Δ V GE (th)/ Δ T J Thresold Voltage temp. coefficient 1.33 2.68 3.68 3.19 4.52 -9.7 750 48 8 22 0.96 0.46 1.42 1.25 0.69 1.94 86 21 118 274 750 190 20 3.03 4.55 3.61 5.17 6 100 ±200 72 15 33 1.44 0.70 2.14 1.88 0.95 2.83 130 32 180 410 1150 290 35 pF VGE = 0 VCC = 30V f = 1Mhz Tj = 125°C IC = 40A RG = 22Ω VGE = 15V to 0 10 μs Tj = 150°C VCC = 960V VP = 1200V RG = 22Ω Inverter IGBT Irr Diode Peak Rev. Recovery Current 22 A Tj = 125°C VCC = 600V IF = 10A L = 1mH VGE = 15V RG = 22Ω V FM Diode Forward Voltage Drop 2.02 2.53 2.13 2.81 2.50 3.35 2.63 3.57 V IF = 10A IF = 20A IF = 10A Tj = 125°C IF = 20A Tj = 125°C VGE = 15V to 0 ns mJ mJ nC nA mV/°C μA V/°C V VGE = 0 IC = 1mA (25°C - 125°C) IC = 10A VGE = 15V IC = 20A VGE = 15V IC = 10A VGE = 15V TJ = 125°C IC = 20A VGE = 15V TJ = 125°C VCE = VGE IC = 250μA VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 1200V VGE = 0 VCE = 1200V Tj = 125°C VGE = ±20V IC = 10A VCC = 600A VGE = 15V IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mH Tj = 25°C
1
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mH Tj = 125°C
1
IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mH Tj = 125°C
FULL SQUARE
2
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V FM Input Rectifier IRM rT V F(TO) Brake IGBT BV(CES) VCE(ON) Parameter Maximum Forward Voltage Drop Maximum Reverse Leakage Current Forward Slope Resistance Conduction Thresold Voltage Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 1.12 V IF = 10A 1200 VGE(th) Δ V GE (th)/ Δ T J ICES IGES QG QGE QGC EON EOFF ETOT EON EOFF ETOT td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Gate Threshold Voltage Thresold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area 4.0 1.33 2.68 3.68 3.19 4.52 -9.7 750 48 8 22 0.96 0.46 1.42 1.25 0.69 86 21 118 274 750 190 20 0.05 1.0 18.1 0.78 3.03 4.55 3.61 5.17 6.0 100 ±200 72 15 33 1.44 0.70 2.14 1.88 0.95 130 32 180 410 1150 290 35 pF VGE = 0 VCC = 30V f = 1Mhz Tj = 125°C IC = 40A RG = 22Ω VGE = 15V to 0 10 μs Tj = 150°C VCC = 960V, VP = 1200V RG = 22Ω Brake Diode Irr Diode Peak Rev. Recovery Current 22 A Tj = 125°C VCC = 600V IF = 10A L = 1mH VGE = 15V RG = 22Ω V FM Diode Forward Voltage Drop NTC R B Resistance B Value 2.02 2.53 2.13 2.81 5000 493.3 3375 2.5 3.35 2.63 3.57 K Ω V IF = 10A IF = 20A IF = 10A Tj = 125°C IF = 20A Tj = 125°C Tj = 25°C Tj = 100°C Tj = 25°C / 50°C VGE = 15V to 0 ns mJ mJ nC nA mV/°C μA mΩ V V V/°C V VGE = 0 VGE = 0 IC = 500μA IC = 1mA (25°C - 125°C) mA Tj = 25°C VR = 1600V Tj = 150°C VR = 1600V Tj = 150°C
ΔV(BR)CES/ΔTJ Temp. Coefficient of Breakdown Voltage
IC = 10A VGE = 15V IC = 20A VGE = 15V IC = 10A VGE = 15V TJ = 125°C IC = 20A VGE = 15V TJ = 125°C VCE = VGE IC = 250μA VCE = VGE IC = 1mA (25°C-125°C) VGE = 0 VCE = 1200V VGE = 0 VCE = 1200V Tj = 125°C VGE = ±20V IC = 10A VCC = 600A VGE = 15V IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mH Tj = 25°C
1
IC = 10A VCC = 600V VGE = 15V RG = 22Ω L = 1mμH Tj = 125°C
1
1.94 2.830
IC =10A VCC = 600V VGE = 15V RG = 22Ω L = 1mH Tj = 125°C
FULL SQUARE
1
Energy Losses include "tail" and diode reverse recovery
www.irf.com
3
GB10RF120K
