0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2105

IR2105

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2105 - High Voltage, High Speed Power MOSFET and IGBT Driver - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IR2105 数据手册
Data Sheet No. PD60139J IR2105 HALF BRIDGE DRIVER Features • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 5V Schmitt-triggered input logic Cross-conduction prevention logic Internally set deadtime High side output in phase with input Match propagation delay for both channels Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 130 mA / 270 mA 10 - 20V 680 & 150 ns 520 ns • • • • • • • Packages Description The IR2105 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts. 8 Lead PDIP 8 Lead SOIC Typical Connection up to 600V VCC V CC IN VB HO VS TO LOAD IN COM LO IR2105 Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead DIP) (8 Lead SOIC) (8 Lead DIP) (8 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature Min. V S + 10 Note 1 VS 10 0 0 -40 Max. VS + 20 600 VB 20 VCC VCC 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. 2 www.irf.com IR2105 Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified. Symbol ton toff tr tf DT MT Definition Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off Min. Typ. Max. Units Test Conditions — — — — 400 — 680 150 100 50 520 — 820 220 170 90 650 60 ns VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC , VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, V TH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO- Definition Logic “1” (HO) & Logic “0” (LO) Input Voltage Logic “0” (HO) & Logic “1” (LO) Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current Logic “0” Input Bias Current VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current Min. Typ. Max. Units Test Conditions 3 — — — — — — — — 8 7.4 130 270 — — — — — 30 150 3 — 8.9 8.2 210 360 — 0.8 100 100 50 55 270 10 1 9.8 9 — mA — V µA V mV VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V V IN = 5V VIN = 0V VO = 0V PW ≤ 10 µs VO = 15V PW ≤ 10 µs www.irf.com 3 IR2105 Functional Block Diagram VB Q PULSE FILTER R S VS HO HV LEVEL SHIFT IN DEAD TIME PULSE GEN UV DETECT VCC DEAD TIME LO COM Lead Definitions Lead Symbol Description IN VB HO VS VCC LO COM Logic input for high and low side gate driver outputs (HO and LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments COM LO 5 COM LO 5 8 Lead PDIP 8 Lead SOIC IR2105 4 IR2105S www.irf.com IR2105 8 Lead PDIP 01-3003 01 8 Lead SOIC www.irf.com 01-0021 08 5 IR2105 IN IN(LO) 50% 50% IN(HO) ton HO LO tr 90% toff 90% tf LO HO Figure 1. Input/Output Timing Diagram 10% 10% Figure 2. Switching Time Waveform Definitions IN (LO) 50% 50% 50% 50% IN IN (HO) 90% LO HO 10% HO DT 10% DT LO MT 90% MT 90% 10% LO Figure 3. Deadtime Waveform Definitions HO Figure 4. Delay Matching Waveform Definitions 6 www.irf.com IR2105 1400 1400 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 1200 1000 Max. 800 600 400 200 0 -50 Typ. 1200 1000 800 600 400 200 0 Typ. Max. -25 0 25 50 75 Temperature (oC) 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Figure 6B. Turn-On Time vs Voltage 500 500 Turn-Off Delay Time (ns) 400 300 200 100 Ty p. 0 -50 -25 0 25 50 75 100 125 Max . Turn-Off Delay Time (ns) 400 300 200 100 0 10 12 14 16 18 20 Ty p. Max . Temperature (oC) VBIAS Supply Voltage (V) Figure 7A. Turn-Off Time vs Temperature Figure 7B. Turn-Off Time vs Voltage 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 Max. 200 100 Typ. 0 -25 0 25 50 75 Temperature (oC) 100 125 400 300 200 100 Typ. 0 -50 Max. 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9A. Turn-On Rise Time vs Temperature Figure 9B. Turn-On Rise Time vs Voltage www.irf.com 7 IR2105 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 200 150 150 Max. Typ. 50 100 Max. 50 Typ. 100 0 -50 -25 0 25 50 75 Temperature ( oC) 100 125 0 10 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 10A. Turn Off Fall Time vs Temperature 140 0 120 0 Figure 10B. Turn Off Fall Time vs Voltage 140 0 120 0 Deadtime (ns) Deadtime (ns) 100 0 800 600 Ty p. 400 200 0 -5 0 -2 5 0 25 50 75 100 125 Min. Max . 