0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2104SPBF

IR2104SPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2104SPBF - HALF-BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2104SPBF 数据手册
Data Sheet No. PD60046-S IR2104(S) & (PbF) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V and 15V input logic compatible Cross-conduction prevention logic Internally set deadtime High side output in phase with input Shut down input turns off both channels Matched propagation delay for both channels Also available LEAD-FREE Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 130 mA / 270 mA 10 - 20V 680 & 150 ns 520 ns • • • • • • • • • Packages Description The IR2104(S) are high voltage, high speed power 8 Lead SOIC MOSFET and IGBT drivers with dependent high and low 8 Lead PDIP IR2104S side referenced output channels. Proprietary HVIC and IR2104 latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts. Typical Connection up to 600V VCC VCC IN SD VB HO VS LO TO LOAD IN SD COM (Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2104(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD ) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC) Min. -0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (IN & SD ) Ambient temperature Min. VS + 10 Note 1 VS 10 0 0 -40 Max. VS + 20 600 VB 20 VCC VCC 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2104(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. Symbol ton toff tsd tr tf DT MT Definition Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off Min. Typ. Max. Units Test Conditions — — — — — 400 — 680 150 160 100 50 520 — 820 220 220 170 90 650 60 ns VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VSD,TH+ VSD,THVOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO- Definition Logic “1” (HO) & Logic “0” (LO) input voltage Logic “0” (HO) & Logic “1” (LO) input voltage SD input positive going threshold SD input negative going threshold High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 3 — 3 — — — — — — — — 8 7.4 130 270 — — — — — — — 30 150 3 — 8.9 8.2 210 360 — 0.8 — 0.8 100 100 50 55 270 10 1 9.8 V 9 — — mA VO = 0V PW ≤ 10 µs VO = 15V PW ≤ 10 µs µA mV V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 5V VIN = 0V www.irf.com 3 IR2104(S) & (PbF) Functional Block Diagram VB HV LEVEL SHIFT Q PULSE FILTER R S VS HO IN PULSE GEN DEAD TIME & SHOOT-THROUGH PREVENTION UV DETECT VCC SD LO COM Lead Definitions Symbol Description IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO Logic input for shutdown High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return SD VB HO VS VCC LO COM Lead Assignments 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC IN SD COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IR2104 4 IR2104S www.irf.com IR2104(S) & (PbF) IN IN(LO) 50% 50% SD IN(HO) ton tr 90% toff 90% tf HO LO LO HO Figure 1. Input/Output Timing Diagram 10% 10% Figure 2. Switching Time Waveform Definitions 50% 50% SD 50% IN tsd 90% HO LO 90% HO DT 10% DT LO Figure 3. Shutdown Waveform Definitions 90% 10% Figure 4. Deadtime Waveform Definitions IN (LO) 50% 50% IN (HO) LO HO 10% MT 90% MT LO HO Figure 5. Delay Matching Waveform Definitions www.irf.com 5 IR2104(S) & (PbF) 1 40 0 T urn -O n D e l T i e (n s) ay m Turn-On Delay Time (ns) 1400 1200 1000 800 600 400 200 0 10 12 14 16 18 20 Typ. Max. 1 20 0 1 00 0 M a x. 8 00 6 00 4 00 2 00 0 -50 -25 0 25 50 75 1 00 1 25 Temperature (°C) T yp . VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Figure 6B. Turn-On Time vs Supply Voltage 1000 Max . Turn-On Delay Time (ns) Turn-Off Delay Time (ns) 5 00 4 00 3 00 2 00 1 00 T yp . 