Data Sheet No. PD60147 rev.U
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation • • • • • • •
Fully operational to +500V or +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs
Product Summary
VOFFSET (IR2110) (IR2113) IO+/VOUT ton/off (typ.) 500V max. 600V max. 2A / 2A 10 - 20V 120 & 94 ns
Delay Matching (IR2110) 10 ns max. (IR2113) 20ns max.
Packages
Description
The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output chan16-Lead SOIC nels. Proprietary HVIC and latch immune CMOS technologies enable 14-Lead PDIP IR2110S/IR2113S ruggedized monolithic construction. Logic inputs are compatible with IR2110/IR2113 standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts.
Typical Connection
HO VDD HIN SD LIN V SS VCC VDD HIN SD LIN VSS VCC COM LO VB VS
up to 500V or 600V
TO LOAD
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL
Definition
High side floating supply voltage (IR2110) (IR2113) High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Allowable offset supply voltage transient (figure 2) Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (14 lead DIP) (16 lead SOIC) (14 lead DIP) (16 lead SOIC)
Min.
-0.3 -0.3 V B - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 — — — — — — -55 —
Max.
525 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300
Units
V
V/ns W °C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37.
Symbol
VB VS VHO VCC VLO VDD VSS VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side fixed supply voltage Low side output voltage Logic supply voltage Logic supply offset voltage Logic input voltage (HIN, LIN & SD) Ambient temperature (IR2110) (IR2113)
Min.
VS + 10 Note 1 Note 1 VS 10 0 VSS + 3 -5 (Note 2) VSS -40
Max.
VS + 20 500 600 VB 20 VCC VSS + 20 5 VDD 125
Units
V
°C
Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD.
2
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
ton toff tsd tr tf MT
Definition
Turn-on propagation delay Turn-off propagation delay Shutdown propagation delay Turn-on rise time Turn-off fall time Delay matching, HS & LS turn-on/off (IR2110) (IR2113)
Figure Min. Typ. Max. Units Test Conditions
7 8 9 10 11 — — — — — — — — — 120 94 110 25 17 — — 150 125 140 35 25 10 20 VS = 0V VS = 500V/600V VS = 500V/600V
ns
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Definition
Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Quiescent VDD supply current Logic “1” input bias current Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current Output low short circuit pulsed current
Figure Min. Typ. Max. Units Test Conditions
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 — — — — — — — — — 7.5 7.0 7.4 7.0 2.0 2.0 — — — — — 125 180 15 20 — 8.6 8.2 8.5 8.2 2.5 2.5 — 6.0 1.2 0.1 50 230 340 30 40 1.0 9.7 9.4 9.6 V 9.4 — — A VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs µA V IO = 0A IO = 0A VB=VS = 500V/600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V
www.irf.com
3
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Functional Block Diagram
VB VDD RQ S HIN
HV LEVEL SHIFT
UV DETECT PULSE FILTER
R R S
Q HO
VDD /VCC LEVEL SHIFT
PULSE GEN
VS
SD UV DETECT
VCC VDD /VCC LEVEL SHIFT
LIN RQ VSS S
LO DELAY COM
Lead Definitions
Symbol Description
VDD HIN SD LIN VSS VB HO VS VCC LO COM Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return
4
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IR2110/IR2113
IR2110S/IR2113S
14 Lead PDIP w/o lead 4
14 Lead PDIP w/o leads 4 & 5
IR2110-1/IR2113-1 Part Number
IR2110-2/IR2113-2
www.irf.com
5
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Vcc =15V 10KF6 10 µF 0.1 µF 9 10 11 12 13 2 IRF820 0.1 µF 5 7 1 OUTPUT 10KF6 MONITOR 200 µH + 10KF6 100µF HV = 10 to 500V/600V
3
6
HO
dVS >50 V/ns dt
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
Vcc =15V VB + 10 15V µF V S (0 to 500V/600V) 10 µF
10 µF
0.1 µF
9 10 11 12 13
3
6 5 7 1 CL CL
0.1 µF HO LO
HIN LIN
ton
50%
50%
HIN SD LIN
tr 90%
toff 90%
tf
2
HO LO
10%
10%
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
HIN LIN
50%
50%
50%
SD
tsd
LO
HO
10%
HO LO
90%
MT 90% MT
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
6
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
250
250
200 Turn-On Delay Time (ns) Turn-On Delay Time (ns)
200
Max.
150
Max.
150
Typ.
100
Typ.
100
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
0 10 12 14 16 18 20
VCC/VBS Supply Voltage (V)
Figure 7A. Turn-On Time vs. Temperature
Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage
250
250 200
Turn-On Delay Time (ns)
Max.
Turn-Off Delay Time (ns)
200
150 100 50 0 0
Typ.
150
Max. Typ.
