0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2125Z

IR2125Z

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2125Z - CURRENT LIMITING SINGLE CHANNEL DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2125Z 数据手册
PD - 60024C IR2125Z CURRENT LIMITING SINGLE CHANNEL DRIVER Features n Floating channel designed for bootstrap operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 12 to 18V n Undervoltage lockout n Current detection and limiting loop to limit driven power transistor current n Error lead indicates fault conditions and pro grams shutdown time n Output in phase with input Product Summary VOFFSET IO+/VOUT VCSth ton/off (typ.) 400V max. 1A / 2A 12 - 18V 230 mv 150 & 150 ns Description The IR2125Z is a high voltage, high speed power MOSFET and IGBT driver with over-current limiting protection circuitry. Proprietary GVIC and latch immune CMOS technologies enable ruggedized minilithic consturction. Logic inputs are compatible with standard CMOS or LSTTL outputs. the ouput driver features a high pulse current buffer stage designed for minimum driver cross-conduction. The protection circuitry detects over-current in the driven power transistor and limits the gate drive voltage. Cycle by cycle shutdown is programmed by an external capacitor which directly controls the time interval between detection of the over-current limiting conditions and latched shutdown. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 400 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS V HO V CC V ERR V CS V IN dV s/dt PD RqJA TJ TS TL Parameter High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Error Signal Voltage Current Sense Voltage Logic Input Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA £ +25°C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) Min. -0.3 -5 VS - 0.3 -0.3 -0.3 VS - 0.3 -0.3 — — — -55 -55 — Max. VS + 20 400 VB + 0.3 20 VCC + 0.3 VB + 0.3 VCC + 0.3 50 1.0 100 125 150 300 Units V V/ns W °C/W °C www.irf.com 1 5/16/01 IR2125Z Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset ratings are tested with all supplies biased at 15V differential. Symbol Parameter Min. Max. Units VB VS VHO VCC VIN VERR VCS High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Logic Input Voltage Error Signal Voltage Current Sense Signal Voltage VS + 12 -5 VS 12 VSS VSS VS VS + 18 400 VB 18 VCC VCC VB V Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, and CL = 3300 PF and Ta = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3 through 6. Tj = 25°C Symbol ton toff tr tf t cs tsd terr Parameter Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time CS to output shutdown propagation delay Shutdown Propagation Delay CS to ERR pull-up propagation time Min. — — — — — — — Typ. 150 150 43 26 0.7 1.7 9 Tj = -55 to 125°C Max. Min. Max. Units 200 300 60 35 1.2 2.2 22 — — — — — — — 270 330 80 50 1.4 2.5 25 Test Conditions ns VS = 0V to 400V CL = 3300pf µs VS = 0V TO 400V Cerr= 270pf Typical Connection up to 400V V CC IN V CC IN ERR COM VB OUT CS VS TO LOAD 2 www.irf.com IR2125Z Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and Ta = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM . VO and IO parameters are referenced to VS. Tj = 25°C Tj = -55 to 125°C Symbol Parameter Min. Typ. Max. Min. Max. Units Test Conditions ILK IQBS IQCC IIN+ IINICS+ ICSV IH V IL VERR + Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current Logic “0” Input Bias Current “High” CS Bias Current “Low” CS Bias Current Logic “1” Input Voltage Logic “0” Input Voltage Logic “1” ERR Input Voltage Logic “0” ERR Input Voltage CS Input Positive Going Threshold CS Input Positive Going Threshold VBS Supply Overvoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VBS Supply Overvoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Overvoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold VCC Supply Overvoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold ERR Timing Charge Current ERR Pull-up Current ERR Pull-down Current High Level Output Voltage Low Level Output Voltage Output High on Resistance Output Low on Resistance — — — — — — — — — — — 150 130 8.5 7.7 19.8 19.1 8.3 7.3 20 19.3 40 8.0 16 VB-0.1 — — — — 400 700 4 — 6 — — — — — 230 200 9.3 8.5 21.5 20.8 8.8 8.1 21.2 20.7 100 15 30 — — 9 3 50 1000 1200 25 1.0 15 1.0 — — — — 320 300 10 9.0 23 22.4 9.6 8.7 23 22.5 