Bulletin I27278 11/06
20
Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V
Inverter
20
Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V
15 Ice (A)
15 Ice (A) 2
10
10
5
5
0 3 4 5 6 Vce (V) Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 0 1
0 3 4 5 6 Vce (V) Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs 0 1 2
80 70 60 Ice (A) 50 40 30 20 10 0 0 8 10 12 14 16 18 20 Vge (V) Fig. 3 - Typ. Transfer Characteristics VCE=50V; tp=10μs 2 4 6 Vce (V) Tj = 25°C Tj = 125°C
20 18 16 14 12 10 8 6 4 2 0 5 15 Vge (V) Fig. 4 - Typical VCE vs. VGE TJ = 25°C 10 20
Ice=5A Ice=10A Ice=20A
20 18 16 14 Vce (V) 12 10 8 6 4 2 5 10 Vge (V) 15 20
10000
Capacitance (pF)
Ice=12.5A Ice=25A Ice=50A
1000
Cies Coes
100 Cres 10 0 40 60 80 100 Vce (V) Fig. 6- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz 20
Fig. 5 - Typical VCE vs. VGE TJ = 125°C
4
www.irf.com
GB10RF120K
Bulletin I27278 11/06
35 30 25 Irr (A) 20 15 10 5 0 0 10 15 20 25 If (A) Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C
14 12
Inverter
35
Rg=4.7Ω Rg=10Ω Rg=22Ω Rg=33Ω Rg=47Ω
30 25 Irr (A) 20 15 10 5
5
0 0 20 30 40 50 Rg (Ω ) Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 10A 10
35 30 25 Irr (A) 20 15 10 5 600 700 800 900 1000 dif/dt (A/µs) Fig. 15- Typical Diode IRR vs. diF/dt; VCC= 600V; VGE= 15V; ICE= 10A; TJ = 125°C
90
Instantaneous Forward Current - I F ( A )
Thermistor
Thermistor Resistance ( k Ω)
10 8 6 4 2 0
0 400
500
0
20
40
60
80
100
120
140
160
180
T J , Junction Temperature (°C)
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
80 70 60 50 40 30 20 10 0 0.0 0.5 1.0 1.5 2.0 2.5 Forward Voltage Drop - V F ( V ) T J = 125°C T J = 25°C
Fig. 17- Typ. Diode Forward Characteristics tp = 80μs
6
www.irf.com
GB10RF120K
Inverter
Bulletin I27278 11/06
10
JC Thermal Response (Zth )
1
0.5 0.3
0.1
0.1 0.05 0.02 0.01
Tτ JJ τ1
R1 R1 τ2
R2 R2
TC
τ1 τ2
0.01
Ci= τi/Ri Ci i/Ri
Ri (°C/W) 0.5523 0.8679
τi (sec) 0,413 0.649
SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc
0.001 1E-05
1E-03 1E-02 1E-01 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
1E-04
1E+00
10
JC Thermal Response (Zth )
1
0.5 0.3 0.1
R1 R1 R2 R2 τ2 R3 R3
TJ
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
τJ τ1
TC
τ1 τ2 τ3 τ3
Ci= τi/Ri Ci= i/Ri
Ri (°C/W) τi (sec) 0.5125 0.000527 0.4129 0.001438 1.0447 0.027308
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc
0.01 1E-05
1E-03 1E-02 1E-01 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
1E-04
1E+00
www.irf.com
7
GB10RF120K
Bulletin I27278 11/06
20
Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V
Brake
20
Vge=18V Vge=15V Vge=12V Vge=10V Vge=8V
15 Ice (A)
15 Ice (A) 2
10
10
5
5
0 3 4 5 6 Vce (V) Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 0 1
0 3 4 5 6 Vce (V) Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80μs 0 1 2
80 70 60 Ice (A) 50 40 30 20 10 0 0 8 10 12 14 16 18 20 Vge (V) Fig. 22 - Typ. Transfer Characteristics VCE=50V; tp=10μs 2 4 6 Vce (V) Tj = 25°C Tj = 125°C
20 18 16 14 12 10 8 6 4 2 0 5 15 Vge (V) Fig. 23 - Typical VCE vs. VGE TJ = 25°C 10 20
Ice=5A Ice=10A Ice=20A
20 18 16 14 Vce (V) 12 10 8 6 4 2 5 10 Vge (V) 15 20
10000