100
50
2
4
6
8
10 12 14 16 18 20
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
VDD Supply Voltage (V)
Figure 7C. Turn-On Time vs. VDD Supply Voltage
250
Figure 8A. Turn-Off Time vs. Temperature
250 200
Turn-Off Delay Time (ns)
200 Turn-Off Delay Time (ns)
Max.
Max.
150
Typ.
150 100 50 0
100
Typ
50
0 10 12 14 16 18 20
0
2
4
6
8
10 12 14 16 18 20
VCC/VBS Supply Voltage (V)
VDD Supply Voltage (V)
Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage
Figure 8C. Turn-Off Time vs. VDD Supply Voltage
www.irf.com
7
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
250
250
200 Shutdown Delay Time (ns) Shutdown Delay time (ns)
200
Max.
150
Max.
150
Typ.
100
Typ.
100
50
50
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
0 10 12 14 16 18 20
VCC/VBS Supply Voltage (V)
Figure 9A. Shutdown Time vs. Temperature
250 Shutdown Delay Time (ns) 200 150 100 50 0 0 2 4 6 8 10 12 14 16 VDD Supply Voltage (V) 18 20
Figure 9B. Shutdown Time vs. VCC/VBS Supply Voltage
100
Max .
Turn-On Rise Time (ns)
80
60
Typ
40
M ax. Typ.
20
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 9C. Shutdown Time vs. VDD Supply Voltage
100
Figure 10A. Turn-On Rise Time vs. Temperature
50
80 Turn-On Rise Time (ns) Turn-Off Fall Time (ns)
40
60
Max.
30
Max.
40
Typ.
20
Typ.
20
10
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 10B. Turn-On Rise Time vs. Voltage
Figure 11A. Turn-Off Fall Time vs. Temperature
8
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
50
15.0
40 Logic "1" Input Threshold (V) Turn-Off Fall Time (ns)
12.0
Max Min.
30
9.0
20
Max. Typ.
6.0
10
3.0
0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 11B. Turn-Off Fall Time vs. Voltage
15
Logic " 1" Input Threshold (V)
Figure 12A. Logic “1” Input Threshold vs. Temperature
15.0
12 9 6 3 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
12.0 Logic "0" Input Threshold (V)
Max.
9.0
6.0
Max. Min.
3.0
0.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 12B. Logic “1” Input Threshold vs. Voltage
15 12
Logic "0" Input Threshold (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
5.00
4.00 High Level Output Voltage (V)
9 6 3 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
3.00
Min.
2.00
Max.
1.00
0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 13B. Logic “0” Input Threshold vs. Voltage
Figure 14A. High Level Output vs. Temperature
www.irf.com
9
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
5.00
1.00
4.00 High Level Output Voltage (V) Low Level Output Voltage (V)
0.80
3.00
0.60
2.00
M ax.
0.40
1.00
0.20
Max.
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 14B. High Level Output vs. Voltage
1.00
Figure 15A. Low Level Output vs. Temperature
500
0.60
Offset Supply Leakage Current (µA)
M ax.
0.80 Low Level Output Voltage (V)
400
300
0.40
200
0.20
100
Max.
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 15B. Low Level Output vs. Voltage
500
Figure 16A. Offset Supply Current vs. Temperature
500
Offset Supply Leakage Current (µA)
400 VBS Supply Current (µA)
400
300
300
Max.
200
200
Typ.
100
Max.
100
0 0 100 200 300 400 V B Boost Voltage (V) 500 IR2110 600 IR2113
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 16B. Offset Supply Current vs. Voltage
Figure 17A. VBS Supply Current vs. Temperature
10
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
500 625
400 VBS Supply Current (µA) VCC Supply Current (µA)
500
300
375
Max.
200
Max.
250
Typ.
100
Typ.
125
0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 17B. VBS Supply Current vs. Voltage
625
Figure 18A. VCC Supply Current vs. Temperature
100
500 VCC Supply Current (µA) VDD Supply Current (µA)
80
375
60
250
Max.
40
Max.
125
Typ.
20
Typ.
0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V)
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 18B. VCC Supply Current vs. Voltage
Figure 19A. VDD Supply Current vs. Temperature
60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20
VDD Logic Supply Voltage (V)
100
Logic "1" Input Bias Current (µA)
80
VDD Supply Current (µA)
60
40
Max.
20
Typ.
0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 19B. VDD Supply Current vs. VDD Voltage
Figure 20A. Logic “1” Input Current vs. Temperature
www.irf.com
11
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
60
Logic “1” Input Bias Current (µA)
5.00
50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 20
Logic "0" Input Bias Current (µA)
4.00
3.00
2.00
1.00
Max.