0 M ax . 800 600 Typ. 400 200 0 0 2 4 6 8 10 12 14 16 18 20 -50 -25 0 25 50 75 1 00 1 25 Input Voltage (V) Temperature (°C) Figure 6C. Turn-On Time vs Input Voltage Figure 7A. Turn-Off Time vs Temperature 500 1000 Turn-Off Delay Time (ns 800 600 400 200 Typ 0 10 12 14 16 18 20 Turn-Off Delay Time (ns) 400 300 200 Typ. 100 0 Max. Ma x . 0 2 4 6 8 10 12 14 16 18 20 VBIAS Supply Voltage (V) Input Voltage (V) Figure 7B. Turn-Off Time vs Supply Voltage Figure 7C. Turn-Off Time vs Input Voltage 6 www.irf.com IR2104(S) & (PbF) 500 Shutdown Delay Time (ns) 500 Shutdown Delay Time (ns) 400 300 200 100 0 -5 0 -2 5 0 25 50 75 100 125 M ax. 400 300 200 Typ. 100 0 10 12 14 16 18 20 Max. T y p. Temperature (°C) VBIAS Supply Voltage (V) Figure 8A. Shutdown Time vs Temperature Figure 8B. Shutdown Time vs Voltage 500 500 Turn-On Rise Time (ns) 400 300 200 100 Typ. 0 -5 0 -2 5 0 25 50 75 100 125 Turn-On Rise Time (ns) 400 300 M ax. 200 100 Typ. 0 10 12 14 16 18 20 M ax. Temperature (°C) VBIAS Supply Voltage (V) Figure 9A. Turn-On Rise Time vs Temperature 20 0 Figure 9B. Turn-On Rise Time vs Voltage 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 15 0 150 M ax. 100 10 0 M ax. 50 Ty p. 0 -50 -25 0 25 50 75 10 0 12 5 50 Typ. 0 10 12 14 16 18 20 Temperature (°C) VBIAS Supply Voltage (V) Figure 10A. Turn-Off Fall Time vs Temperature Figure 10B. Turn-Off Fall Time vs Voltage www.irf.com 7 IR2104(S) & (PbF) 1400 1200 1400 1200 Deadtime (ns) 1000 800 600 400 200 0 -5 0 -2 5 0 25 50 75 100 125 Typ. Mi. n M ax. Deadtime (ns) 1000 M ax. 800 600 Typ. 400 Mi. n 200 0 10 12 14 16 18 20 Temperature (°C) VBIAS Supply Voltage (V) Figure 11A. Deadtime vs Temperature 8 7 I nput V ol e (V ) tag 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 11B. Deadtime vs Voltage 8 7 I pu t V ol g e (V ) n ta 6 5 4 3 2 1 0 10 12 14 16 18 20 Vcc Supply Voltage (V) Mi n. Mi n. Figure 12A. Logic "1" (HO) & Logic “0” (LO) & Inactive SD Input Voltage vs Temperature 4 3.2 2.4 1.6 Max . 0.8 0 -50 Figure 12B. Logic "1" (HO) & Logic “0” (LO) & Inactive SD Input Voltage vs Voltage 4 3 .2 I p u t V o l g e (V ) n ta 2 .4 1 .6 M ax. 0 .8 0 Input Voltage (V) -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) Vcc Supply Voltage (V) Figure 13A. Logic "0" (HO) & Logic “1” (LO) & Active SD Input Voltage vs Temperature Figure 13B. Logic "0" (HO) & Logic “1” (LO) & Active SD Input Voltage vs Voltage 8 www.irf.com IR2104(S) & (PbF) 1 1 High Level Output Voltage (V) High Level Output Voltage (V) 0 .8 0 .6 0 .4 M ax. 0 .2 0 -5 0 -2 5 0 25 50 75 100 125 0 .8 0 .6 0 .4 0 .2 0 10 12 14 16 18 20 M ax. Temperature (°C) Vcc Supply Voltage (V) Figure 14A. High Level Output vs Temperature 1 Figure 14B. High Level Output vs Voltage 1 Low Level Output Voltage (V) 0 .8 0 .6 0 .4 0 .2 0 -5 0 -2 5 0 25 50 75 100 125 Low Level Output Voltage (V) 0 .8 0 .6 0 .4 0 .2 