0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2110S

IR2110S

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2110S - HIGH AND LOW SIDE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2110S 数据手册
Data Sheet No. PD60147 rev.U IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +500V or +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs Product Summary VOFFSET (IR2110) (IR2113) IO+/VOUT ton/off (typ.) 500V max. 600V max. 2A / 2A 10 - 20V 120 & 94 ns Delay Matching (IR2110) 10 ns max. (IR2113) 20ns max. Packages Description The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output chan16-Lead SOIC nels. Proprietary HVIC and latch immune CMOS technologies enable 14-Lead PDIP IR2110S/IR2113S ruggedized monolithic construction. Logic inputs are compatible with IR2110/IR2113 standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts. Typical Connection HO VDD HIN SD LIN V SS VCC VDD HIN SD LIN VSS VCC COM LO VB VS up to 500V or 600V TO LOAD (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL Definition High side floating supply voltage (IR2110) (IR2113) High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (14 lead DIP) (16 lead SOIC) (14 lead DIP) (16 lead SOIC) Min. -0.3 -0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 — — — — — — -55 — Max. 525 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Ambient temperature (IR2110) (IR2113) Min. VS + 10 Note 1 Note 1 VS 10 0 VSS + 3 -5 (Note 2) VSS -40 Max. VS + 20 500 600 VB 20 VCC VSS + 20 5 VDD 125 Units V °C Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD. 2 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol ton toff tsd tr tf MT Definition Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off (IR2110) (IR2113) Figure Min. Typ. Max. Units Test Conditions 7 8 9 10 11 — — — — — — — — — 120 94 110 25 17 — — 150 125 140 35 25 10 20 VS = 0V VS = 500V/600V VS = 500V/600V ns Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO- Definition Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Quiescent VDD supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current Figure Min. Typ. Max. Units Test Conditions 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 — — — — — — — — — 7.5 7.0 7.4 7.0 2.0 2.0 — — — — — 125 180 15 20 — 8.6 8.2 8.5 8.2 2.5 2.5 — 6.0 1.2 0.1 50 230 340 30 40 1.0 9.7 9.4 9.6 V 9.4 — — A VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs µA V IO = 0A IO = 0A VB=VS = 500V/600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V www.irf.com 3 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Functional Block Diagram VB VDD RQ S HIN HV LEVEL SHIFT UV DETECT PULSE FILTER R R S Q HO VDD /VCC LEVEL SHIFT PULSE GEN VS SD UV DETECT VCC VDD /VCC LEVEL SHIFT LIN RQ VSS S LO DELAY COM Lead Definitions Symbol Description VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return 4 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IR2110/IR2113 IR2110S/IR2113S 14 Lead PDIP w/o lead 4 14 Lead PDIP w/o leads 4 & 5 IR2110-1/IR2113-1 Part Number IR2110-2/IR2113-2 www.irf.com 5 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Vcc =15V 10KF6 10 µF 0.1 µF 9 10 11 12 13 2 IRF820 0.1 µF 5 7 1 OUTPUT 10KF6 MONITOR 200 µH + 10KF6 100µF HV = 10 to 500V/600V 3 6 HO dVS >50 V/ns dt Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Vcc =15V VB + 10 15V µF V S (0 to 500V/600V) 10 µF 10 µF 0.1 µF 9 10 11 12 13 3 6 5 7 1 CL CL 0.1 µF HO LO HIN LIN ton 50% 50% HIN SD LIN tr 90% toff 90% tf 2 HO LO 10% 10% Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition HIN LIN 50% 50% 50% SD tsd LO HO 10% HO LO 90% MT 90% MT LO Figure 5. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions 6 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 250 250 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 200 Max. 150 Max. 150 Typ. 100 Typ. 100 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC/VBS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage 250 250 200 Turn-On Delay Time (ns) Max. Turn-Off Delay Time (ns) 200 150 100 50 0 0 Typ. 150 Max. Typ. 100 50 2 4 6 8 10 12 14 16 18 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C) VDD Supply Voltage (V) Figure 7C. Turn-On Time vs. VDD Supply Voltage 250 Figure 8A. Turn-Off Time vs. Temperature 250 200 Turn-Off Delay Time (ns) 200 Turn-Off Delay Time (ns) Max. Max. 150 Typ. 150 100 50 0 100 Typ 50 0 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 VCC/VBS Supply Voltage (V) VDD Supply Voltage (V) Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage Figure 8C. Turn-Off Time vs. VDD Supply Voltage www.irf.com 7 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 250 250 200 Shutdown Delay Time (ns) Shutdown Delay time (ns) 200 Max. 150 Max. 150 Typ. 100 Typ. 100 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC/VBS Supply Voltage (V) Figure 9A. Shutdown Time vs. Temperature 250 Shutdown Delay Time (ns) 200 150 100 50 0 0 2 4 6 8 10 12 14 16 VDD Supply Voltage (V) 18 20 Figure 9B. Shutdown Time vs. VCC/VBS Supply Voltage 100 Max . Turn-On Rise Time (ns) 80 60 Typ 40 M ax. Typ. 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 9C. Shutdown Time vs. VDD Supply Voltage 100 Figure 10A. Turn-On Rise Time vs. Temperature 50 80 Turn-On Rise Time (ns) Turn-Off Fall Time (ns) 40 60 Max. 30 Max. 40 Typ. 20 Typ. 20 10 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 10B. Turn-On Rise Time vs. Voltage Figure 11A. Turn-Off Fall Time vs. Temperature 8 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 50 15.0 40 Logic "1" Input Threshold (V) Turn-Off Fall Time (ns) 12.0 Max Min. 30 9.0 20 Max. Typ. 6.0 10 3.0 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 11B. Turn-Off Fall Time vs. Voltage 15 Logic " 1" Input Threshold (V) Figure 12A. Logic “1” Input Threshold vs. Temperature 15.0 12 9 6 3 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) 12.0 Logic "0" Input Threshold (V) Max. 9.0 6.0 Max. Min. 3.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 12B. Logic “1” Input Threshold vs. Voltage 15 12 Logic "0" Input Threshold (V) Figure 13A. Logic “0” Input Threshold vs. Temperature 5.00 4.00 High Level Output Voltage (V) 9 6 3 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) 3.00 Min. 2.00 Max. 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 13B. Logic “0” Input Threshold vs. Voltage Figure 14A. High Level Output vs. Temperature www.irf.com 9 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 5.00 1.00 4.00 High Level Output Voltage (V) Low Level Output Voltage (V) 0.80 3.00 0.60 2.00 M ax. 0.40 1.00 0.20 Max. 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 14B. High Level Output vs. Voltage 1.00 Figure 15A. Low Level Output vs. Temperature 500 0.60 Offset Supply Leakage Current (µA) M ax. 0.80 Low Level Output Voltage (V) 400 300 0.40 200 0.20 100 Max. 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 15B. Low Level Output vs. Voltage 500 Figure 16A. Offset Supply Current vs. Temperature 500 Offset Supply Leakage Current (µA) 400 VBS Supply Current (µA) 400 300 300 Max. 200 200 Typ. 100 Max. 100 0 0 100 200 300 400 V B Boost Voltage (V) 500 IR2110 600 IR2113 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 16B. Offset Supply Current vs. Voltage Figure 17A. VBS Supply Current vs. Temperature 10 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 500 625 400 VBS Supply Current (µA) VCC Supply Current (µA) 500 300 375 Max. 200 Max. 250 Typ. 100 Typ. 125 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 17B. VBS Supply Current vs. Voltage 625 Figure 18A. VCC Supply Current vs. Temperature 100 500 VCC Supply Current (µA) VDD Supply Current (µA) 80 375 60 250 Max. 40 Max. 125 Typ. 20 Typ. 0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 18B. VCC Supply Current vs. Voltage Figure 19A. VDD Supply Current vs. Temperature 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) 100 Logic "1" Input Bias Current (µA) 80 VDD Supply Current (µA) 60 40 Max. 20 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 19B. VDD Supply Current vs. VDD Voltage Figure 20A. Logic “1” Input Current vs. Temperature www.irf.com 11 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 60 Logic “1” Input Bias Current (µA) 5.00 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20 Logic "0" Input Bias Current (µA) 4.00 3.00 2.