0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
GB25RF120K

GB25RF120K

  • 厂商:

    IRF

  • 封装:

  • 描述:

    GB25RF120K - IGBT PIM MODULE - International Rectifier

  • 数据手册
  • 价格&库存
GB25RF120K 数据手册
PD - 94552 GB25RF120K IGBT PIM MODULE Features • Low VCE (on) Non Punch Through IGBT Technology • Low Diode VF • 10µs Short Circuit Capability • Square RBSOA • HEXFRED Antiparallel Diode with Ultrasoft Diode Reverse Recovery Characteristics • Positive VCE (on) Temperature Coefficient • Ceramic DBC Substrate • Low Stray Inductance Design VCES = 1200V IC = 25A, TC=80°C tsc > 10µs, TJ=150°C ECONO2 PIM VCE(on) typ. = 2.40V Benefits • Benchmark Efficiency for Motor Control • Rugged Transient Performance • Low EMI, Requires Less Snubbing • Direct Mounting to Heatsink • PCB Solderable Terminals • Low Junction to Case Thermal Resistance • UL Listed  Absolute Maximum Ratings (TJ =25°C, unless otherwise indicated) Parameter Inverter Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Diode Maximum Forward Current Power Dissipation Input Repetitive Peak Reverse Voltage Surge Current (Non Repetitive) I t (Non Repetitive) Brake Collector-to-Emitter Voltage Gate-to-Emitter Voltage Collector Current Power Dissipation Repetitive Peak Reverse Voltage Maximum Operating Junction Temperature Storage Temperature Range Isolation Voltage 2 Symbol VCES VGES IC ICM IFM d PD VRRM IF(AV) IFSM It VCES VGES IC ICM PD VRRM TJ TSTG VISOL 2 Test Conditions Ratings 1200 ±20 Units V Continuous 25°C / 80°C 25°C 25°C 40 / 25 80 80 198 1600 20 250 316 1200 ±20 As V A W V °C V 2 A W V A 1 device 50/60Hz sine pulse sine pulse 25°C 80°C Rectifier Average Output Current Rated VRRM applied, 10ms, Continuous 1 device — — AC(1min.) 25°C / 80°C 25°C 25°C — — 25 / 15 50 104 1200 150 -40 to +125 2500 Thermal and Mechanical Characteristics Parameter Junction-to-Case Inverter IGBT Thermal Resistance Junction-to-Case Inverter FRED Thermal Resistance Junction-to-Case Brake IGBT Thermal Resistance Junction-to-Case Brake Diode Thermal Resistance Junction-to-Case Input Rectifier Thermal Resistance Mounting Torque (M5) RTHJC Symbol Min — — — — — 2.7 Typical — — — — — — Maximum 0.63 1.0 1.2 2.3 0.85 3.3 Units °C/W Nm 1 www.irf.com 10/17/02 GB25RF120K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Inverter IGBT BVCES VCE(on) Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage Min. Typ. Max. Units 1200 — — — — — — 1.0 2.40 2.95 2.85 3.55 5.0 -10 11 750 — 175 17.5 81 2450 2050 4500 3350 2850 6200 80 50 510 230 2370 455 60 — — 2.70 3.30 — — 6.0 — 100 — ±200 265 30 125 4450 3200 7650 5650 3850 9500 104 70 1000 299 — — — pF VGE = 0V VCC = 30V ns µJ µJ nC nA V V/°C V Conditions VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 25A, VGE = 15V IC = 40A, VGE = 15V IC = 25A, VGE = 15V, TJ = 125°C IC = 40A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250µA 3,4,5 1,2 4,5 Collector-to-Emitter Voltage VGE(th) ∆VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area 4.0 — — — — — — — — — — — — — — — — — — — — mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125°C VGE = ±20V IC = 25A VCC = 400V VGE = 15V IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 25°C CT4 7 CT1 e IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 125°C 9,11 CT4 WF1,2 10,12 CT4 W F1 WF2 e IC = 25A, VCC = 600V VGE = 15V, RG = 10Ω, L = 400µH TJ = 125°C 6 FULL SQUARE f = 1.0Mhz TJ = 150°C, IC = 80A RG = 10Ω, VGE = +15V to 0V TJ = 150°C CT2 CT3 WF4 SCSOA Inverter