PD - 94552
GB25RF120K
IGBT PIM MODULE
Features
• Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF • 10µs Short Circuit Capability • Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Diode Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate • Low Stray Inductance Design
VCES = 1200V IC = 25A, TC=80°C tsc > 10µs, TJ=150°C
ECONO2 PIM
VCE(on) typ. = 2.40V
Benefits
• Benchmark Efficiency for Motor Control • Rugged Transient Performance • Low EMI, Requires Less Snubbing • Direct Mounting to Heatsink • PCB Solderable Terminals • Low Junction to Case Thermal Resistance • UL Listed
Absolute Maximum Ratings (TJ =25°C, unless otherwise indicated)
Parameter
Inverter Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Diode Maximum Forward Current Power Dissipation Input Repetitive Peak Reverse Voltage Surge Current (Non Repetitive) I t (Non Repetitive) Brake Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Power Dissipation Repetitive Peak Reverse Voltage Maximum Operating Junction Temperature Storage Temperature Range Isolation Voltage
2
Symbol
VCES VGES IC ICM IFM d PD VRRM IF(AV) IFSM It VCES VGES IC ICM PD VRRM TJ TSTG VISOL
2
Test Conditions
Ratings
1200 ±20
Units
V
Continuous
25°C / 80°C 25°C 25°C
40 / 25 80 80 198 1600 20 250 316 1200 ±20 As V A W V °C V
2
A W V A
1 device 50/60Hz sine pulse sine pulse
25°C 80°C
Rectifier Average Output Current
Rated VRRM applied, 10ms,
Continuous 1 device — — AC(1min.)
25°C / 80°C 25°C 25°C — —
25 / 15 50 104 1200 150 -40 to +125 2500
Thermal and Mechanical Characteristics
Parameter
Junction-to-Case Inverter IGBT Thermal Resistance Junction-to-Case Inverter FRED Thermal Resistance Junction-to-Case Brake IGBT Thermal Resistance Junction-to-Case Brake Diode Thermal Resistance Junction-to-Case Input Rectifier Thermal Resistance Mounting Torque (M5) RTHJC
Symbol
Min
— — — — — 2.7
Typical
— — — — — —
Maximum
0.63 1.0 1.2 2.3 0.85 3.3
Units
°C/W
Nm
1
www.irf.com
10/17/02
GB25RF120K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Inverter IGBT BVCES VCE(on)
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
Min. Typ. Max. Units
1200 — — — — — — 1.0 2.40 2.95 2.85 3.55 5.0 -10 11 750 — 175 17.5 81 2450 2050 4500 3350 2850 6200 80 50 510 230 2370 455 60 — — 2.70 3.30 — — 6.0 — 100 — ±200 265 30 125 4450 3200 7650 5650 3850 9500 104 70 1000 299 — — — pF VGE = 0V VCC = 30V ns µJ µJ nC nA V V/°C V
Conditions
VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 25A, VGE = 15V IC = 40A, VGE = 15V IC = 25A, VGE = 15V, TJ = 125°C IC = 40A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250µA
3,4,5 1,2 4,5
Collector-to-Emitter Voltage
VGE(th) ∆VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA
Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
4.0 — — — — — — — — — — — — — — — — — — — —
mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125°C VGE = ±20V IC = 25A VCC = 400V VGE = 15V IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 25°C