M ax. 0 10 12 14 16 18 20 M ax. Temperature (°C) Vcc Supply Voltage (V) Figure 15A. Low Level Output vs Temperature Offset Supply Leakage Current (µA) 500 400 300 200 100 M ax. 0 -5 0 -2 5 0 25 50 75 100 125 Figure 15B. Low level Output vs Voltage Offset Supply Leakage Current (µA) 500 400 300 200 100 0 0 100 200 300 400 500 600 Max. Temperature (°C) VB Boost Voltage (V) Figure 16A. Offset Supply Current vs Temperature Figure 16B. Offset Supply Current vs Voltage www.irf.com 9 IR2104(S) & (PbF) 1 50 150 VBS Supply Current (µA) 1 20 90 60 M ax . 30 T yp . 0 -50 -25 0 25 50 75 1 00 1 25 VBS Supply Current (µA) 120 90 60 30 Ty p. 0 10 12 14 16 18 20 Max . Temperature (°C) VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs Temperature 700 700 Figure 17B. VBS Supply Current vs Voltage Vcc Supply Current (µA) 600 500 400 300 200 100 0 -5 0 -2 5 0 25 50 75 100 125 Typ. M ax. Vcc Supply Current (µA) 600 500 400 300 200 100 Typ. 0 10 12 14 16 18 20 M ax. Temperature (°C) Vcc Supply Voltage (V) Figure 18A. Vcc Supply Current vs Temperature 30 Figure 18B. Vcc Supply Current vs Voltage 30 Logic 1” Input Current (µA) 25 20 15 10 M ax. 5 Typ. 0 -5 0 -2 5 0 25 50 75 100 125 Logic 1” Input Current (µA) 25 20 15 10 5 0 10 12 14 16 18 20 M ax. Typ. Temperature (°C) Vcc Supply Voltage (V) Figure 19A. Logic"1" Input Current vs Temperature Figure 19B. Logic"1" Input Current vs Voltage 10 www.irf.com IR2104(S) & (PbF) 5 Logic "0" Input Current (uA) Logic “0” Input Current (µA) 5 4 3 2 Max. 1 0 4 3 2 Max. 1 0 -50 -25 0 25 50 75 Temperature (°C) 100 125 10 12 14 16 18 VCC Supply Voltage (V) 20 Figure 20A. Logic "0" Input Current vs Temperature 11 VCC UVLO Threshold +(V) Figure 20B. Logic "0" Input Current vs Voltage 11 VCC UVLO Threshold - (V) M ax. 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) 10 Max. 9 Typ. 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Typ. Mi n. Min. Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature 500 Output Source Current (mA) Output Source Current (mA) Figure 21B. Vcc Undervoltage Threshold(-) vs Temperature 500 400 300 200 T y p. 100 Mi n. 0 10 12 14 16 18 VBIAS Supply Voltage (V) 20 400 300 200 100 Min. Typ. 0 -50 -25 0 25 50 75 Temperature (°C) 100 125 Figure 22A. Output Source Current vs Temperature Figure 22B. Output Source Current vs Voltage www.irf.com 11 IR2104(S) & (PbF) 7 00 Output Sink Current (mA) Output Sink Current (mA) 70 0 60 0 50 0 40 0 30 0 20 0 Mi n. 10 0 0 -50 -25 0 25 50 75 1 00 1 25 6 00 5 00 4 00 3 00 Mi. n 2 00 1 00 0 Temperature (°C) T yp . Ty p. 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23A. Output Sink Current vs Temperature Figure 23B. Output Sink Current vs Voltage Case Outlines 8 Lead PDIP 01-6014 01-3003 01 (MS-001AB) 12 www.irf.com IR2104(S) & (PbF) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8 Lead SOIC 01-6027 01-0021 11 (MS-012AA) www.irf.com 13 IR2104(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2104 order IR2104 8-Lead SOIC IR2104S order IR2104S Leadfree Part 8-Lead PDIP IR2104 order IR2104PbF 8-Lead SOIC IR2104S order IR2104SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/2/2004 14 www.irf.com
IR2104SPBF 价格&库存

很抱歉,暂时无法提供与“IR2104SPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货