130 — — — — — — — — 3.0 — 2.2 — — — — — — — — — — — — — 250 1300 1500 30 1.0 30 1.0 — 0.8 — 0.8 — — — — — — — — — — — — mA µA V mV V µA VB = VS = 400V IN = CS = 0V, or 5V IN = CS = 0V, or 5V IN = 5V IN = 0V CS = 3V CS = 0V VCC = 10 TO 20V V ERR VCSTH+ VCSTH - 10V < VCC < 20V 10V < VCC < 20V VBSUV+ VBSUV - VBSOV+ VBSOVVCCUV+ VCCUV VCCOV+ VCCOV IERR IERR+ IERRV OH VOL Ron,ON Ron,OFF — — — — VB -0.1 — VS+0.1 — VS+0.1 — — — — — — V Ω IN = 5V, CS = 3V + ERR < VERR IN = 5V, CS = 3V + ERR > VERR IN = 0V IN = 5V, IO = 0A IN = 0V, IO = 0A www.irf.com 3 IR2125Z HV = 10 to 400 V IN CS < 50 V/ns ERR " HO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit 50% 50% toff 90% 90% tf 50% IN ton tr CS t cs OUT 90% HO 10% 10% Figure 4. ERR Shutdown Waveform Definitions Figure 3. Switching Time Waveform Definitions 50% CS terr 50% CS tcs 50% HO ERR 90% dt 1.8V dt = C × Figure 5. CS Shutdown Waveform Definitions dV 1.8V =C× IERR 100 uA Figure 6. CS to ERR Waveform Definitions 4 www.irf.com IR2125Z 500 500 400 Turn-On Delay Time (ns) Turn-On Time (ns) 400 300 300 Max. 200 Max. Typ. 200 Typ. 100 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Voltage 500 500 400 Turn-Off Delay Time (ns) Turn-Off Time (ns) 400 300 300 Max. 200 Max. Typ. 200 Typ. 100 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 5.00 ERR to Output Shutdown Delay Time (µs) ERR to Output Shutdown Delay Time (µs) 5.00 4.00 4.00 3.00 Max. 3.00 2.00 Typ. 2.00 Max. 1.00 1.00 Typ. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9A. ERR to Output Shutdown vs. Temperature Figure 9B. ERR to Output Shutdown vs. Voltage www.irf.com 5 IR2125Z 100 100 80 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 80 60 60 Max. 40 Max. Typ. 40 Typ. 20 20 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 10A. Turn-On Rise Time vs. Temperature Figure 10B. Turn-On Rise Time vs. Voltage 100 50 80 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 40 60 30 40 Max. Typ. 20 Max. 20 10 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature 15.0 15.0 Figure 11B. Turn-Off Fall Time vs. Voltage 12.0 Logic "1" Input Threshold (V) Min. 12.0 Logic "1" Input Threshold (V) 9.0 9.0 6.0 6.0 Min. 3.0 3.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12A. Logic “1” Input Threshold vs. Temperature Figure 12B. Logic “1” Input Threshold vs. Voltage 6 www.irf.com IR2125Z 20.0 20.0 CS to ERR Pull-Up Delay Time (µs) CS to ERR Pull-Up Delay Time (µs) 16.0 Max. 16.0 12.0 Typ. 12.0 Max. T yp. 8.0 8.0 4.0 4.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 13A. CS to ERR Pull-Up vs. Temperature Figure 13B. CS to ERR Pull-Up vs. Voltage 5.00 5.00 4.00 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) 4.00 3.00 Min. 3.00 Min. 2.00 2.00 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 14A. Logic “1” Input Threshold vs. Temperature 5.00 5.00 Figure 14B. Logic “1” Input Threshold vs. Voltage 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) Max. 4.00 3.00 3.00 2.00 2.00 1.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 15A. Logic “0” Input Threshold vs. Temperature Figure 15B. Logic “0” Input Threshold vs. Voltage www.irf.com 7 IR2125Z 500 CS Input Positive Going Threshold (mV) 500 CS Input Positive Going Threshold (mV) 400 Max. 400 Max. 300 Typ. 300 Typ. 200 Min. 200 Min. 100 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 16A. CS Input Threshold (+) vs. Temperature Figure 16B. CS Input Threshold (+) vs. Voltage 500 CS Input Negative Going Threshold (mV) CS Input Negative Going Threshold (mV) 500 400 400 300 Max. 300 Max. 200 Typ. 200 Typ. Min. Min. 100 100 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17A. CS Input Threshold (-) vs. Temperature Figure 17B. CS Input Threshold (-) vs. Voltage 1.00 1.00 0.80 High Level Output Voltage (V) High Level Output Voltage (V) 0.80 0.60 0.60 0.40 0.40 0.20 Max. 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 18A. High Level Output vs. Temperature Figure 18B. High Level Output vs. Voltage 8 www.irf.com IR2125Z 1.00 1.00 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Max. 0.80 0.60 0.60 0.40 0.40 0.20 0.20 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 19B. Low Level Output vs. Voltage Figure 19A. Low Level Output vs. Temperature 500 500 Offset Supply Leakage Current (µA) 300 Offset Supply Leakage Current (µA) 400 400 300 200 200 100 Max. 