CT4 7 CT1
e
IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 125°C
9,11 CT4 WF1,2 10,12 CT4 W F1 WF2
e
IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 125°C
6
FULL SQUARE
f = 1.0Mhz TJ = 150°C, IC = 80A RG = 10Ω, VGE = +15V to 0V TJ = 150°C
CT2
CT3 WF4
SCSOA Inverter FRED Irr
Short Circuit Safe Operating Area
10
—
—
µs
VCC = 900V, VP = 1200V RG = 10Ω, VGE = +15V to 0V TJ = 125°C
13,14,15 CT4
Diode Peak Reverse Recovery Current
— —
35 1.90 2.25 2.00 2.45
— 2.35 2.80 — —
A V
VCC = 600V, IF = 25A, L = 400µH VGE = 15V, RG = 10Ω IF = 25A IF = 40A IF = 25A, TJ = 125°C IF = 40A, TJ = 125°C
VFM
Diode Forward Voltage Drop
— — —
8
2
www.irf.com
GB25RF120K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Input VFM Maximum Forward Voltage Drop Maximum Reverse Leakage Current Forward Slope Resistance Conduction Threshold Voltage Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Rectifier IRM rT VF(TO) Brake IGBT BVCES VCE(on)
Min. Typ. Max. Units IF = 25A V — — 1.5
— — — — 1200 — — — — — — — — — — 1.6 2.30 3.00 2.70 3.70 5.0 -10 8.0 370 — 96 46 10 1050 750 1800 1350 1100 2450 50 36 350 210 2370 460 60 0.1 1.0 10.4 0.85 — — 2.50 3.25 — — 6.0 — 50 — ±200 145 70 15 1200 1000 2200 1500 1250 2750 65 50 400 275 — — — pF VGE = 0V VCC = 30V ns µJ µJ nC nA mΩ V V V/°C V mA
Conditions
17
TJ = 25°C, VR = 1600V TJ = 150°C, VR = 1600V TJ = 150°C VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 12.5A, VGE = 15V IC = 25A, VGE = 15V IC = 12.5A, VGE = 15V, TJ = 125°C IC = 25A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250µA
22,23,24
20,21 23,24
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VGE(th) ∆VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA
Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area
4.0 — — — — — — — — — — — — — — — — — — — —
mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125°C VGE = ±20V IC = 12.5A VCC = 400V VGE = 15V IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 25°C
CT4 26 CT1
e
IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 125°C
28,30 CT4 WF3,4 29,31 CT4 W F3 WF4
e
IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 125°C
25
FULL SQUARE
f = 1.0Mhz TJ = 150°C, IC = 50A RG = 22Ω , VGE = +15V to 0V TJ = 150°C
CT2
CT3
SCSOA Brake Diode Irr
Short Circuit Safe Operating Area Diode Peak Reverse Recovery Current
10 — —
— 24 1.90 2.40 2.00 2.65 5000 3375
— — 2.10 2.65 — — 5495 3443
µs A V
VCC = 900V, VP = 1200V RG = 22Ω , VGE = +15V to 0V VCC = 600V, IF = 12.5A, L = 400µH VGE = 15V, RG = 22Ω, TJ = 125°C IF = 8.0A IF = 16A IF = 8.0A, TJ = 125°C IF = 16A, TJ = 125°C
27
32,33,34 CT4
VFM
Diode Forward Voltage Drop
— — —
NTC
R B
Resistance B Value
4538 3307
Ω K
TJ = 25°C TJ = 100°C TJ = 25 / 50 °C
16
468.6 493.3 518.0
Note:
For UL Applications, TJ is limited to +125°C. (See File E78996). Power dependent on temperature. TJ not to exceed TJ max. Energy losses include "tail" and diode reverse recovery.
