Data Sheet No. PD60046-S
IR2104(S) & (PbF)
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Internally set deadtime High side output in phase with input Shut down input turns off both channels Matched propagation delay for both channels Also available LEAD-FREE
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 130 mA / 270 mA 10 - 20V 680 & 150 ns 520 ns
• • • • • • • • •
Packages
Description
The IR2104(S) are high voltage, high speed power 8 Lead SOIC MOSFET and IGBT drivers with dependent high and low 8 Lead PDIP IR2104S side referenced output channels. Proprietary HVIC and IR2104 latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts.
Typical Connection
up to 600V VCC
VCC
IN SD
VB HO VS LO
TO LOAD
IN SD COM
(Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2104(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD ) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC)
Min.
-0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W °C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD ) Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 0 -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2104(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified.
Symbol
ton toff tsd tr tf DT MT
Definition
Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off
Min. Typ. Max. Units Test Conditions
— — — — — 400 — 680 150 160 100 50 520 — 820 220 220 170 90 650 60 ns VS = 0V VS = 600V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VSD,TH+ VSD,THVOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” (HO) & Logic “0” (LO) input voltage Logic “0” (HO) & Logic “1” (LO) input voltage SD input positive going threshold SD input negative going threshold High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
3 — 3 — — — — — — — — 8 7.4 130 270 — — — — — — — 30 150 3 — 8.9 8.2 210 360 — 0.8 — 0.8 100 100 50 55 270 10 1 9.8 V 9 — — mA VO = 0V PW ≤ 10 µs VO = 15V PW ≤ 10 µs µA mV V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 5V VIN = 0V
www.irf.com
3
IR2104(S) & (PbF)
Functional Block Diagram
VB
HV LEVEL SHIFT
Q PULSE FILTER R S VS HO
IN PULSE GEN
DEAD TIME & SHOOT-THROUGH PREVENTION
UV DETECT VCC
SD
LO
COM
Lead Definitions
Symbol Description
IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO Logic input for shutdown High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
SD VB
HO VS VCC LO COM
Lead Assignments
1 2 3 4 VCC IN SD COM VB HO VS LO
8
7 6 5
1 2 3 4
VCC IN SD COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IR2104 4
IR2104S www.irf.com
IR2104(S) & (PbF)
IN
IN(LO)
50% 50%
SD
IN(HO)
ton tr 90% toff 90% tf
HO LO
LO HO
Figure 1. Input/Output Timing Diagram
10%
10%
Figure 2. Switching Time Waveform Definitions
50%
50%
SD
50%
IN
tsd
90%
HO LO
90%
HO
DT
10% DT
LO
Figure 3. Shutdown Waveform Definitions
90%
10%
Figure 4. Deadtime Waveform Definitions
IN (LO)
50% 50%
IN (HO)
LO
HO
10%
MT 90%
MT
LO
HO
Figure 5. Delay Matching Waveform Definitions
www.irf.com
5
IR2104(S) & (PbF)
1 40 0 T urn -O n D e l T i e (n s) ay m
Turn-On Delay Time (ns)
1400 1200 1000 800 600 400 200 0 10 12 14 16 18 20 Typ. Max.
1 20 0 1 00 0
M a x.
8 00 6 00 4 00 2 00 0 -50 -25 0 25 50 75 1 00 1 25
Temperature (°C)
T yp .
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Time vs Temperature
Figure 6B. Turn-On Time vs Supply Voltage
1000 Max . Turn-On Delay Time (ns)
Turn-Off Delay Time (ns)
5 00 4 00 3 00 2 00 1 00 T yp . 0 M ax .
800 600 Typ. 400 200 0 0 2 4 6 8 10 12 14 16 18 20
-50
-25
0
25
50
75
1 00
1 25
Input Voltage (V)
Temperature (°C)
Figure 6C. Turn-On Time vs Input Voltage
Figure 7A. Turn-Off Time vs Temperature
500
1000 Turn-Off Delay Time (ns 800 600 400 200 Typ 0
10 12 14 16 18 20
Turn-Off Delay Time (ns)
400 300 200 Typ. 100 0 Max.
Ma x .