0.00 -50 -25 0 25 50 75 100 125 Temperature (°C)
VDD Logic Supply Voltage (V)
Figure 20B. Logic “1” Input Current vs. VDD Voltage
Figure 21A. Logic “0” Input Current vs. Temperature
11.0
5
Logic “0” Input Bias Current (µA)
4
VBS Undervoltage Lockout + (V)
10.0
Max.
3 2 1 0 0 2 4 6 8 10 12 14 16 18 20
9.0
Typ.
8.0
Min.
7.0
6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
VDD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. VDD Voltage
Figure 22. VBS Undervoltage (+) vs. Temperature
11.0
11.0
VBS Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
10.0
Max.
10.0
Max.
9.0
Typ.
9.0
Typ.
8.0
8.0
Min.
7.0
Min.
7.0
6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
Figure 23. VBS Undervoltage (-) vs. Temperature
Figure 24. VCC Undervoltage (+) vs. Temperature
12
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
11.0 5.00
10.0 VCC Undervoltage Lockout - (V)
Max.
4.00 Output Source Current (A)
9.0
Typ.
3.00
Typ. Min.
8.0
2.00
7.0
Min.
1.00
6.0 -50 -25 0 25 50 75 100 125 Temperature (°C)
0.00 -50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
Figure 26A. Output Source Current vs. Temperature
5.00
4.00 Output Source Current (A) Output Sink Current (A)
4.00
3.00
3.00
Typ. Min.
2.00
Typ.
2.00
1.00
Min.
1.00
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0.00 -50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26B. Output Source Current vs. Voltage
5.00
Figure 27A. Output Sink Current vs. Temperature
150
320V
4.00 Junction Temperature (°C) Output Sink Current (A)
125
140V
100
3.00
75
10V
2.00
Typ.
50
1.00
Min.
25
0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V)
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
Figure 27B. Output Sink Current vs. Voltage
Figure 28. IR2110/IR2113 TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V
www.irf.com
13
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
150 125
140V 320V
150 125 Junction Temperature (°C) 100
320V
140V
Junction Temperature (°C)
100 75
10V
10V
75 50 25 0 1E+2
50 25 0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 29. IR2110/IT2113 TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V
150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2
10V 320V 140V
Figure 30. IR2110/IR2113 TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V
150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2
10V 320V 140V
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 31. IR2110/IR2113 TJ vs. Frequency (IRFPE50) RGATE = 10Ω, VCC = 15V
150 125 Junction Temperature (°C) 100
10V 320V 140V
Figure 32. IR2110S/IR2113S TJ vs. Frequency (IRFBC20) RGATE = 33Ω, VCC = 15V
150 125 Junction Temperature (°C) 100 75 50 25 0 1E+2
320V 140V
10V
75 50 25 0 1E+2
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
1E+3
1E+4 Frequency (Hz)
1E+5
1E+6
Figure 33. IR2110S/IR2113S TJ vs. Frequency (IRFBC30) RGATE = 22Ω, VCC = 15V
Figure 34. IR2110S/IR2113S TJ vs. Frequency (IRFBC40) RGATE = 15Ω, VCC = 15V
14
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
150 125 100 75 50 25 0 1E+2
320V 140V 10V
0.0
-2.0 VS Offset Supply Voltage (V)
Typ.
Junction Temperature (°C)
-4.0
-6.0
-8.0
-10.0 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
Figure 35. IR2110S/IR2113S TJ vs. Frequency (IRFPE50) RGATE = 10Ω, VCC = 15V
Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage
20.0
VSS Logic Supply Offset Voltage (V)
16.0
12.0
8.0
Typ.
4.0
0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage
www.irf.com
15
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
Case Outlines
14-Lead PDIP
01-6010 01-3002 03 (MS-001AC)
14-Lead PDIP w/o Lead 4
16
01-6010 01-3008 02 (MS-001AC)
www.irf.com
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
16 Lead PDIP w/o Leads 4 & 5
01-6015 01-3010 02
16-Lead SOIC (wide body)
www.irf.com
01 6015 01-3014 03 (MS-013AA)
17
IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code
ORDER INFORMATION
Part only available Lead Free 14-Lead 14-Lead 14-Lead 14-Lead 14-Lead 14-Lead 16-Lead 16-Lead PDIP IR2110 order IR2110PbF PDIP IR2110-1 order IR2110-1PbF PDIP IR2110-2 order IR2110-2PbF PDIP IR2113 order IR2113PbF PDIP IR2113-1 order IR2113-1PbF PDIP IR2113-2 order IR2113-2PbF SOIC IR2110S order IR2110SPbF SOIC IR2113S order IR2113SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice 3/23/2005
18
www.irf.com
很抱歉,暂时无法提供与“IR2113-1PBF”相匹配的价格&库存,您可以联系我们找货
免费人工找货