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) VDD Logic Supply Voltage (V) Figure 20B. Logic “1” Input Current vs. VDD Voltage Figure 21A. Logic “0” Input Current vs. Temperature 11.0 5 Logic “0” Input Bias Current (µA) 4 VBS Undervoltage Lockout + (V) 10.0 Max. 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 9.0 Typ. 8.0 Min. 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) VDD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. VDD Voltage Figure 22. VBS Undervoltage (+) vs. Temperature 11.0 11.0 VBS Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 10.0 Max. 10.0 Max. 9.0 Typ. 9.0 Typ. 8.0 8.0 Min. 7.0 Min. 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 23. VBS Undervoltage (-) vs. Temperature Figure 24. VCC Undervoltage (+) vs. Temperature 12 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 11.0 5.00 10.0 VCC Undervoltage Lockout - (V) Max. 4.00 Output Source Current (A) 9.0 Typ. 3.00 Typ. Min. 8.0 2.00 7.0 Min. 1.00 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 Figure 26A. Output Source Current vs. Temperature 5.00 4.00 Output Source Current (A) Output Sink Current (A) 4.00 3.00 3.00 Typ. Min. 2.00 Typ. 2.00 1.00 Min. 1.00 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 26B. Output Source Current vs. Voltage 5.00 Figure 27A. Output Sink Current vs. Temperature 150 320V 4.00 Junction Temperature (°C) Output Sink Current (A) 125 140V 100 3.00 75 10V 2.00 Typ. 50 1.00 Min. 25 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 27B. Output Sink Current vs. Voltage Figure 28. IR2110/IR2113 TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V www.irf.com 13 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 150 125 140V 320V 150 125 Junction Temperature (°C) 100 320V 140V Junction Temperature (°C) 100 75 10V 10V 75 50 25 0 1E+2 50 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 29. IR2110/IT2113 TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V 150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2 10V 320V 140V Figure 30. IR2110/IR2113 TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V 150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2 10V 320V 140V 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 31. IR2110/IR2113 TJ vs. Frequency (IRFPE50) RGATE = 10Ω, VCC = 15V 150 125 Junction Temperature (°C) 100 10V 320V 140V Figure 32. IR2110S/IR2113S TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V 150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2 320V 140V 10V 75 50 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 33. IR2110S/IR2113S TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V Figure 34. IR2110S/IR2113S TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V 14 www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 150 125 100 75 50 25 0 1E+2 320V 140V 10V 0.0 -2.0 VS Offset Supply Voltage (V) Typ. Junction Temperature (°C) -4.0 -6.0 -8.0 -10.0 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) RGATE = 10Ω, VCC = 15V Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage 20.0 VSS Logic Supply Offset Voltage (V) 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage www.irf.com 15 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF Case Outlines 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14-Lead PDIP w/o Lead 4 16 01-6010 01-3008 02 (MS-001AC) www.irf.com IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF 16 Lead PDIP w/o Leads 4 & 5 01-6015 01-3010 02 16-Lead SOIC (wide body) www.irf.com 01 6015 01-3014 03 (MS-013AA) 17 IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code ORDER INFORMATION Part only available Lead Free 14-Lead 14-Lead 14-Lead 14-Lead 14-Lead 14-Lead 16-Lead 16-Lead PDIP IR2110 order IR2110PbF PDIP IR2110-1 order IR2110-1PbF PDIP IR2110-2 order IR2110-2PbF PDIP IR2113 order IR2113PbF PDIP IR2113-1 order IR2113-1PbF PDIP IR2113-2 order IR2113-2PbF SOIC IR2110S order IR2110SPbF SOIC IR2113S order IR2113SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice 3/23/2005 18 www.irf.com
IR2110S 价格&库存

很抱歉,暂时无法提供与“IR2110S”相匹配的价格&库存,您可以联系我们找货

免费人工找货
IR2110STRPBF
  •  国内价格
  • 1+3.78001
  • 10+3.60501

库存:365