FRED Irr Short Circuit Safe Operating Area 10 — — µs VCC = 900V, VP = 1200V RG = 10Ω, VGE = +15V to 0V TJ = 125°C 13,14,15 CT4 Diode Peak Reverse Recovery Current — — 35 1.90 2.25 2.00 2.45 — 2.35 2.80 — — A V VCC = 600V, IF = 25A, L = 400µH VGE = 15V, RG = 10Ω IF = 25A IF = 40A IF = 25A, TJ = 125°C IF = 40A, TJ = 125°C VFM Diode Forward Voltage Drop — — — 8 2 www.irf.com GB25RF120K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Input VFM Maximum Forward Voltage Drop Maximum Reverse Leakage Current Forward Slope Resistance Conduction Threshold Voltage Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Rectifier IRM rT VF(TO) Brake IGBT BVCES VCE(on) Min. Typ. Max. Units IF = 25A V — — 1.5 — — — — 1200 — — — — — — — — — — 1.6 2.30 3.00 2.70 3.70 5.0 -10 8.0 370 — 96 46 10 1050 750 1800 1350 1100 2450 50 36 350 210 2370 460 60 0.1 1.0 10.4 0.85 — — 2.50 3.25 — — 6.0 — 50 — ±200 145 70 15 1200 1000 2200 1500 1250 2750 65 50 400 275 — — — pF VGE = 0V VCC = 30V ns µJ µJ nC nA mΩ V V V/°C V mA Conditions 17 TJ = 25°C, VR = 1600V TJ = 150°C, VR = 1600V TJ = 150°C VGE = 0V, IC = 500µA VGE = 0V, IC = 1mA (25°C-125°C) IC = 12.5A, VGE = 15V IC = 25A, VGE = 15V IC = 12.5A, VGE = 15V, TJ = 125°C IC = 25A, VGE = 15V, TJ = 125°C VCE = VGE, IC = 250µA 22,23,24 20,21 23,24 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage VGE(th) ∆VGE(th) ICES IGES Qg Qge Qgc Eon Eoff Etot Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA Gate Threshold Voltage Threshold Voltage temp. coefficient Zero Gate Voltage Collector Current Gate-to-Emitter Leakage Current Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area 4.0 — — — — — — — — — — — — — — — — — — — — mV/°C VCE = VGE, IC = 1mA (25°C-125°C) VGE = 0V, VCE = 1200V µA VGE = 0V, VCE = 1200V, TJ = 125°C VGE = ±20V IC = 12.5A VCC = 400V VGE = 15V IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 25°C CT4 26 CT1 e IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 125°C 28,30 CT4 WF3,4 29,31 CT4 W F3 WF4 e IC = 12.5A, VCC = 600V VGE = 15V, RG = 22Ω , L = 400µH TJ = 125°C 25 FULL SQUARE f = 1.0Mhz TJ = 150°C, IC = 50A RG = 22Ω , VGE = +15V to 0V TJ = 150°C CT2 CT3 SCSOA Brake Diode Irr Short Circuit Safe Operating Area Diode Peak Reverse Recovery Current 10 — — — 24 1.90 2.40 2.00 2.65 5000 3375 — — 2.10 2.65 — — 5495 3443 µs A V VCC = 900V, VP = 1200V RG = 22Ω , VGE = +15V to 0V VCC = 600V, IF = 12.5A, L = 400µH VGE = 15V, RG = 22Ω, TJ = 125°C IF = 8.0A IF = 16A IF = 8.0A, TJ = 125°C IF = 16A, TJ = 125°C 27 32,33,34 CT4 VFM Diode Forward Voltage Drop — — — NTC R B Resistance B Value 4538 3307 Ω K TJ = 25°C TJ = 100°C TJ = 25 / 50 °C 16 468.6 493.3 518.0 Note:  For UL Applications, TJ is limited to +125°C. (See File E78996). ‚ Power dependent on temperature. TJ not to exceed TJ max. ƒ Energy losses include "tail" and diode reverse recovery. www.irf.com 3 GB25RF120K Inverter 50 45 40 35 ICE (A) 50 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 45 40 35 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 25 20 15 10 5 0 0 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 1 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 350 300 Fig. 2 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 20 18 16 250 ICE (A) T J = 25°C T J = 125°C VCE (V) 14 12 10 8 6 ICE = 12.5A ICE = 25A ICE = 50A 200 150 100 50 0 0 5 10 VGE (V) 15 20 T J = 125°C T J = 25°C 4 2 0 5 10 VGE (V) 15 20 Fig. 3 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 20 18 