0
2
4
6
8
10
12 14
16 18
20
VBIAS Supply Voltage (V)
Input Voltage (V)
Figure 7B. Turn-Off Time vs Supply Voltage
Figure 7C. Turn-Off Time vs Input Voltage
6
www.irf.com
IR2104(S) & (PbF)
500
Shutdown Delay Time (ns)
500
Shutdown Delay Time (ns)
400 300 200 100 0 -5 0 -2 5 0 25 50 75 100 125 M ax.
400 300 200 Typ. 100 0 10 12 14 16 18 20 Max.
T y p.
Temperature (°C)
VBIAS Supply Voltage (V)
Figure 8A. Shutdown Time vs Temperature
Figure 8B. Shutdown Time vs Voltage
500
500
Turn-On Rise Time (ns)
400 300 200 100 Typ. 0 -5 0 -2 5 0 25 50 75 100 125
Turn-On Rise Time (ns)
400 300 M ax. 200 100 Typ. 0 10 12 14 16 18 20
M ax.
Temperature (°C)
VBIAS Supply Voltage (V)
Figure 9A. Turn-On Rise Time vs Temperature
20 0
Figure 9B. Turn-On Rise Time vs Voltage
200
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
15 0
150 M ax. 100
10 0 M ax. 50 Ty p. 0 -50 -25 0 25 50 75 10 0 12 5
50 Typ. 0 10 12 14 16 18 20
Temperature (°C)
VBIAS Supply Voltage (V)
Figure 10A. Turn-Off Fall Time vs Temperature
Figure 10B. Turn-Off Fall Time vs Voltage
www.irf.com
7
IR2104(S) & (PbF)
1400 1200 1400 1200
Deadtime (ns)
1000 800 600 400 200 0 -5 0 -2 5 0 25 50 75 100 125 Typ. Mi. n M ax.
Deadtime (ns)
1000 M ax. 800 600 Typ. 400 Mi. n 200 0 10 12 14 16 18 20
Temperature (°C)
VBIAS Supply Voltage (V)
Figure 11A. Deadtime vs Temperature
8 7 I nput V ol e (V ) tag 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125
Temperature (°C)
Figure 11B. Deadtime vs Voltage
8 7 I pu t V ol g e (V ) n ta 6 5 4 3 2 1 0 10 12 14 16 18 20
Vcc Supply Voltage (V)
Mi n.
Mi n.
Figure 12A. Logic "1" (HO) & Logic “0” (LO) & Inactive SD Input Voltage vs Temperature
4 3.2 2.4 1.6 Max . 0.8 0 -50
Figure 12B. Logic "1" (HO) & Logic “0” (LO) & Inactive SD Input Voltage vs Voltage
4 3 .2 I p u t V o l g e (V ) n ta 2 .4 1 .6 M ax. 0 .8 0
Input Voltage (V)
-25
0
25
50
75
100
125
10
12
14
16
18
20
Temperature (°C)
Vcc Supply Voltage (V)
Figure 13A. Logic "0" (HO) & Logic “1” (LO) & Active SD Input Voltage vs Temperature
Figure 13B. Logic "0" (HO) & Logic “1” (LO) & Active SD Input Voltage vs Voltage
8
www.irf.com
IR2104(S) & (PbF)
1 1
High Level Output Voltage (V)
High Level Output Voltage (V)
0 .8 0 .6 0 .4 M ax. 0 .2 0 -5 0 -2 5 0 25 50 75 100 125
0 .8 0 .6 0 .4 0 .2 0 10 12 14 16 18 20 M ax.
Temperature (°C)
Vcc Supply Voltage (V)
Figure 14A. High Level Output vs Temperature
1
Figure 14B. High Level Output vs Voltage
1
Low Level Output Voltage (V)
0 .8 0 .6 0 .4 0 .2 0 -5 0 -2 5 0 25 50 75 100 125
Low Level Output Voltage (V)
0 .8 0 .6 0 .4 0 .2 M ax. 0 10 12 14 16 18 20
M ax.
Temperature (°C)
Vcc Supply Voltage (V)
Figure 15A. Low Level Output vs Temperature
Offset Supply Leakage Current (µA)
500 400 300 200 100 M ax. 0 -5 0 -2 5 0 25 50 75 100 125
Figure 15B. Low level Output vs Voltage
Offset Supply Leakage Current (µA)
500 400 300 200 100 0 0 100 200 300 400 500 600
Max.