www.irf.com
3
GB25RF120K
Inverter
50 45 40 35
ICE (A)
50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
45 40 35 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
30 25 20 15 10 5 0 0
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
350 300
Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
20 18 16
250
ICE (A)
T J = 25°C T J = 125°C
VCE (V)
14 12 10 8 6 ICE = 12.5A ICE = 25A ICE = 50A
200 150 100 50 0 0 5 10 VGE (V) 15 20
T J = 125°C T J = 25°C
4 2 0 5 10 VGE (V) 15 20
Fig. 3 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
20 18 16
Capacitance (pF)
10000
Fig. 4 - Typical VCE vs. VGE TJ = 25°C
Cies
14
1000
VCE (V)
12 10 8 6 4 2 0 5 10
Coes
ICE = 12.5A ICE = 25A ICE = 50A
100
Cres
10
15 VGE (V)
20
0
20
40
60
80
100
VCE (V)
Fig.5 - Typical VCE vs. VGE TJ = 125°C
Fig. 6- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
4
www.irf.com
GB25RF120K
Inverter
16 14 400V 12 10
VGE (V)
100 90 80 600V
IF (A)
25°C 125°C
70 60 50 40 30
8 6 4
20 2 0 0 50 100 150 200 Q G , Total Gate Charge (nC) 10 0 0.0 1.0 2.0 VF (V) 3.0 4.0
Fig. 7 - Typical Gate Charge vs. VGE ICE = 25A; L = 1mH
10000 9000 8000
Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs
1000
tdOFF tF
6000 5000 4000 3000 2000 1000 0 0 10 20
EON
Swiching Time (ns)
7000
Energy (µJ)
100
tdON
EOFF
tR
10
30 IC (A)
40
50
60
0
10
20
30
40
50
60
IC (A)
Fig. 9 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 10Ω; VGE= 15V
6000
Fig. 10 - Typ. Switching Time vs. IC TJ = 125°C; L = 400µH; VCE = 600V,RG = 10Ω;VGE = 15V
10000
5000
EON
Swiching Time (ns)
4000
1000
td OFF tF tdON
Energy (µJ)
3000
EOFF
2000
100
1000
tR
10
0 0 10 20 30 40 50
0
10
20
30
40
50
RG ( Ω)
RG ( Ω)
Fig. 11 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V
Fig. 12 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V
www.irf.com
5
GB25RF120K
40 35 30 25
Inverter
40
RG = 4.7 Ω R G = 10 Ω
IRR (A)
35 30 25 20 15 10 5 0
IRR (A)
R G = 22 Ω R G = 47 Ω
20 15 10 5 0 0 10 20 30
40
50
60
0
10
20
30
40
50
IF (A)
RG (Ω)
Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C
40 35 30 25
Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 25A
Thermistor
14 12
Thermistor Resistance ( k Ω)
0 500 1000 1500
10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 180
IRR (A)
20 15 10 5 0
diF /dt (A/µs)
T J , Junction Temperature (°C)
Fig. 15 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 25A; TJ = 125°C
Fig. 16 - Thermistor Resistance vs. Temperature
Input Rectifier
100 90 80 70 60
IF (A)
25°C 125°C
50 40 30 20 10 0 0.0 1.0 VF (V) 2.0 3.0
Fig. 17 - Typ. Diode Forward Characteristics tp = 80µs
6
www.irf.com
Inverter
1
GB25RF120K
D = 0.50
Thermal Response ( Z thJC )
0.1
0.20 0.10 0.05
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.01
0.02 0.01
τJ
Ri (°C/W) 0.120 0.201 0.309
τi (sec) 0.000439 0.009470 0.018320
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20 0.10 0.05 0.02
τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
Ri (°C/W) 0.140 0.257 0.602
τi (sec) 0.000230 0.002752 0.036788
0.01
0.01
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED)
900 800 tf 700 600 500 V CE (V) 400 300
5% V CE 90% ICE
45 40 35 30 25
900 800 700 600
TEST CURRENT tr
90 80 70 60 50
90% test current
500 VCE (V)
ICE (A)
20 15 10
5% ICE
400 300 200 100 0 -100 9.40
Eon Loss
40 30
200 100 0
Eoff Loss
10% test current 5% V CE
20 10 0
5 0 -5 -0.10 0.40 0.90 1.40 Time(µs)
-100 -0.60
9.60
-10 9.80 10.00 10.20 10.40 Time (µs)
Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4
Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4
www.irf.com
ICE (A)
7
GB25RF120K
Brake
50 45 40 35
ICE (A)
50 45 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35
ICE (A)
30 25 20 15 10 5 0 0
30 25 20 15 10 5 0