16 Capacitance (pF) 10000 Fig. 4 - Typical VCE vs. VGE TJ = 25°C Cies 14 1000 VCE (V) 12 10 8 6 4 2 0 5 10 Coes ICE = 12.5A ICE = 25A ICE = 50A 100 Cres 10 15 VGE (V) 20 0 20 40 60 80 100 VCE (V) Fig.5 - Typical VCE vs. VGE TJ = 125°C Fig. 6- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 4 www.irf.com GB25RF120K Inverter 16 14 400V 12 10 VGE (V) 100 90 80 600V IF (A) 25°C 125°C 70 60 50 40 30 8 6 4 20 2 0 0 50 100 150 200 Q G , Total Gate Charge (nC) 10 0 0.0 1.0 2.0 VF (V) 3.0 4.0 Fig. 7 - Typical Gate Charge vs. VGE ICE = 25A; L = 1mH 10000 9000 8000 Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs 1000 tdOFF tF 6000 5000 4000 3000 2000 1000 0 0 10 20 EON Swiching Time (ns) 7000 Energy (µJ) 100 tdON EOFF tR 10 30 IC (A) 40 50 60 0 10 20 30 40 50 60 IC (A) Fig. 9 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 10Ω; VGE= 15V 6000 Fig. 10 - Typ. Switching Time vs. IC TJ = 125°C; L = 400µH; VCE = 600V,RG = 10Ω;VGE = 15V 10000 5000 EON Swiching Time (ns) 4000 1000 td OFF tF tdON Energy (µJ) 3000 EOFF 2000 100 1000 tR 10 0 0 10 20 30 40 50 0 10 20 30 40 50 RG ( Ω) RG ( Ω) Fig. 11 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V Fig. 12 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 25A; VGE= 15V www.irf.com 5 GB25RF120K 40 35 30 25 Inverter 40 RG = 4.7 Ω R G = 10 Ω IRR (A) 35 30 25 20 15 10 5 0 IRR (A) R G = 22 Ω R G = 47 Ω 20 15 10 5 0 0 10 20 30 40 50 60 0 10 20 30 40 50 IF (A) RG (Ω) Fig. 13 - Typical Diode IRR vs. IF TJ = 125°C 40 35 30 25 Fig. 14 - Typical Diode IRR vs. RG TJ = 125°C; IF = 25A Thermistor 14 12 Thermistor Resistance ( k Ω) 0 500 1000 1500 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 180 IRR (A) 20 15 10 5 0 diF /dt (A/µs) T J , Junction Temperature (°C) Fig. 15 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 25A; TJ = 125°C Fig. 16 - Thermistor Resistance vs. Temperature Input Rectifier 100 90 80 70 60 IF (A) 25°C 125°C 50 40 30 20 10 0 0.0 1.0 VF (V) 2.0 3.0 Fig. 17 - Typ. Diode Forward Characteristics tp = 80µs 6 www.irf.com Inverter 1 GB25RF120K D = 0.50 Thermal Response ( Z thJC ) 0.1 0.20 0.10 0.05 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.01 0.02 0.01 τJ Ri (°C/W) 0.120 0.201 0.309 τi (sec) 0.000439 0.009470 0.018320 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 τJ R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) 0.140 0.257 0.602 τi (sec) 0.000230 0.002752 0.036788 0.01 0.01 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (Inverter FRED) 900 800 tf 700 600 500 V CE (V) 400 300 5% V CE 90% ICE 45 40 35 30 25 900 800 700 600 TEST CURRENT tr 90 80 70 60 50 90% test current 500 VCE (V) ICE (A) 20 15 10 5% ICE 400 300 200 100 0 -100 9.40 Eon Loss 40 30 200 100 0 Eoff Loss 10% test current 5% V CE 20 10 0 5 0 -5 -0.10 0.40 0.90 1.40 Time(µs) -100 -0.60 9.60 -10 9.80 10.00 10.20 10.40 Time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4 www.irf.com ICE (A) 7 GB25RF120K Brake 50 45 40 35 ICE (A) 50 45 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 40 35 ICE (A) 30 25 20 15 10 5 0 0 30 25 20 15 10 5 0 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 1 2 3 VCE (V) 4 5 6 0 1 2 3 VCE (V) 4 5 6 Fig. 20 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 180 160 140 120 T J = 25°C T J = 125°C Fig. 21 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 20 18 16 14 100 80 60 40 20 0 0 5 10 VGE (V) 15 20 T J = 125°C TJ = 25°C VCE (V) ICE (A) 12 10 8 6 4 2 0 5 10 ICE = 6.25A ICE = 12.5A ICE = 25A 