Capacitance (pF)
Ice=12.5A Ice=25A Ice=50A
1000
Cies Coes
100 Cres 10 0 40 60 80 100 Vce (V) Fig. 25- Typ. Capacitance vs. VCE VGE= 0; f = 1MHz 20
Fig. 24 - Typical VCE vs. VGE TJ = 125°C
8
www.irf.com
Brake
16 14 12 10 VGE (V) 8 6 4 2 0 0 10 20 30 40 QG, Total Gate Charge (nC) 50 600V
GB10RF120K
Bulletin I27278 01/07
40 35 30 Tj = 25°C Tj = 125°C
If (A)
25 20 15 10 5 0 1.5 2 2.5 3 3.5 4 Vf (V) Fig. 27 - Typ. Diode Forward Characteristics tp = 80μs 0 0.5 1
Fig. 26 - Typical Gate Charge vs. VGE ICE = 10A
3 2.5 Energy (mJ) 2 EON 1.5 1 0.5 0 10 15 20 25 Ic (A) Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=1mH; VCE= 600V;RG= 22Ω; VGE= 15V
1.8 1.5 Energy (mJ) 1.2 0.9 0.6 0.3 0 20 30 40 50 Rg (Ω ) Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V 0 10 EOFF ETOT
Switching Time (µs)
1 tF
ETOT
Swiching Time (µs) 0.1 tdOFF tdON 0.01 tR
EOFF
0.001 10 15 20 25 Ic (A) Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=1mH; VCE= 600V; RG= 22Ω; VGE= 15V
1 Tf
0
5
0
5
EON
Td(off) 0.1 Td(on)
0.01
Tr
0.001 0 10 20 30 40 50
IC (A) Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=1mH; VCE= 600V; ICE= 10A; VGE= 15V
www.irf.com
9
GB10RF120K
Bulletin I27278 11/06
Brake
35 30 25 Irr (A) 20 15 10 5 0 0 5 10 15 If (A) 20 25
Rg=4.7Ω Rg=10Ω Rg=22Ω Rg=33Ω Rg=47Ω
35 30 25 Irr (A) 20 15 10 5 0 0 10 20 30 Rg (Ω ) 40 50
Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 33 - Typical Diode IRR vs. RG TJ = 125°C; IF = 10A
35 30 25 Irr (A) 20 15 10 5 0 400
500
600 700 800 dif/dt (A/µs)
900 1000
Fig. 34- Typical Diode IRR vs. diF/dt; VCC= 600V; VGE= 15V; ICE= 10A; TJ = 125°C
10
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Brake
10
JC Thermal Response (Zth )
1
0.5 0.3
0.1
0.1 0.05 0.02 0.01
Tτ JJ τ1
R1 R1 τ2
R2 R2
TC
τ1 τ2
0.01
Ci= τi/Ri Ci i/Ri
Ri (°C/W) 0.5523 0.8679
τi (sec) 0,413 0.649
SINGLE PULSE (THERMAL RESPONSE)
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc
0.001 1E-05
1E-04
1E-03 1E-02 t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig. 35 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
10
JC Thermal Response (Zth )
1
0.5 0.3 0.1
R1 R1 R2 R2 τ2 R3 R3
TJ
0.1
0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE)
τJ τ1
TC
τ1 τ2 τ3 τ3
Ci= τi/Ri Ci= i/Ri
Ri (°C/W) τi (sec) 0.5125 0.000527 0.4129 0.001438 1.0447 0.027308
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + tc
0.01 1E-05
1E-04
1E-03 1E-02 t1 , Rectangular Pulse Duration (sec)
1E-01
1E+00
Fig. 36 - Maximum Transient Thermal Impedance, Junction-to-Case (Brake DIODE)
www.irf.com
11
GB10RF120K
Bulletin I27278 11/06
VCC ICM diode clamp/ DUT L
R=
+
VGE 1mA
-+
VCC 5V DUT/ DRIVER
-
+ -
VCC
IC
RG
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp/ DUT L
+
DUT
-+
VCC 5V DUT/ DRIVER
-
+ -
VCC
RG
RG
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
VCC ICM
DUT
+ VCC -
RG
Fig.C.T.5 - Resistive Load Circuit
12
www.irf.com
GB10RF120K
Bulletin I27278 11/06
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
Econo2 PIM Part Marking Information
LOT Made in Italy
GB10RF120K
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/06
www.irf.com
13
很抱歉,暂时无法提供与“GB10RF120K”相匹配的价格&库存,您可以联系我们找货
免费人工找货