0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2110E4

IR2110E4

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2110E4 - HIGH AND LOW SIDE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2110E4 数据手册
PD - 60086B IR2110E4 HIGH AND LOW SIDE DRIVER Features n Floating channel designed for bootstrap operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for both channels n Separate logic supply range from 5 to 20V Logic and power ground ±5V offset n CMOS Schmitt-triggered inputs with pull-down n Cycle by cycle edge-triggered shutdown logic n Matched propagation delay for both channels n Outputs in phase with inputs Product Summary VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 400V max. 2A / 2A 10 - 20V 120 & 94 ns 10 ns Description The IR2110E4 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 400 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVS/dt PD RthJA Tj TS TL Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA ≤ = 25°C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Package Mounting Surface Temperature Weight Min. Max. Units -0.5 VS + 20 — 400 VS -0.5 VB + 0.5 -0.5 20 -0.5 VCC + 0.5 -0.5 VSS + 20 VCC - 20 VCC + 0.5 VSS - 0.5 VDD + 0.5 — 50 — 1.6 — 125 -55 125 -55 150 300 (for 5 seconds) 0.45 (typical) V V/ns W °C/W °C g www.irf.com 1 4/19/99 IR2110E4 Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Min. VS + 10 -4 VS 10 0 VSS + 5 -5 VSS Max. VS + 20 400 VB 20 V CC VSS + 20 5 VDD Units V Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Tj = 25°C Symbol Parameter ton toff tsd tr tf Mt Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On/Off Min — — — — — — Tj = -55 to 125°C Test Conditions V S = 0V VS = 400V VS = 400V CL = 1000pf CL = 1000pf Hton-Lton / Htoff-Ltoff — — — — — — 260 220 235 50 40 — Typ. Max. Min. Max Units 120 94 110 25 17 — 150 125 140 35 25 10 nS Typical Connection HO V DD HIN SD LIN V SS V CC V DD HIN SD LIN V SS V CC COM LO VB VS up to 4 500V TO LOAD 2 www.irf.com IR2110E4 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Tj = -55 to 125°C Typ. Max. Min. Max Units — — 0.7 — — 125 180 5 15 — 8.7 8.3 8.6 8.2 — — — 6 1.2 0.1 50 230 340 30 40 1 9.7 9.4 9.6 9.4 — — 10 — — — — — — — — — — — — — — — — 5.7 1.5 0.1 250 500 600 60 70 10 — — — — — A 2 — VOUT = 0V, VIN = 15V PW < = 10 µs VOUT = 15V, VIN = 0V PW < = 10µs V V Tj = 25°C Symbol VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINParameter Logic “1” Input Voltage Logic “0” Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Quiescent VDD Supply Current Logic “1” Input Bias Current Logic “0” Input Bias Current Min 9.5 — — — — — — — — — 7.5 7.0 7.4 7.0 2 Test Conditions VDD = 15V VDD = 15V VIN = VIH , IO = 0A VIN = VIL, IO = 0A VB = VS = 400V VIN = VIH or VIL µA VIN = VIH or VIL VIN = VIH or VIL VIN = 15V VIN = 0V VBSUV+ VBS Supply Undervoltage Positive Going Threshold VBSUV- VBS Supply Undervoltage Negative Going Threshold VCCUV+ VCC Supply Undervoltage Positive Going Threshold VCCUV- VCC Supply Undervoltage Negative Going Threshold IO+ Output High Short Circuit Pulsed Current IOOutput Low Short Circuit Pulsed Current www.irf.com 3 IR2110E4 4 4 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit 11 13 14 15 4 8 6 9 1 4 HIN LIN ton 50% 50% tr 90% toff 90% tf 17 2 HO LO 10% 10% Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition HIN LIN 50% 50% SD 50% LO HO 10% tsd MT MT 90% HO LO 90% LO Figure 3. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions 4 www.irf.com IR2110E4 250 250 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 200 Max. 150 Max. 150 Typ. 100 Typ. 100 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Voltage 250 250 200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 200 Max. 150 150 Typ. Max. 100 Typ. 100 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 Shutdown Delay Time (ns) Shutdown Delay time (ns) 200 Max. 150 Max. 150 Typ. 100 Typ. 100 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature Figure 9B. Shutdown Time vs. Voltage www.irf.com 5 IR2110E4 100 100 80 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 80 60 60 Max. 40 Max. Typ. 40 Typ. 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 10A. Turn-On Rise Time vs. Temperature Figure 10B. Turn-On Rise Time vs. Voltage 50 50 40 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 40 30 Max. 30 20 Typ. 20 Max. Typ. 10 10 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 Logic "1" Input Threshold (V) Min. 12.0 Logic "1" Input Threshold (V) 9.0 9.0 6.0 6.0 Min. 3.0 3.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12A. Logic “1” Input Threshold vs. Temperature Figure 12B. Logic “1” Input Threshold vs. Voltage 6 www.irf.com IR2110E4 15.0 15.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) 12.0 9.0 9.0 6.0 Max. 6.0 3.0 3.0 Max. 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 13A. Logic “0” Input Threshold vs. Temperature Figure 13B. Logic “0” Input Threshold vs. Voltage 5.00 5.00 4.00 High Level Output Voltage (V) High Level Output Voltage (V) 4.00 3.00 3.00 2.00 Max. 2.00 Max. 