15 VGE (V) 20 Fig. 22 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 20 18 16 Capacitance (pF) 10000 Fig. 23 - Typical VCE vs. VGE TJ = 25°C Cies 1000 14 VCE (V) 12 10 8 6 4 2 0 5 10 ICE = 6.25A ICE = 12.5A ICE = 25A Coes 100 Cres 10 15 VGE (V) 20 0 20 40 60 80 100 VCE (V) Fig.24 - Typical VCE vs. VGE TJ = 125°C Fig. 25- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 www.irf.com GB25RF120K Brake 16 14 400V 12 600V 10 VGE (V) IF (A) 50 45 40 35 30 25 20 15 25°C 125°C 8 6 4 10 2 0 0 25 50 75 100 125 Q G , Total Gate Charge (nC) 5 0 0.0 1.0 2.0 3.0 4.0 5.0 VF (V) Fig. 26 - Typical Gate Charge vs. VGE ICE = 12.5A; L = 1mH 3000 2500 2000 Energy (µJ) Fig. 27 - Typ. Diode Forward Characteristics tp = 80µs 1000 tdOFF Swiching Time (ns) EON tF 100 1500 1000 500 0 0 10 20 IC (A) 30 40 EOFF tdON tR 10 0 10 20 30 40 IC (A) Fig. 28 - Typ. Energy Loss vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω; VGE= 15V 2000 Fig. 29 - Typ. Switching Time vs. IC TJ = 125°C; L=400µH; VCE= 600V,RG= 22Ω;VGE= 15V 10000 EON 1500 Swiching Time (ns) 1000 Energy (µJ) EOFF 1000 tdOFF tF 100 tdON tR 500 0 0 50 100 150 10 0 25 50 75 100 125 150 RG ( Ω) RG ( Ω) Fig. 30 - Typ. Energy Loss vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V Fig. 31 - Typ. Switching Time vs. RG TJ = 125°C; L=400µH; VCE= 600V, ICE= 12.5A; VGE= 15V www.irf.com 9 GB25RF120K 45 40 35 30 Brake 35 RG = 4.7 Ω 30 25 R G = 10 Ω IRR (A) 25 20 15 IRR (A) 30 R G = 22 Ω R G = 47 Ω 20 15 10 10 5 0 0 5 10 15 20 25 5 0 0 10 20 30 40 50 IF (A) RG (Ω) Fig. 32 - Typical Diode IRR vs. IF TJ = 125°C Fig. 33- Typical Diode IRR vs. RG TJ = 125°C; IF = 12.5A 35 30 25 IRR (A) 20 15 10 5 0 0 500 1000 1500 diF /dt (A/µs) Fig. 34 - Typical Diode IRR vs. diF / dt VCC = 600V; VGE = 15V; IF = 12.5A; TJ = 125°C 10 www.irf.com Brake 10 GB25RF120K Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ τJ τ1 0.1 R1 R1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 Ri (°C/W) 0.268 0.642 0.290 τi (sec) 0.000469 0.018501 0.056904 0.01 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 35. Maximum Transient Thermal Impedance, Junction-to-Case (Brake IGBT) 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3 0.1 τJ Ri (°C/W) τi (sec) 0.714 0.000489 1.193 0.394 0.020644 0.154110 τ1 τ2 Ci= τi /Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 36. Maximum Transient Thermal Impedance, Junction-to-Case (Brake Diode) 900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -0.60 Eof f Loss 5% V CE 5% ICE 90% ICE 45 tf 40 35 30 25 V CE (V) 900 800 tr 45 40 35 TEST CURRENT 700 600 500 30 25 I CE (A) 20 15 10 5 0 -5 -0.10 0.40 0.90 1.40 Time(µs) 400 300 90% test current 20 15 10% test current 200 100 0 Eon Loss 5% V CE 10 5 0 -100 -5 9.80 10.00 10.20 10.40 10.60 10.80 Time (µs) Fig. WF3- Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.4 Fig. WF4- Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.4 www.irf.com I CE (A) 11 GB25RF120K L L VCC DUT 0 80 V + DUT 480V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L Driver - 5V DC 360V Rg DUT / DRIVER VCC DUT Fig.C.T.3 - S.C.SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM DUT Rg VCC Fig.C.T.5 - Resistive Load Circuit 12 www.irf.com GB25RF120K Econo2 PIM Package Outline Dimensions are shown in millimeters (inches) 0.25 [.0098] CONVEX Econo2 PIM Part Marking Information Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/02 www.irf.com 13
GB25RF120K 价格&库存

很抱歉,暂时无法提供与“GB25RF120K”相匹配的价格&库存,您可以联系我们找货

免费人工找货