Temperature (°C)
VB Boost Voltage (V)
Figure 16A. Offset Supply Current vs Temperature
Figure 16B. Offset Supply Current vs Voltage
www.irf.com
9
IR2104(S) & (PbF)
1 50
150
VBS Supply Current (µA)
1 20 90 60 M ax . 30 T yp . 0 -50 -25 0 25 50 75 1 00 1 25
VBS Supply Current (µA)
120 90 60 30 Ty p. 0 10 12 14 16 18 20
Max .
Temperature (°C)
VBS Floating Supply Voltage (V)
Figure 17A. VBS Supply Current vs Temperature
700 700
Figure 17B. VBS Supply Current vs Voltage
Vcc Supply Current (µA)
600 500 400 300 200 100 0 -5 0 -2 5 0 25 50 75 100 125 Typ. M ax.
Vcc Supply Current (µA)
600 500 400 300 200 100 Typ. 0 10 12 14 16 18 20 M ax.
Temperature (°C)
Vcc Supply Voltage (V)
Figure 18A. Vcc Supply Current vs Temperature
30
Figure 18B. Vcc Supply Current vs Voltage
30
Logic 1” Input Current (µA)
25 20 15 10 M ax. 5 Typ. 0 -5 0 -2 5 0 25 50 75 100 125
Logic 1” Input Current (µA)
25 20 15 10 5 0 10 12 14 16 18 20 M ax. Typ.
Temperature (°C)
Vcc Supply Voltage (V)
Figure 19A. Logic"1" Input Current vs Temperature
Figure 19B. Logic"1" Input Current vs Voltage
10
www.irf.com
IR2104(S) & (PbF)
5
Logic "0" Input Current (uA)
Logic “0” Input Current (µA)
5 4 3 2 Max. 1 0
4 3 2 Max. 1 0 -50
-25
0
25 50 75 Temperature (°C)
100
125
10
12
14 16 18 VCC Supply Voltage (V)
20
Figure 20A. Logic "0" Input Current vs Temperature
11
VCC UVLO Threshold +(V)
Figure 20B. Logic "0" Input Current vs Voltage
11
VCC UVLO Threshold - (V)
M ax. 10 9 8 7 6 -50 -25 0 25 50 75 100 125
Temperature (°C)
10 Max. 9 Typ. 8 7 6 -50 -25 0 25 50 75 100 125
Temperature (°C)
Typ. Mi n.
Min.
Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature
500
Output Source Current (mA) Output Source Current (mA)
Figure 21B. Vcc Undervoltage Threshold(-) vs Temperature
500 400 300 200 T y p. 100 Mi n. 0 10 12 14 16 18 VBIAS Supply Voltage (V) 20
400 300 200 100 Min. Typ.
0 -50
-25
0
25 50 75 Temperature (°C)
100
125
Figure 22A. Output Source Current vs Temperature
Figure 22B. Output Source Current vs Voltage
www.irf.com
11
IR2104(S) & (PbF)
7 00
Output Sink Current (mA) Output Sink Current (mA)
70 0 60 0 50 0 40 0 30 0 20 0 Mi n. 10 0 0
-50 -25 0 25 50 75 1 00 1 25
6 00 5 00 4 00 3 00 Mi. n 2 00 1 00 0
Temperature (°C)
T yp .
Ty p.
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 23A. Output Sink Current vs Temperature
Figure 23B. Output Sink Current vs Voltage
Case Outlines
8 Lead PDIP
01-6014 01-3003 01 (MS-001AB)
12
www.irf.com
IR2104(S) & (PbF)
D A 5
B
FOOTPRINT 8X 0.72 [.028]
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
A1 CAB
8X L 7
8X c
NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8 Lead SOIC
01-6027 01-0021 11 (MS-012AA)
www.irf.com
13
IR2104(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free) 8-Lead PDIP IR2104 order IR2104 8-Lead SOIC IR2104S order IR2104S
Leadfree Part 8-Lead PDIP IR2104 order IR2104PbF 8-Lead SOIC IR2104S order IR2104SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/2/2004
14
www.irf.com
很抱歉,暂时无法提供与“IR2104S”相匹配的价格&库存,您可以联系我们找货
免费人工找货- 国内价格
- 1+1.936
- 10+1.776
- 30+1.744
- 100+1.648