0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2106

IR2106

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2106 - HIGH AND LOW SIDE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2106 数据手册
Data Sheet No. PD60162 Rev. V IR2106(4)(S) Features HIGH AND LOW SIDE DRIVER Packages • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V (IR2106(4)) Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs (IR2106) 8-Lead SOIC 8-Lead PDIP 14-Lead SOIC 14-Lead PDIP Description The IR2106(4)(S) are high voltage, Crosshigh speed power MOSFET and Input conduction Dead-Time Ground Pins Ton/Toff Part IGBT drivers with independent high prevention logic logic and low side referenced output chan2106/2301 COM HIN/LIN no none 220/200 nels. Proprietary HVIC and latch 21064 VSS/COM immune CMOS technologies enable 2108 Internal 540ns COM HIN/LIN yes 220/200 Programmable 0.54~5µs 21084 VSS/COM ruggedized monolithic construction. 2109/2302 Internal 540ns COM The logic input is compatible with IN/SD yes 750/200 Programmable 0.54~5µs 21094 VSS/COM standard CMOS or LSTTL output, yes 160/140 Internal 100ns HIN/LIN COM 2304 down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 2106/2301//2108//2109/2302/2304Feature Comparison Typical Connection VCC up to 600V VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM IR2106 HO VCC HIN up to 600V V CC HIN LIN VB VS TO LOAD (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. LIN IR21064 COM LO V SS V SS www.irf.com 1 IR2106(4) (S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN VSS dVS/dt PD Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Logic ground (IR21064 only) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V V/ns W RthJA Thermal resistance, junction to ambient (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC) °C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) °C 2 www.irf.com IR2106(4) (S) Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN VSS TA Definition High side floating supply absolute voltage IR2106(4) High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage IR2106(4) Low side output voltage Logic input voltage Logic ground (IR21064 only) Ambient temperature Min. VS + 10 Note 1 VS 10 0 VSS -5 -40 Max. VS + 20 600 VB 20 VCC VCC 5 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C. Symbol ton toff MT tr tf Definition Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Min. — — — — — Typ. 220 200 0 150 50 Max. Units Test Conditions 300 280 30 220 80 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V www.irf.com 3 IR2106(4) (S) Static Electrical Characteristics VBIAS (V CC , VBS ) = 15V, V SS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads. The VO, I O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage (IR2106(4)) Logic “0” input voltage (IR2106(4)) High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current VIN = 5V (IR2106(4)) Logic “0” input bias current VIN = 0V (IR2106(4)) VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.9 — — — — 20 60 — — 0.8 0.3 — 75 120 — 0.8 1.4 0.6 50 130 180 µA — — 8.0 7.4 0.3 120 250 5 — 8.9 8.2 0.7 200 350 20 2 9.8 9.0 — — mA — VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V V 4 www.irf.com IR2106(4) (S) Functional Block Diagrams VB IR2106 VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO HIN VS VCC UV DETECT LO LIN VSS/COM LEVEL SHIFT DELAY COM VB IR21064 HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO HIN VSS/COM LEVEL SHIFT VS VCC UV DETECT LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS www.irf.com 5 IR2106(4) (S) Lead Definitions Symbol Description HIN LIN VSS VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), in phase Logic Ground (IR21064 only) High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IR2106 IR2106S 1 2 3 4 5 6 7 VCC HIN LIN VB HO VS VSS COM LO 14 13 12 11 10 9 8 1 2 3 4 5 6 7 VCC HIN LIN VB HO VS VSS COM LO 14 13 12 11 10 9 8 14 Lead PDIP 14 Lead SOIC IR21064 6 IR21064S www.irf.com IR2106(4) (S) HIN LIN HO LO Figure 1. Input/Output Timing Diagram HIN LIN ton 50% 50% tr 90% toff 90% tf HO LO 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% LO HO 10% MT 90% MT LO HO Figure 3. Delay Matching Waveform Definitions www.irf.com 7 IR2106(4) (S) 500 500 Turn-on Propagation Delay (ns) 400 