0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2111

IR2111

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2111 - HALF-BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2111 数据手册
Data Sheet No. PD60028-M IR2111(S) & (PbF) HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels CMOS Schmitt-triggered inputs with pull-down Matched propagation delay for both channels Internally set deadtime High side output in phase with input Also available LEAD-FREE Product Summary VOFFSET IO+/VOUT ton/off (typ.) Deadtime (typ.) 600V max. 200 mA / 420 mA 10 - 20V 750 & 150 ns 650 ns Description Packages The IR2111(S) is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for halfbridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum 8-Lead PDIP driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 8-Lead SOIC Typical Connection up to 600V VCC VCC IN VB HO VS TO LOAD IN COM LO (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2111(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in figures 7 through 10. Symbol VB VS VHO VCC VLO VIN dVs/dt PD RthJA TJ TS TL Definition High side floating supply voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 Lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC) Min. -0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 — — — — — — -55 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature Min. VS + 10 Note 1 VS 10 0 0 -40 Max. VS + 20 600 VB 20 VCC VCC 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2111(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in figure 3. Symbol ton toff tr tf DT MT Definition Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-off to LS turn-on Delay matching, HS & LS turn-on/off Min. Typ. Max. Units Test Conditions 550 — — — 480 — 750 150 80 40 650 30 950 180 130 65 820 — ns VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH Definition Logic “1” input voltage for HO & logic “0” for LO Min. Typ. Max. Units Test Conditions 6.4 9.5 12.6 — — — — — — — — — 50 70 30 — 8.6 8.2 8.6 8.2 250 500 — — — 3.8 6.0 8.3 100 100 50 100 180 50 1.0 9.6 9.2 9.6 9.2 — mA — VO = 0V, VIN = VCC PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs V µA mV V VCC = 10V VCC = 15V VCC = 20V VCC = 10V VCC = 15V VCC = 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or VCC VIN = 0V or VCC VIN = VCC VIN = 0V VIL Logic “0” input voltage for HO & logic “1” for LO — — — VOH VOL ILK IQBS IQCC IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO- High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current — — — — — — — 7.6 7.2 7.6 7.2 200 420 www.irf.com 3 IR2111(S) & (PbF) Functional Block Diagram VB UV DETECT DEAD TIME PULSE GEN IN UV DETECT HV LEVEL SHIFT R Q R S VS HO PULSE FILTER VCC LO DEAD TIME COM Lead Definitions Symbol Description IN VB HO VS VCC LO COM Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 8 Lead DIP 8 Lead SOIC IR2111 Part Number 4 IR2111S www.irf.com IR2111(S) & (PbF) IN HO LO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit IN(LO) 50% 50% IN(HO) ton tr 90% toff 90% tf LO HO Figure 3. Switching Time Test Circuit 10% 10% Figure 4. Switching Time Waveform Definition 50% 50% IN (LO) 50% 50% IN IN (HO) 90% LO HO 10% HO LO 90% 10% DT MT MT 90% 10% Figure 5. Deadtime Waveform Definitions LO HO Figure 6. Delay Matching Waveform Definitions www.irf.com 5 IR2111(S) & (PbF) 1500 1500 Turn-On Delay Time (ns) M ax. T yp. Mi n. Turn-On Delay Time (ns) 1250 1000 750 500 250 0 -50 -25 0 25 50 o 1250 Max. 1000 750 500 250 0 Typ. Min. 75 100 125 10 12 14 16 18 20 Temperature ( C) V BIA S Supply V oltage (V) Figure 11A Turn-On Time vs Temperature 400 Turn-Off Delay