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
1
2
3 VCE (V)
4
5
6
0
1
2
3 VCE (V)
4
5
6
Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs
180 160 140 120 T J = 25°C T J = 125°C
Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs
20 18 16 14
100 80 60 40 20 0 0 5 10 VGE (V) 15 20 T J = 125°C TJ = 25°C
VCE (V)
ICE (A)
12 10 8 6 4 2 0 5 10
ICE = 6.25A ICE = 12.5A ICE = 25A
15 VGE (V)
20
Fig. 22 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs
20 18 16
Capacitance (pF)
10000
Fig. 23 - Typical VCE vs. VGE TJ = 25°C
Cies
1000
14
VCE (V)
12 10 8 6 4 2 0 5 10
ICE = 6.25A ICE = 12.5A ICE = 25A
Coes
100
Cres
10
15 VGE (V)
20
0
20
40
60
80
100
VCE (V)
Fig.24 - Typical VCE vs. VGE TJ = 125°C
Fig. 25- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
8
www.irf.com
GB25RF120K
Brake
16 14 400V 12 600V 10
VGE (V)
IF (A)
50 45 40 35 30 25 20 15 25°C 125°C
8 6 4
10
2 0 0 25 50 75 100 125 Q G , Total Gate Charge (nC)
5 0 0.0 1.0 2.0 3.0 4.0 5.0 VF (V)
Fig. 26 - Typical Gate Charge vs. VGE ICE = 12.5A; L = 1mH
3000 2500 2000
Energy (µJ)
Fig. 27 - Typ. Diode Forward Characteristics tp = 80µs
1000
tdOFF
Swiching Time (ns)
EON
tF
100
1500 1000 500 0 0 10 20 IC (A) 30 40 EOFF
tdON tR
10 0 10 20 30 40
IC (A)
Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω; VGE= 15V
2000
Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω;VGE= 15V
10000
EON
1500
Swiching Time (ns)
1000
Energy (µJ)
EOFF
1000
tdOFF
tF
100
tdON tR
500
0 0 50 100 150
10 0 25 50 75 100 125 150
RG ( Ω)
RG ( Ω)
Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V
Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V
www.irf.com
9
GB25RF120K
45 40 35 30
Brake
35
RG = 4.7 Ω
30 25
R G = 10 Ω
IRR (A)
25 20 15
IRR (A)
30
R G = 22 Ω R G = 47 Ω
20 15 10
10 5 0 0 5 10 15 20 25
5 0 0 10 20 30 40 50
IF (A)
RG (Ω)
Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C
Fig. 33- Typical Diode IRR vs. RG TJ = 125°C; IF = 12.5A
35 30 25
IRR (A)
20 15 10 5 0 0 500 1000 1500
diF /dt (A/µs)
Fig. 34 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 12.5A; TJ = 125°C
10
www.irf.com
Brake
10
GB25RF120K
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
τJ τJ τ1
0.1
R1 R1 τ2
R2 R2
R3 R3 τ3 τC τ τ3
Ri (°C/W) 0.268 0.642 0.290
τi (sec) 0.000469 0.018501 0.056904
0.01
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.001
SINGLE PULSE ( THERMAL RESPONSE )
0.0001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT)
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.1
τJ
Ri (°C/W) τi (sec) 0.714 0.000489 1.193 0.394 0.020644 0.154110
τ1
τ2
Ci= τi /Ri Ci i/Ri
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001 0.01
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode)
900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -0.60
Eof f Loss 5% V CE 5% ICE 90% ICE
45 tf 40 35 30 25
V CE (V)
900 800
tr
45 40 35
TEST CURRENT
700 600 500
30 25
I CE (A)
20 15 10 5 0 -5 -0.10 0.40 0.90 1.40 Time(µs)
400 300
90% test current
20 15
10% test current
200 100 0
Eon Loss
5% V CE
10 5 0
-100 -5 9.80 10.00 10.20 10.40 10.60 10.80 Time (µs)
Fig. WF3- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4
Fig. WF4- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4
www.irf.com
I CE (A)
11
GB25RF120K
L
L VCC DUT
0
80 V +
DUT
480V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp / DUT
L
Driver
- 5V
DC
360V
Rg
DUT / DRIVER
VCC
DUT
Fig.C.T.3 - S.C.SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC ICM
DUT
Rg
VCC
Fig.C.T.5 - Resistive Load Circuit
12
www.irf.com
GB25RF120K
Econo2 PIM Package Outline
Dimensions are shown in millimeters (inches)
0.25 [.0098] CONVEX
Econo2 PIM Part Marking Information
Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/02
www.irf.com
13