Data Sheet No. PD60139J
IR2105
HALF BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 5V Schmitt-triggered input logic Cross-conduction prevention logic Internally set deadtime High side output in phase with input Match propagation delay for both channels
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 130 mA / 270 mA 10 - 20V 680 & 150 ns 520 ns
• • • • • • •
Packages
Description
The IR2105 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts.
8 Lead PDIP 8 Lead SOIC
Typical Connection
up to 600V VCC
V CC
IN
VB HO VS
TO LOAD
IN COM LO
IR2105
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead DIP) (8 Lead SOIC) (8 Lead DIP) (8 Lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W °C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature
Min.
V S + 10 Note 1 VS 10 0 0 -40
Max.
VS + 20 600 VB 20 VCC VCC 125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS.
2
www.irf.com
IR2105
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified.
Symbol
ton toff tr tf DT MT
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Delay matching, HS & LS turn-on/off
Min. Typ. Max. Units Test Conditions
— — — — 400 — 680 150 100 50 520 — 820 220 170 90 650 60 ns VS = 0V VS = 600V
Static Electrical Characteristics
VBIAS (VCC , VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, V TH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” (HO) & Logic “0” (LO) Input Voltage Logic “0” (HO) & Logic “1” (LO) Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current Logic “0” Input Bias Current VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current
Min. Typ. Max. Units Test Conditions
3 — — — — — — — — 8 7.4 130 270 — — — — — 30 150 3 — 8.9 8.2 210 360 — 0.8 100 100 50 55 270 10 1 9.8 9 — mA — V µA V mV VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V V IN = 5V VIN = 0V
VO = 0V PW ≤ 10 µs VO = 15V PW ≤ 10 µs
www.irf.com
3
IR2105
Functional Block Diagram
VB Q PULSE FILTER R S VS HO
HV LEVEL SHIFT
IN
DEAD TIME PULSE GEN UV DETECT
VCC
DEAD TIME
LO
COM
Lead Definitions
Lead Symbol Description
IN VB HO VS VCC LO COM Logic input for high and low side gate driver outputs (HO and LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
COM LO 5
COM LO 5
8 Lead PDIP
8 Lead SOIC
IR2105 4
IR2105S www.irf.com
IR2105
8 Lead PDIP
01-3003 01
8 Lead SOIC
www.irf.com
01-0021 08
5
IR2105
IN
IN(LO)
50% 50%
IN(HO)
ton
HO LO
tr 90%
toff 90%
tf
LO HO
Figure 1. Input/Output Timing Diagram
10%
10%
Figure 2. Switching Time Waveform Definitions
IN (LO)
50% 50%
50%
50%
IN
IN (HO)
90%
LO
HO
10%
HO
DT
10% DT
LO
MT 90%
MT
90%
10%
LO
Figure 3. Deadtime Waveform Definitions
HO
Figure 4. Delay Matching Waveform Definitions
6
www.irf.com
IR2105
1400 1400
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
1200 1000 Max. 800 600 400 200 0 -50 Typ.
1200 1000 800 600 400 200 0 Typ. Max.
-25
0
25 50 75 Temperature (oC)
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Time vs Temperature
Figure 6B. Turn-On Time vs Voltage
500
500
Turn-Off Delay Time (ns)
400 300 200 100 Ty p. 0 -50 -25 0 25 50 75 100 125 Max .
Turn-Off Delay Time (ns)
400 300 200 100 0 10 12 14 16 18 20 Ty p. Max .
Temperature (oC)
VBIAS Supply Voltage (V)
Figure 7A. Turn-Off Time vs Temperature
Figure 7B. Turn-Off Time vs Voltage
500
Turn-On Rise Time (ns) Turn-On Rise Time (ns)
500 400 300 Max. 200 100 Typ. 0
-25 0 25 50 75 Temperature (oC) 100 125
400 300 200 100 Typ. 0 -50 Max.
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9A. Turn-On Rise Time vs Temperature
Figure 9B. Turn-On Rise Time vs Voltage
www.irf.com
7
IR2105
200
Turn-Off Fall Time (ns) Turn-Off Fall Time (ns)
200
150
150 Max. Typ. 50
100 Max. 50 Typ.
100
0 -50 -25 0 25 50 75 Temperature ( oC) 100 125
0 10 12 14 16 VBIAS Supply Voltage (V) 18 20
Figure 10A. Turn Off Fall Time vs Temperature
140 0 120 0
Figure 10B. Turn Off Fall Time vs Voltage
140 0 120 0
Deadtime (ns)
Deadtime (ns)
100 0 800 600 Ty p. 400 200 0 -5 0 -2 5 0 25 50 75 100 125 Min. Max .
100 0 800 600 400
Max . Ty p .
Min. 200 0 10 12 14 16 18 20
Temperature (oC)
VBIAS Supply Voltage (V)
Figure 11A. Deadtime vs Temperature
Figure 11B. Deadtime vs Voltage
8 7
Input Voltage (V)
8 7
Input Voltage (V)
6 5 4 3 2 1 0 -50 -25 0
Temperature (oC)
6 5 4 3 2 1 0 Min.