Time (ns) Figure 11B Turn-On Time vs Voltage 400 Turn-Off Delay Time (ns) 350 300 250 200 150 100 50 0 10 12 14 16 18 20 Typ Max 350 300 250 200 150 100 50 0 -50 -25 0 25 50 Temperature (°C) 75 100 125 Typ Max VBIAS Supply Voltage (V) Figure 12A Turn-Off Time vs Temperature 400 350 Turn-On rise Time (ns) 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 Typ Max Figure 12B Turn-Off Time vs Voltage 400 350 Turn-On Rise Time (ns) 300 250 200 150 100 Typ Max 50 0 10 12 14 16 18 20 V B IA S Supply V oltage (V ) Temperature (°C) Figure 13A Turn-On RiseTime vs Temperature Figure 13B Turn-On RiseTime vs Voltage 6 www.irf.com IR2111(S) & (PbF) 200 Turn -Off Fall Time (ns) 200 100 Turn-Off Fall Time (ns) 150 150 Max 100 Max 50 Typ 50 Typ 0 -50 -25 0 25 50 75 Temperature (°C) 100 125 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A Turn-Off Fall Time vs Temperature Figure 14B Turn-Off Fall Time vs Voltage 1250 1000 Deadtime (ns) 750 500 250 0 -50 M ax. 1250 1000 Deadtime (ns) 750 500 250 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15B Dead Time vs Voltage 15 Logic " 1 " Input Treshold (V) 12 Max. Typ. Min. Typ. Mi n. Temperature (oC) Figure 15A Dead Time vs Temperature Logic "1" Input Threshold (V) 15 12 Min Min 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 3 3 6 6 9 9 12 14 16 18 20 Figure 16A Logic “I” Input voltage for HO & Logic “0” for LO vs Temperature Figure 16B Logic “I” Input voltage for HO & Logic “0” for LO vs Voltage www.irf.com 7 IR2111(S) & (PbF) Logic " 0 " Input Treshold (V) 15 Logic "0" Input Threshold (V) 12 9 Max 9 12 15 Max 6 3 0 -50 -25 0 25 50 Temperature (°C) 75 100 125 0 10 3 6 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 17A Logic “0” Input voltage for HO & Logic “I” for LO vs Temperature Figure 17B Logic “0” Input voltage for HO & Logic “I” for LO vs Voltage 1 H igh Level O utput V oltage (V ) 0.8 0.6 0.4 M ax. 0.2 0 1 H igh Level O utput V oltage (V ) 0.8 0.6 0.4 M ax. 0.2 0 -50 -25 0 25 50 75 100 12 5 10 12 14 16 18 20 T e m p e ra tu re Figure 18A. High Level Output vs. Temperature Low Level Output Voltage (V) Low Level Output Voltage (V) V B A IS S upply V otage (V ) Figure 18B. High Level Output vs. Voltage 1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20 1 0.8 0.6 0.4 Max. 0.2 0 -50 -25 0 25 50 75 100 125 Temperature (°C) VBIAS Supply Votage (V) Figure 19B. Low Level Output vs. Voltage Figure 19A. Low Level Output vs. Temperature 8 www.irf.com IR2111(S) & (PbF) Offset Supply Leakage Current (uA) Offset Supply Leakage Current (uA) 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Max. 500 400 300 200 M ax . 100 0 0 100 200 300 400 500 600 Temperature (°C) V B B oos t V oltage (v) Figure 20A Offset Supply Current vs Temperature 200 VBS Supply Current (uA) Figure 20B Offset Supply Current vs Voltage 200 VBS Supply Current (uA) 150 Max. 100 Typ. 50 150 Max. 100 Typ. 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 21A VBS Supply Current vs Temperature 500 Vcc Supply Current (uA) Figure 21B VBS Supply Current vs Voltage 500 V cc S upply C urrent (uA ) 400 300 200 100 Typ Max 400 300 Max . 200 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Typ. 0 10 12 14 16 18 20 V cc F ixed S upply V oltage (V ) Figure 22A VCC Supply Current vs Temperature Figure 22B VCC Supply Current vs Voltage www.irf.com 9 IR2111(S) & (PbF) Logic "1 " Input Bias Current (uA) 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Logic " 1" Input Bias Current (uA) 120 100 80 60 40 20 0 10 12 14 16 18 20 VCC Supply Voltage (V) Typ. Max. Figure 23A Logic “1” Input Current vs Temperature 5 Logic "0" Input Bias Current (uA) 4 3 2 Figure 23B Logic “1” Input Current vs VCC Voltage Logic "0" Input Current (uA) 5 4 3 2 1 0 10 12 14 16 18 20 Max. Max. 1 0 -50 -25 0 25 50 75 100 125 Temperature (°C) VCC Supply Voltage (V) Figure 24A. Logic “0” Input Current vs. Temperature 12 VBS UVLO Threshold +(V) Figure 24B. Logic “0” Input Current vs. VCC Voltage 12 V B S U V LO Threshol -(V ) d 11 10 9 8 7 6 Mi. n M ax . Typ. 11 Max . 