Turn-on Propagation Delay (ns) 400 M ax. 300 300 M ax 200 Typ. 100 Typ. 200 100 0 50 25 0 25 50 75 100 125 0 10 12 14 16 18 20 Temperature ( oC) Figure 4A. Turn-on Propagation Delay vs. Temperature V BIAS Supply Voltage (V) Figure 4B. Turn-on Propagation Delay vs. Supply Voltage 500 500 Turn-off Propagation Delay (ns) 400 Turn-off Propagation Delay (ns) 400 M ax. 300 Typ. 200 300 M ax. 200 Typ. 100 100 0 -50 -25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 5A. Turn-off Propagation Delay vs. Temperature V BIAS Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 8 www.irf.com IR2106(4) (S) 500 500 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 400 400 300 300 M ax. Typ. 200 M ax. Typ. 200 100 100 0 50 25 0 25 50 75 100 125 0 10 12 14 16 18 20 Temperature ( oC) Figure 6A. Turn-on Rise Time vs. Temperature V BIAS Supply Voltage (V) Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 200 Turn-off Fall Time (ns) 150 Turn-off Fall Time (ns) 150 100 M ax. 50 Typ. 0 50 25 0 25 50 75 100 125 100 M ax. Typ. 50 0 10 12 14 16 18 20 Temperature ( oC) Figure 7A. Turn-off Fall Time vs. Temperature V BIAS Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage www.irf.com 9 IR2106(4) (S) 8 7 8 7 Input Voltage (V) 6 5 4 M ax. 3 2 1 0 50 25 0 25 50 75 100 125 Input Voltage (V) 6 5 4 M ax. 3 2 1 0 10 12 14 16 18 20 Temperature (oC) Figure 8A. Logic “1” Input Voltage vs. Temperature V CC Supply Voltage (V) Figure 8B. Logic “1” Input Voltage vs. Supply Voltage 4. 0 4. 0 3. 2 3. 2 Input Voltage (V) 2. 4 Input Voltage (V) 2. 4 1. 6 1. 6 Mi n. 0. 8 Mi n. 0. 8 0. 0 50 25 0 25 50 75 100 125 0. 0 10 12 14 16 18 20 Temperature ( oC) Figure 9A. Logic “0” Input Voltage vs. Temperature V CC Supply Voltage (V) Figure 9B. Logic “0” Input Voltage vs. Supply Voltage 10 www.irf.com IR2106(4) (S) 4 4 High Level Output Voltage (V) 3 High Level Output Voltage (V) 25 0 25 50 75 100 125 3 2 2 M ax. M ax. 1 Typ. Typ. 1 0 50 0 10 12 14 16 18 20 Temperature ( oC) Figure 10A. High Level Output Voltage vs. Temperature V BIAS Supply Voltage (V) Figure 10B. High Level Output Voltage vs. Supply Voltage 1. 5 1. 5 Low Level Output Voltage (V) 1. 2 Low Level Output Voltage (V) 1. 2 0. 9 0. 9 M ax. 0. 6 Typ. 0. 3 0. 6 M ax. 0. 3 Typ. 0 50 25 0 25 50 75 100 125 0 10 12 14 16 18 20 Temperature ( oC) Fi 11A L L lO t t V BIAS Supply Voltage (V) Figure 11B. Low Level Output Voltage vs. Supply Voltage Figure 11A. Low Level Output Voltage vs. Temperature www.irf.com 11 IR2106(4) (S) Offset Supply Leakage Current ( A) 400 Offset Supply Leakage Current ( A) 500 500 400 300 300 200 200 100 M ax. 0 -50 -25 0 25 50 o 100 M ax. 0 0 100 200 300 400 500 600 75 100 125 Temperature ( C) Figure 12A. Offset Supply Leakage Current vs. Temperature V B Boost Voltage (V) Figure 12B. Offset Supply Leakage Current vs. Supply Voltage 400 400 V BS Supply Current ( A) 0 25 50 75 100 125 V BS Supply Current ( A) 300 300 200 200 M ax. 100 Typ. Mi n. 0 -50 -25 M ax. 100 Typ. M i. n 0 10 12 14 16 18 20 Temperature (oC) Figure 13A. VBS Supply Current vs. Temperature V BS Supply Voltage (V) Figure 13B. VBS Supply Current vs. Supply Voltage 12 www.irf.com IR2106(4) (S) 400 400 V c c S u p p l C u rre n t ( A ) y 300 V CC Supply Current ( A) 300 M ax. 200 Typ. 200 M ax. Typ. 100 Mi n. 100 Mi n. 0 50 25 0 25 50 75 100 125 0 10 12 14 16 18 20 T e m p e ra tu re (oC ) Figure 14A. Quiescent VCC Supply Current vs. Temperature V CC Supply Voltage (V) Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage 60 60 Logic "1" Input Current ( A) 50 Logic "1" Input Current ( A) 50 40 40 30 30 M ax. 20 20 M ax. Typ. 0 50 25 0 25 50 75 100 125 10 10 Typ. 0 10 12 14 16 18 20 Temperature (oC) Figure 15A. Logic “1” Input Current vs. Temperature V CC Supply Voltage (V) Figure 15B. Logic “1” Bias Current vs. Supply Voltage www.irf.com 13 IR2106(4) (S) 5 5 Logic "0" Input Current ( A) Logic "0" Input Current ( A) 4 4 3 M ax. 2 3 M ax. 2 1 1 0 -50 -25 0 25 50 75 100 125 0 10 12 14 16 18 20 Temperature (oC) Figure 16A. Logic “0” Input Current vs. Temperature V CC Supply Voltage (V) Fi Figure 16B. Logic “0” Input Currentt vs. Supply Voltage 16B L i "0" I C 12 11 V CC UVLO Threshold (+) (V) 11 V CC UVLO Threshold (-) (V) 10 M ax. 9 Typ. 8 Mi n. 7 10 M ax. 9 Typ. Mi n. 8 7 -50 -25 0 25 50 