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 15.0 0.80 Low Level Output Voltage (V) Logic "1" Input Threshold (V) 12.0 0.60 9.0 0.40 6.0 Min. 0.20 Max. 3.0 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 15A. Low Level Output vs. Temperature Figure 15B. Low Level Output vs. Voltage www.irf.com 7 IR2110E4 500 500 Offset Supply Leakage Current (µA) 300 Offset Supply Leakage Current (µA) 400 400 300 200 200 100 Max. 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 0 100 200 300 400 500 VB Boost Voltage (V) Figure 16A. Offset Supply Current vs. Temperature Figure 16B. Offset Supply Current vs. Voltage 500 500 400 VBS Supply Current (µA) VBS Supply Current (µA) 400 300 Max. 300 200 Typ. 200 Max. 100 100 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage 625 625 500 VCC Supply Current (µA) VCC Supply Current (µA) 500 375 Max. 375 250 Typ. 250 Max. 125 125 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 18A. VCC Supply Current vs. Temperature Figure 18B. VCC Supply Current vs. Voltage 8 www.irf.com IR2110E4 100 100 80 VDD Supply Current (µA) VDD Supply Current (µA) 80 60 60 40 Max. 40 Max. 20 Typ. 20 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 19A. VDD Supply Current vs. Temperature Figure 19B. VDD Supply Current vs. Voltage 100 100 80 Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) 80 60 60 40 Max. 40 20 Typ. 20 Max. T yp. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 20A. Logic “1” Input Current vs. Temperature Figure 20B. Logic “1” Input Current vs. Voltage 5.00 5.00 4.00 Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) 4.00 3.00 3.00 2.00 2.00 1.00 Max. 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 21A. Logic “0” Input Current vs. Temperature Figure 21B. Logic “0” Input Current vs. Voltage www.irf.com 9 IR2110E4 11.0 11.0 10.0 VBS Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) Max. 10.0 Max. 9.0 Typ. 9.0 8.0 Min. Typ. 8.0 7.0 7.0 Min. 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 22. VBS Undervoltage (+) vs. Temperature Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 11.0 10.0 VCC Undervoltage Lockout + (V) Max. 10.0 VCC Undervoltage Lockout - (V) Max. 9.0 Typ. 9.0 8.0 Min. 8.0 Typ. 7.0 7.0 Min. 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 5.00 4.00 Output Source Current (A) Output Source Current (A) 4.00 3.00 Typ. Min. 3.00 2.00 2.00 Typ. 1.00 1.00 Min. 0.00 -50 0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) VBIAS Supply Voltage (V) Figure 26A. Output Source Current vs. Temperature Figure 26B. Output Source Current vs. Voltage 10 www.irf.com IR2110E4 5.00 5.00 4.00 Output Sink Current (A) Output Sink Current (A) 4.00 3.00 Typ. Min. 3.00 2.00 2.00 Typ. 1.00 1.00 Min. 0.00 -50 0.00 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (°C) VBIAS Supply Voltage (V) Figure 27A. Output Sink Current vs. Temperature Figure 27B. Output Sink Current vs. Voltage 150 320V 150 320V 125 Junction Temperature (°C) Junction Temperature (°C) 140V 125 140 V 100 100 75 10V 75 10V 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 28. IR2110 TJ vs. Frequency (IRFBC20) RGATE = 33W, VCC = 15V Figure 29. IR2110 TJ vs. Frequency (IRFBC30) RGATE = 22W, VCC = 15V 150 320V 140V 150 320V 140V 125 Junction Temperature (°C) Junction Temperature (°C) 125 10V 100 10V 100 75 75 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 30. IR2110 TJ vs. Frequency (IRFBC40) RGATE = 15W, VCC = 15V Figure 31. IR2110 TJ vs. Frequency (IRFPE50) RGATE = 10W, VCC = 15V www.irf.com 11 IR2110E4 150 320V 140V 150 320V 140V 125 Junction Temperature (°C) Junction Temperature (°C) 125 100 100 10V 75 10V 75 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 32. IR2110S TJ vs. Frequency (IRFBC20) RGATE = 33W, VCC = 15V Figure 33. IR2110S TJ vs. Frequency (IRFBC30) RGATE = 22W, VCC = 15V 150 320V 140V 150 320V 140V 10V 125 Junction Temperature (°C) 10V 125 Junction Temperature (°C) 100 100 75 75 50 50 25 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 34. IR2110S TJ vs. Frequency (IRFBC40) RGATE = 15W, VCC = 15V Figure 35. IR2110S TJ vs. Frequency (IRFPE50) RGATE = 10W, VCC = 15V 0.0 20.0 VS Offset Supply Voltage (V) Typ. -4.0 VSS Logic Supply Offset Voltage (V) -2.0 16.0 12.0 -6.0 8.0 Typ. -8.0 4.0 -10.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 12 www.irf.com IR2110E4 Functional Block Diagram VB VDD RQ S HIN HV LEVEL SHIFT UV DETECT PULSE FILTER R R S Q HO VDD /VCC LEVEL SHIFT PULSE GEN VS SD UV DETECT VCC VDD /VCC LEVEL SHIFT LIN RQ VSS S LO DELAY COM Lead Definitions Lead Symbol Description VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return www.irf.com 13 IR2110E4 Case Outline and Dimensions — Leadless Chip Carrier (LCC) Package WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 4/99 14 www.irf.com
IR2110E4 价格&库存

很抱歉,暂时无法提供与“IR2110E4”相匹配的价格&库存,您可以联系我们找货

免费人工找货