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Min. Typ. -50 -25 0 25 50 75 100 125 Tem perature (°C ) Figure 25 VBS Undervoltage Threshold (+) vsTemperature Figure 26 VBS Undervoltage Threshold (-) vsTemperature 10 www.irf.com IR2111(S) & (PbF) 11 Vcc Undervoltage Lockout +(V) 10 9 8 7 6 -50 VCC Undervoltage Lockout - (V) 11 10 Max. Typ. Min. Max. 9 Typ. 8 Min. 7 6 -25 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 27 VCC Undervoltage (-) vs Temperature 500 Temperature (°C) Figure 28 VCC Undervoltage (-) vs Temperature 500 Output source Current (mA) 400 Typ. Output source Current (mA) 400 300 300 200 100 0 Min. Typ. 200 Min. 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 29B Output Source Current vs Voltage 750 Output Sink Current (mA) 600 Figure 29A Output Source Current vs Temperature 750 Output Sink Current (mA) 600 Typ. 450 300 150 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Typ. 450 300 150 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Min. Min. Figure 30A Output Sink Current vs Temperature Figure 30B Output Sink Current vs Voltage www.irf.com 11 IR2111(S) & (PbF) 320V 160V 150 Ju n ctio n T e m p e ratu re (°C ) 125 100 75 50 25 0 1E+2 320 Ju n ctio n T e m p e ratu re (°C ) 150 125 160 30V 100 30V 75 50 25 0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure 31. IR2111 TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V Figure 32. IR2111 TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V 150 Ju n ctio n T e m p e ratu re (°C ) 125 100 75 50 25 0 1E+2 320V 160V 30V Ju n ctio n T e m p e ratu re (°C ) 150 125 100 75 50 25 0 1E+2 320V 160V 30V 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 Figure33. IR2111 TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V Figure 34. IR2111 TJ vs. Frequency (IRFPC50) RGATE = 10Ω, VCC = 15V 12 www.irf.com IR2111(S) & (PbF) 320V 150 125 Ju n ctio n T e m p e ratu re (°C ) Ju n ctio n T e m p e ratu re (°C ) 320V 140V 160 150 125 100 75 50 25 0 1E+2 30V 100 75 50 25 0 1E+2 30V 1E+3 1E+4 1E+5 1E+6 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 35. IR2111S TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V Figure 36. IR2111S TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V 320V 140V 150 125 Ju n ctio n T e m p e ratu re (°C ) 100 75 50 25 0 1E+2 Ju n ctio n T e m p e ratu re (°C ) 320V 140V 30V 30V 150 125 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Frequency (Hz) Figure 37. IR2111S TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V Figure 38. IR2111S TJ vs. Frequency (IRFPC50) RGATE = 10Ω, VCC = 15V www.irf.com 13 IR2111(S) & (PbF) Case outlines 8-Lead PDIP D A 5 B FOOTPRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 DIM A b c D A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] NOTES: A1 CAB 8X L 7 8X c 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC 14 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2111(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2111 order IR2111 8-Lead SOIC IR2111S order IR2111S Leadfree Part 8-Lead PDIP IR2111 order IR2111PbF 8-Lead SOIC IR2111S order IR2111SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/12/2004 www.irf.com 15
IR2111 价格&库存

很抱歉,暂时无法提供与“IR2111”相匹配的价格&库存,您可以联系我们找货

免费人工找货