Data Sheet No. PD60162 Rev. V
IR2106(4)(S)
Features
HIGH AND LOW SIDE DRIVER
Packages
• Floating channel designed for bootstrap operation • • • • • • •
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V (IR2106(4)) Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs (IR2106)
8-Lead SOIC
8-Lead PDIP
14-Lead SOIC
14-Lead PDIP
Description
The IR2106(4)(S) are high voltage, Crosshigh speed power MOSFET and Input conduction Dead-Time Ground Pins Ton/Toff Part IGBT drivers with independent high prevention logic logic and low side referenced output chan2106/2301 COM HIN/LIN no none 220/200 nels. Proprietary HVIC and latch 21064 VSS/COM immune CMOS technologies enable 2108 Internal 540ns COM HIN/LIN yes 220/200 Programmable 0.54~5µs 21084 VSS/COM ruggedized monolithic construction. 2109/2302 Internal 540ns COM The logic input is compatible with IN/SD yes 750/200 Programmable 0.54~5µs 21094 VSS/COM standard CMOS or LSTTL output, yes 160/140 Internal 100ns HIN/LIN COM 2304 down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
2106/2301//2108//2109/2302/2304Feature Comparison
Typical Connection
VCC
up to 600V
VCC
HIN LIN
VB HO VS LO
TO LOAD
HIN LIN COM
IR2106
HO VCC
HIN
up to 600V
V CC HIN LIN
VB VS TO LOAD
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
LIN
IR21064
COM LO
V SS
V SS
www.irf.com
1
IR2106(4) (S)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN VSS dVS/dt PD
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Logic ground (IR21064 only) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C (8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300
Units
V
V/ns
W
RthJA
Thermal resistance, junction to ambient
(8 lead PDIP) (8 lead SOIC) (14 lead PDIP) (14 lead SOIC)
°C/W
TJ TS TL
Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
°C
2
www.irf.com
IR2106(4) (S)
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN VSS TA
Definition
High side floating supply absolute voltage IR2106(4) High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage IR2106(4) Low side output voltage Logic input voltage Logic ground (IR21064 only) Ambient temperature
Min.
VS + 10 Note 1 VS 10 0 VSS -5 -40
Max.
VS + 20 600 VB 20 VCC VCC 5 125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C.
Symbol
ton toff MT tr tf
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time
Min.
— — — — —
Typ.
220 200 0 150 50
Max. Units Test Conditions
300 280 30 220 80 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V
www.irf.com
3
IR2106(4) (S)
Static Electrical Characteristics
VBIAS (V CC , VBS ) = 15V, V SS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads. The VO, I O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic “1” input voltage (IR2106(4)) Logic “0” input voltage (IR2106(4)) High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current VIN = 5V (IR2106(4)) Logic “0” input bias current VIN = 0V (IR2106(4)) VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.9 — — — — 20 60 — — 0.8 0.3 — 75 120 — 0.8 1.4 0.6 50 130 180 µA — — 8.0 7.4 0.3 120 250 5 — 8.9 8.2 0.7 200 350 20 2 9.8 9.0 — — mA — VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V
V
4
www.irf.com
IR2106(4) (S)
Functional Block Diagrams
VB
IR2106
VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
HIN
VS
VCC
UV DETECT
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VB
IR21064
HV LEVEL SHIFTER PULSE GENERATOR
UV DETECT R PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
VCC
UV DETECT
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
VSS
www.irf.com
5
IR2106(4) (S)
Lead Definitions
Symbol Description
HIN LIN VSS VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), in phase Logic Ground (IR21064 only) High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
Lead Assignments
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IR2106
IR2106S
1 2 3 4 5 6 7
VCC HIN LIN VB HO VS VSS COM LO
14
13 12 11 10 9 8
1 2 3 4 5 6 7
VCC HIN LIN VB HO VS VSS COM LO
14
13 12 11 10 9 8
14 Lead PDIP
14 Lead SOIC
IR21064
6
IR21064S
www.irf.com
IR2106(4) (S)
HIN LIN
HO LO
Figure 1. Input/Output Timing Diagram
HIN LIN
ton
50%
50%
tr 90%
toff 90%
tf
HO LO
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN LIN
50%
50%
LO
HO
10%
MT 90%
MT
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
7
IR2106(4) (S)
500
500
Turn-on Propagation Delay (ns)
400
Turn-on Propagation Delay (ns)
400 M ax. 300
300 M ax 200 Typ. 100
Typ.
200
100
0 50 25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature ( oC)
Figure 4A. Turn-on Propagation Delay vs. Temperature
V BIAS Supply Voltage (V)
Figure 4B. Turn-on Propagation Delay vs. Supply Voltage
500
500
Turn-off Propagation Delay (ns)
400
Turn-off Propagation Delay (ns)
400
M ax. 300 Typ. 200
300 M ax. 200 Typ. 100
100
0 -50 -25 0 25 50
o
0 75 100 125 10 12 14 16 18 20
Temperature ( C)
Figure 5A. Turn-off Propagation Delay vs. Temperature
V BIAS Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay vs. Supply Voltage
8
www.irf.com
IR2106(4) (S)
500
500
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
400
400
300
300 M ax. Typ.
200
M ax. Typ.