Min.
25
50
75
100
125
10
12
14
16
18
20
Temperature (oC)
VBIAS Supply Voltage (V)
Figure12A. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Temperature
Figure 12B. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Voltage
8
www.irf.com
IR2105
4 3.2 2.4 1.6 Max . 0.8 0 - 50 - 25 0 25 50 75 10 0 12 5
4 3.2 2.4 1.6 Max. 0.8 0 10 12
Input Voltage (V)
Input Voltage (V)
Temperature (oC)
14 16 Vcc Supply Voltage (V)
18
20
Figure 13A. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Temperature
1
Figure 13B. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Voltage
1 0.8 0.6 0.4 0.2 0
High Level Output Voltage (V)
0.8 0.6 0.4 0.2 0 -50 -25 0 25 50 75 100 125 Max .
High Level Output Voltage (V)
Max.
10
12
Temperature (oC)
14 16 Vcc Supply Voltage (V)
18
20
Figure 14A. High Level Output vs Temperature
Figure 14B. High Level Output vs Voltage
1
1
Low Level Output Voltage (V)
0.8 0.6 0.4 0.2 0 - 50 - 25 0 25 50 75 100 125
Low Level Output Voltage (V)
0.8 0.6 0.4 0.2 0 10 12 14 16 18 20
Max .
Max.
Temperature (oC)
Vcc Supply Voltage (V)
Figure 15A. Low Level Output vs Temperature
Figure 15B. Low Level Output vs Voltage
www.irf.com
9
IR2105
Offset Supply Leakge Current (µA) Offset Supply Leakge Current (µA)
500 400 300 200 100
500 400 300 200 100 0 0 200 400 600 800 Max.
Max. -25 0 25 50 75 100 125
0 -50
Temperature (oC)
VB Boost Voltage (V)
Figure 16A. Offset Supply Current vs Temperature
15 0
Figure 16B. Offset Supply Current vs Voltage
150
VBS Supply Current (µA)
12 0 90 60 Max . 30 Ty p. 0 - 50 - 25 0 25 50 75 10 0 12 5
VBS Supply Current (µA)
120 90 60 30 Typ. 0 10 12 14 16 18 20
Max.
Temperature (oC)
VBS Floating Supply Voltage (V)
Figure 17A. VBS Supply Current vs Temperature
700
Figure 17B. VBS Supply Current vs Voltage
700
VCC Supply Current (µA)
600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ. Max.
VCC Supply Current (µA)
600 500 400 300 200 100 0 10 12 Typ. 14 16 Vcc Supply Voltage (V) 18 20 Max.
Temperature (oC)
Figure 18A. Vcc Supply Current vs Temperature
Figure 18B. Vcc Supply Current vs Voltage
10
www.irf.com
IR2105
30 30
Logic “1” Input Current (µA)
Logic “1” Input Current (µA)
25 20 15 Ma x . 10
Max
25 20 15 Ma x . 10 5 0 Ty p .
5 Ty p . 0 -50 -25 0 25 50
o
75
10 0
12 5
10
12
14
16
18
20
Temperature ( C)
Vcc Supply Voltage (V)
Figure 19A. Logic "1" Input Current vs Temperature
5
Figure 19B. Logic "1" Input Current vs Voltage
5
Logic “0” Input Current (µA)
Logic “0” Input Current (µA)
4 3 2 Max. 1 0 -50
4 3 2 Max. 1 0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
14 16 Vcc Supply Voltage (V)
18
20
Figure 20A. Logic "0" Input Current vs Temperature
11
VCC UVLO Threshold +(V) VCC UVLO Threshold -(V)
Figure 20B. Logic "0" Input Current vs Voltage
11
Max . 10 Ty p. 9 Min . 8 7 6 -50 -25 0 25 50 75 10 0 12 5
Temperature (oC)
10 Max. 9 Typ. Typ. 8 7 Min. 6 -50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature
Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature
www.irf.com
11
IR2105
50 0
Output Source Current (mA) Output Source Current (mA)
500 400 300 200 100
Min.
40 0 30 0 20 0 10 0 0 -50 -25 0 25 50 75 10 0 12 5
Temperature (oC)
Ty p.
Typ. Min. 12 14 16 VBIAS Supply Voltage (V) 18 20
Min.
0 10
Figure 22A. Output Source Current vs Temperature
700
Figure 22B. Output Source Current vs Voltage
700
Output Sink Current (mA)
Output Sink Current (mA)
600 500 400 300 200 100 0 - 50 - 25 0 25 50 Temperature (oC) 75 100 125 Min. Ty p .
600 500 400 300 200 100 0 10 12 14 16 18 20 Min. Typ.
VBIAS Supply Voltage (V)
Figure 23A. Output Sink Current vs Temperature
Figure 23B. Output Sink Current vs Voltage
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380 Data and specifications subject to change without notice. 11/29/99
12
www.irf.com
很抱歉,暂时无法提供与“IR2105S”相匹配的价格&库存,您可以联系我们找货
免费人工找货