100 0 800 600 400 Max . Ty p . Min. 200 0 10 12 14 16 18 20 Temperature (oC) VBIAS Supply Voltage (V) Figure 11A. Deadtime vs Temperature Figure 11B. Deadtime vs Voltage 8 7 Input Voltage (V) 8 7 Input Voltage (V) 6 5 4 3 2 1 0 -50 -25 0 Temperature (oC) 6 5 4 3 2 1 0 Min. Min. 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) VBIAS Supply Voltage (V) Figure12A. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Temperature Figure 12B. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Voltage 8 www.irf.com IR2105 4 3.2 2.4 1.6 Max . 0.8 0 - 50 - 25 0 25 50 75 10 0 12 5 4 3.2 2.4 1.6 Max. 0.8 0 10 12 Input Voltage (V) Input Voltage (V) Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 13A. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Temperature 1 Figure 13B. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Voltage 1 0.8 0.6 0.4 0.2 0 High Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 75 100 125 Max . High Level Output Voltage (V) Max. 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 14A. High Level Output vs Temperature Figure 14B. High Level Output vs Voltage 1 1 Low Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 - 50 - 25 0 25 50 75 100 125 Low Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 Max . Max. Temperature (oC) Vcc Supply Voltage (V) Figure 15A. Low Level Output vs Temperature Figure 15B. Low Level Output vs Voltage www.irf.com 9 IR2105 Offset Supply Leakge Current (µA) Offset Supply Leakge Current (µA) 500 400 300 200 100 500 400 300 200 100 0 0 200 400 600 800 Max. Max. -25 0 25 50 75 100 125 0 -50 Temperature (oC) VB Boost Voltage (V) Figure 16A. Offset Supply Current vs Temperature 15 0 Figure 16B. Offset Supply Current vs Voltage 150 VBS Supply Current (µA) 12 0 90 60 Max . 30 Ty p. 0 - 50 - 25 0 25 50 75 10 0 12 5 VBS Supply Current (µA) 120 90 60 30 Typ. 0 10 12 14 16 18 20 Max. Temperature (oC) VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs Temperature 700 Figure 17B. VBS Supply Current vs Voltage 700 VCC Supply Current (µA) 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ. Max. VCC Supply Current (µA) 600 500 400 300 200 100 0 10 12 Typ. 14 16 Vcc Supply Voltage (V) 18 20 Max. Temperature (oC) Figure 18A. Vcc Supply Current vs Temperature Figure 18B. Vcc Supply Current vs Voltage 10 www.irf.com IR2105 30 30 Logic “1” Input Current (µA) Logic “1” Input Current (µA) 25 20 15 Ma x . 10 Max 25 20 15 Ma x . 10 5 0 Ty p . 5 Ty p . 0 -50 -25 0 25 50 o 75 10 0 12 5 10 12 14 16 18 20 Temperature ( C) Vcc Supply Voltage (V) Figure 19A. Logic "1" Input Current vs Temperature 5 Figure 19B. Logic "1" Input Current vs Voltage 5 Logic “0” Input Current (µA) Logic “0” Input Current (µA) 4 3 2 Max. 1 0 -50 4 3 2 Max. 1 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 20A. Logic "0" Input Current vs Temperature 11 VCC UVLO Threshold +(V) VCC UVLO Threshold -(V) Figure 20B. Logic "0" Input Current vs Voltage 11 Max . 10 Ty p. 9 Min . 8 7 6 -50 -25 0 25 50 75 10 0 12 5 Temperature (oC) 10 Max. 9 Typ. Typ. 8 7 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature www.irf.com 11 IR2105 50 0 Output Source Current (mA) Output Source Current (mA) 500 400 300 200 100 Min. 40 0 30 0 20 0 10 0 0 -50 -25 0 25 50 75 10 0 12 5 Temperature (oC) Ty p. Typ. Min. 12 14 16 VBIAS Supply Voltage (V) 18 20 Min. 0 10 Figure 22A. Output Source Current vs Temperature 700 Figure 22B. Output Source Current vs Voltage 700 Output Sink Current (mA) Output Sink Current (mA) 600 500 400 300 200 100 0 - 50 - 25 0 25 50 Temperature (oC) 75 100 125 Min. Ty p . 600 500 400 300 200 100 0 10 12 14 16 18 20 Min. Typ. VBIAS Supply Voltage (V) Figure 23A. Output Sink Current vs Temperature Figure 23B. Output Sink Current vs Voltage WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380 Data and specifications subject to change without notice. 11/29/99 12 www.irf.com
IR2105
PDF文档中包含的物料型号是TPS54360,这是一款由德州仪器(Texas Instruments)生产的同步降压转换器。

器件简介指出,TPS54360具有高效率、低静态电流和低噪声特性,适用于多种电源转换应用。

引脚分配方面,该器件有多种引脚配置,具体取决于封装类型。

参数特性包括输入电压范围、输出电压范围、最大输出电流等。

功能详解部分描述了TPS54360的工作原理和主要功能,如同步降压转换、软启动、过压保护等。

应用信息强调了该器件在工业、汽车和消费电子等领域的广泛应用。

封装信息则提供了不同封装选项的详细尺寸和特性,以满足不同设计需求。
IR2105 价格&库存

很抱歉,暂时无法提供与“IR2105”相匹配的价格&库存,您可以联系我们找货

免费人工找货