200
100
100
0 50 25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature ( oC)
Figure 6A. Turn-on Rise Time vs. Temperature
V BIAS Supply Voltage (V)
Figure 6B. Turn-on Rise Time vs. Supply Voltage
200
200
Turn-off Fall Time (ns)
150
Turn-off Fall Time (ns)
150
100 M ax. 50 Typ. 0 50 25 0 25 50 75 100 125
100
M ax.
Typ. 50
0 10 12 14 16 18 20
Temperature ( oC)
Figure 7A. Turn-off Fall Time vs. Temperature
V BIAS Supply Voltage (V)
Figure 7B. Turn-off Fall Time vs. Supply Voltage
www.irf.com
9
IR2106(4) (S)
8 7
8 7
Input Voltage (V)
6 5 4 M ax. 3 2 1 0 50 25 0 25 50 75 100 125
Input Voltage (V)
6 5 4 M ax. 3 2 1 0 10 12 14 16 18 20
Temperature (oC)
Figure 8A. Logic “1” Input Voltage vs. Temperature
V CC Supply Voltage (V)
Figure 8B. Logic “1” Input Voltage vs. Supply Voltage
4. 0 4. 0
3. 2
3. 2
Input Voltage (V)
2. 4
Input Voltage (V)
2. 4
1. 6
1. 6
Mi n. 0. 8
Mi n. 0. 8
0. 0 50 25 0 25 50 75 100 125
0. 0 10 12 14 16 18 20
Temperature ( oC)
Figure 9A. Logic “0” Input Voltage vs. Temperature
V CC Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage vs. Supply Voltage
10
www.irf.com
IR2106(4) (S)
4
4
High Level Output Voltage (V)
3
High Level Output Voltage (V)
25 0 25 50 75 100 125
3
2
2
M ax.
M ax. 1 Typ.
Typ. 1
0 50
0 10 12 14 16 18 20
Temperature ( oC)
Figure 10A. High Level Output Voltage vs. Temperature
V BIAS Supply Voltage (V)
Figure 10B. High Level Output Voltage vs. Supply Voltage
1. 5
1. 5
Low Level Output Voltage (V)
1. 2
Low Level Output Voltage (V)
1. 2
0. 9
0. 9 M ax. 0. 6 Typ. 0. 3
0. 6 M ax. 0. 3 Typ. 0 50 25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature ( oC)
Fi
11A L
L
lO t
t
V BIAS Supply Voltage (V)
Figure 11B. Low Level Output Voltage vs. Supply Voltage
Figure 11A. Low Level Output Voltage vs. Temperature
www.irf.com
11
IR2106(4) (S)
Offset Supply Leakage Current ( A)
400
Offset Supply Leakage Current ( A)
500
500
400
300
300
200
200
100 M ax. 0 -50 -25 0 25 50
o
100 M ax.
0 0 100 200 300 400 500 600
75
100
125
Temperature ( C)
Figure 12A. Offset Supply Leakage Current vs. Temperature
V B Boost Voltage (V)
Figure 12B. Offset Supply Leakage Current vs. Supply Voltage
400
400
V BS Supply Current ( A)
0 25 50 75 100 125
V BS Supply Current ( A)
300
300
200
200
M ax. 100 Typ. Mi n. 0 -50 -25
M ax. 100 Typ. M i. n 0 10 12 14 16 18 20
Temperature (oC)
Figure 13A. VBS Supply Current vs. Temperature
V BS Supply Voltage (V)
Figure 13B. VBS Supply Current vs. Supply Voltage
12
www.irf.com
IR2106(4) (S)
400
400
V c c S u p p l C u rre n t ( A ) y
300
V CC Supply Current ( A)
300 M ax. 200 Typ.
200
M ax. Typ.
100 Mi n.
100
Mi n.
0 50 25 0 25 50 75 100 125
0 10 12 14 16 18 20
T e m p e ra tu re (oC )
Figure 14A. Quiescent VCC Supply Current vs. Temperature
V CC Supply Voltage (V)
Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage
60
60
Logic "1" Input Current ( A)
50
Logic "1" Input Current ( A)
50
40
40
30
30 M ax. 20
20 M ax. Typ. 0 50 25 0 25 50 75 100 125
10
10 Typ. 0 10 12 14 16 18 20
Temperature (oC)
Figure 15A. Logic “1” Input Current vs. Temperature
V CC Supply Voltage (V)
Figure 15B. Logic “1” Bias Current vs. Supply Voltage
www.irf.com
13
IR2106(4) (S)
5
5
Logic "0" Input Current ( A)
Logic "0" Input Current ( A)
4
4
3 M ax. 2
3 M ax. 2
1
1
0 -50 -25 0 25 50 75 100 125
0 10 12 14 16 18 20
Temperature (oC)
Figure 16A. Logic “0” Input Current vs. Temperature
V CC Supply Voltage (V)
Fi
Figure 16B. Logic “0” Input Currentt vs. Supply Voltage
16B L
i "0" I
C
12
11
V CC UVLO Threshold (+) (V)
11
V CC UVLO Threshold (-) (V)
10 M ax. 9 Typ. 8 Mi n. 7
10
M ax.