75 100 125 6 50 25 0 25 50 75 100 125 Temperature ( oC) Figure 17. VCC Undervoltage Threshold (+) vs. Temperature Temperature ( oC) Figure 18. VCC Undervoltage Threshold (-) vs. Temperature 14 www.irf.com IR2106(4) (S) 12 11 V BS UVLO Threshold (+) (V) 11 V BS UVLO Threshold (-) (V) 10 10 M ax. M ax. 9 Typ. 8 Mi n. 7 Typ. 9 Mi n. 8 7 -50 -25 0 25 50 o 6 75 100 125 50 25 0 25 50 o 75 100 125 Temperature ( C) Figure 19. VBS Undervoltage Threshold (+) vs. Temperature Temperature ( C) Figure 20. VBS Undervoltage Threshold (-) vs. Temperature 500 500 Output Source Current ( A) Output Source Current ( A) 400 400 300 Typ. 200 Mi n. 100 300 200 Typ. 100 Mi n. 0 -50 -25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 21A. Output Source Current vs. Temperature V BIAS Supply Voltage (V) Figure 21B. Output Source Current vs. Supply Voltage www.irf.com 15 IR2106(4) (S) 600 600 Output Sink Current ( A) Typ. 400 Mi n. 300 Output Sink Current ( A) 500 500 400 300 Typ. 200 Mi n. 200 100 100 0 -50 -25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 22A. Output Sink Current vs. Temperature V BIAS Supply Voltage (V) Figure 22B. Output Sink Currentt vs. Supply Voltage 0 140 120 Temprature (oC) Typ. V S Offset Supply Voltage (V) 2 100 80 60 40 20 140V 70V 0V 4 6 8 10 10 12 14 16 18 20 1 10 100 1000 V BS Floating Supply Voltage (V) Figure 23. Maximum VS Negative Offset vs. Supply Voltage Frequency (KHz) Figure 24. IR2106 vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15V 16 www.irf.com IR2106(4) (S) 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 25. IR2106 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140V 70V 0V o Temperature ( C) 140 120 100 140V 80 60 40 20 1 10 100 70V 0V 1000 Frequency (KHz) Figure 26. IR2106 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V 70V 140 0V 120 o Temperature ( C) 100 80 60 40 20 1 10 100 140V 70V 0V 1000 1000 Frequency (KHz) Figure 27. IR2106 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V Frequency (KHz) Figure 28. IR21064 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com 17 IR2106(4) (S) 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 29. IR21064 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140V 70V 0V 140 120 Temperature (oC) 100 140V 80 60 40 20 1 10 100 70V 0V 1000 Frequency (KHz) Figure 30. IR21064 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V 140 120 Temperature (o C) 100 80 60 40 20 1000 140V 70V 0V 70V 0V 1 10 100 1000 Frequency (KHz) Figure 31. IR21064 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V Frequency (KHz) Figure 32. IR2106S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 18 www.irf.com IR2106(4) (S) 140 120 Temperature (oC) Temperature (oC) 140V 140 120 70V 0V 140V 70V 100 80 60 40 20 1 10 100 100 80 60 40 20 0V 1000 1 10 100 1000 Frequency (KHz) Figure 33. IR2106S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Frequency (KHz) Figure 34. IR2106S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 100 80 60 40 20 1 10 Tempreture (oC) 140V 70V 0V 140 120 Temperature (oC) 100 80 60 40 140V 70V 0V 100 1000 20 1 10 100 1000 Frequency (KHz) Figure 36. IR21064S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V Frequency (KHz) Figure 35. IR2106S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V www.irf.com 19 IR2106(4) (S) 140 120 o Temperature ( C) 140 120 Temperature (oC) 100 80 60 40 20 140V 70V 0V 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 37. IR21064S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140V 70V 0V 1 10 100 1000 Frequency (KHz) Figure 38. IR21064S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V 70V 0V 1000 Frequency (KHz) Figure 39. IR21064S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 20 www.irf.com IR2106(4) (S) Case Outlines 8 Lead PDIP D A 5 B FOOTPRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8 Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 21 IR2106(4) (S) 14 Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14 Lead SOIC (narrow body) 01-6019 01-3063 00 (MS-012AB) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/27/2004 22 www.irf.com
IR2106 价格&库存

很抱歉,暂时无法提供与“IR2106”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IR2106STRPBF
    •  国内价格
    • 1+12.995
    • 10+11.865
    • 30+11.639

    库存:0