9
Typ.
Mi n. 8
7 -50 -25 0 25 50 75 100 125
6 50 25 0 25 50 75 100 125
Temperature ( oC)
Figure 17. VCC Undervoltage Threshold (+) vs. Temperature
Temperature ( oC)
Figure 18. VCC Undervoltage Threshold (-) vs. Temperature
14
www.irf.com
IR2106(4) (S)
12
11
V BS UVLO Threshold (+) (V)
11
V BS UVLO Threshold (-) (V)
10
10
M ax.
M ax. 9 Typ. 8 Mi n. 7
Typ. 9
Mi n. 8
7 -50 -25 0 25 50
o
6 75 100 125 50 25 0 25 50
o
75
100
125
Temperature ( C)
Figure 19. VBS Undervoltage Threshold (+) vs. Temperature
Temperature ( C)
Figure 20. VBS Undervoltage Threshold (-) vs. Temperature
500
500
Output Source Current ( A)
Output Source Current ( A)
400
400
300 Typ. 200 Mi n. 100
300
200 Typ. 100 Mi n.
0 -50 -25 0 25 50
o
0 75 100 125 10 12 14 16 18 20
Temperature ( C)
Figure 21A. Output Source Current vs. Temperature
V BIAS Supply Voltage (V)
Figure 21B. Output Source Current vs. Supply Voltage
www.irf.com
15
IR2106(4) (S)
600
600
Output Sink Current ( A)
Typ. 400 Mi n. 300
Output Sink Current ( A)
500
500
400
300 Typ. 200 Mi n.
200
100
100
0 -50 -25 0 25 50
o
0 75 100 125 10 12 14 16 18 20
Temperature ( C)
Figure 22A. Output Sink Current vs. Temperature
V BIAS Supply Voltage (V)
Figure 22B. Output Sink Currentt vs. Supply Voltage
0
140 120 Temprature (oC)
Typ.
V S Offset Supply Voltage (V)
2
100 80 60 40 20
140V 70V 0V
4
6
8
10 10 12 14 16 18 20
1
10
100
1000
V BS Floating Supply Voltage (V)
Figure 23. Maximum VS Negative Offset vs. Supply Voltage
Frequency (KHz)
Figure 24. IR2106 vs. Frequency (IRFBC20), Rgate=33Ω, VCC=15V
16
www.irf.com
IR2106(4) (S)
140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz)
Figure 25. IR2106 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V
140V 70V 0V o Temperature ( C)
140 120 100
140V
80 60 40 20 1 10 100
70V 0V
1000
Frequency (KHz)
Figure 26. IR2106 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V
140
0V
120
o Temperature ( C)
100 80 60 40 20 1 10 100
140V 70V 0V
1000
1000
Frequency (KHz)
Figure 27. IR2106 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V
Frequency (KHz)
Figure 28. IR21064 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V
www.irf.com
17
IR2106(4) (S)
140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 Frequency (KHz)
Figure 29. IR21064 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V
140V 70V 0V
140 120 Temperature (oC) 100
140V
80 60 40 20 1 10 100
70V 0V
1000
Frequency (KHz)
Figure 30. IR21064 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V
140 120 Temperature (o C) 100 80 60 40 20
1000
140V 70V 0V
70V
0V
1
10
100
1000
Frequency (KHz)
Figure 31. IR21064 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V
Frequency (KHz)
Figure 32. IR2106S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V
18
www.irf.com
IR2106(4) (S)
140 120 Temperature (oC) Temperature (oC)
140V
140 120
70V 0V
140V 70V
100 80 60 40 20 1 10 100
100 80 60 40 20
0V
1000
1
10
100
1000
Frequency (KHz)
Figure 33. IR2106S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V
Frequency (KHz)
Figure 34. IR2106S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V
140 120 100 80 60 40 20 1 10 Tempreture (oC)
140V 70V 0V
140 120 Temperature (oC) 100 80 60 40
140V 70V 0V
100
1000
20 1 10 100 1000 Frequency (KHz)
Figure 36. IR21064S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V
Frequency (KHz)
Figure 35. IR2106S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V
www.irf.com
19
IR2106(4) (S)
140 120
o Temperature ( C)
140 120 Temperature (oC) 100 80 60 40 20
140V 70V 0V
100 80 60 40 20 1 10 100 1000 Frequency (KHz)
Figure 37. IR21064S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V
140V 70V 0V
1
10
100
1000
Frequency (KHz)
Figure 38. IR21064S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V 0V
1000
Frequency (KHz)
Figure 39. IR21064S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V
20
www.irf.com
IR2106(4) (S)
Case Outlines
8 Lead PDIP
D A 5 B
FOOTPRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
A1 CAB
8X L 7
8X c
NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8 Lead SOIC
www.irf.com
01-6027 01-0021 11 (MS-012AA)
21
IR2106(4) (S)
14 Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14 Lead SOIC (narrow body)
01-6019 01-3063 00 (MS-012AB)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/27/2004
22
www.irf.com