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 0 100 200 300 400 500 VB Boost Voltage (V) Figure 20B. Offset Supply Current vs. Voltage Figure 20A. Offset Supply Current vs. Temperature 2.00 2.00 1.60 VBS Supply Current (mA) VBS Supply Current (mA) 1.60 1.20 Max. 1.20 0.80 0.80 Max. 0.40 0.40 Typ. Typ. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 21A. VBS Supply Current vs. Temperature Figure 21B. VBS Supply Current vs. Voltage www.irf.com 9 IR2125Z 2.00 2.00 1.60 VCC Supply Current (mA) VCC Supply Current (mA) 1.60 1.20 Max. 1.20 Max. 0.80 Typ. 0.80 Typ. 0.40 0.40 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 22A. VCC Supply Current vs. Temperature Figure 22B. VCC Supply Current vs. Voltage 25 25 Logic "1" Input Bias Current (µA) 15 Logic "1" Input Bias Current (µA) 20 20 15 10 Max. 10 Max. 5 Typ. 5 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 23A. Logic “1” Input Current vs. Temperature Figure 23B. Logic “1” Input Current vs. Voltage 5.00 5.00 Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) 4.00 4.00 3.00 3.00 2.00 2.00 1.00 Max. 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 24A. Logic “0” Input Current vs. Temperature Figure 24B. Logic “0” Input Current vs. Voltage 10 www.irf.com IR2125Z 25.0 25.0 20.0 "High" CS Bias Current (µA) "High" CS Bias Current (µA) 20.0 15.0 15.0 10.0 Max. Typ. 10.0 Max. Typ. 5.0 5.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 25A. “High” CS Bias Current vs. Temperature Figure 25B. “High” CS Bias Current vs. Voltage 5.00 5.00 4.00 "Low" CS Bias Current (µA) "Low" CS Bias Current (µA) Max. 4.00 3.00 3.00 2.00 2.00 1.00 1.00 Max. 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 26A. “Low” CS Bias Current vs. Temperature Figure 26B. “Low” CS Bias Current vs. Voltage 11.0 11.0 VBS Undervoltage Lockout + (V) Typ. VBS Undervoltage Lockout - (V) 10.0 Max. 10.0 9.0 Min. 9.0 Max. Typ. 8.0 8.0 Min. 7.0 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 27. VBS Undervoltage (+) vs. Temperature Figure 28. VBS Undervoltage (-) vs. Temperature www.irf.com 11 IR2125Z 11.0 11.0 10.0 Max. VCC Undervoltage Lockout + (V) 10.0 VCC Undervoltage Lockout - (V) 9.0 Typ. 9.0 Max. Min. 8.0 8.0 Typ. Min. 7.0 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 29. VCC Undervoltage (+) vs. Temperature Figure 30. VCC Undervoltage (-) vs. Temperature 250 250 ERR Timing Charge Current (µA) ERR Timing Charge Current (µA) 200 200 150 Max. 150 Max. 100 Typ. Typ. 100 Min. Min. 50 50 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 31A. ERR Timing Charge Current vs. Temperature Figure 31B. ERR Timing Charge Current vs. Voltage 25.0 25.0 20.0 ERR Pull-Up Current (µA) ERR Pull-Up Current (µA) Typ. 20.0 15.0 15.0 Typ. 10.0 Min. 10.0 Min. 5.0 5.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.0 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 32A. ERR Pull-Up Current vs. Temperature Figure 32B. ERR Pull-Up Current vs. Voltage 12 www.irf.com IR2125Z 50 50 40 ERR Pull-Down Current (µA) Typ. 40 ERR Pull-Down Current (µA) 30 30 Typ. 20 Min. 20 Max. 10 10 0 -50 -25 0 25 50 75 100 125 Temperature (°C) 0 10 12 14 16 18 20 VCC Logic Supply Voltage (V) Figure 33A. ERR Pull-Down Current vs.Temperature 2.50 Figure 33B. ERR Pull-Down Current vs. Voltage 2.50 2.00 Output Source Current (A) Typ. 2.00 Output Source Current (A) 1.50 Min. 1.50 1.00 1.00 Typ. Min. 0.50 0.50 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 34A. Output Source Current vs.Temperature 5.00 Figure 34B. Output Source Current vs. Voltage 5.00 4.00 Output Sink Current (A) Typ. 4.00 Output Sink Current (A) 3.00 Min. 3.00 Typ. 2.00 2.00 Min. 1.00 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) 0.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 35A. Output Sink Current vs.Temperature Figure 35B. Output Sink Current vs. Voltage www.irf.com 13 IR2125Z 500 VCC = 15V 500 VCC = 15V 400 Turn-On Time (ns) 400 Turn-Off Time (ns) 300 300 200 Typ. 200 Typ. 100 100 0 5 7.5 10 Input Voltage (V) 12.5 15 0 5 7.5 10 Input Voltage (V) 12.5 15 Figure 36A. Turn-On Time vs. Input Voltage Figure 36B. Turn-Off Time vs. Input Voltage 0.00 -3.00 VS Offset Supply Voltage (V) Typ. -6.00 -9.00 -12.00 -15.00 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 37. Maximum VS Negative Offset vs. Supply Voltage 14 www.irf.com IR2125Z Functional Block Diagram V V UV DETECT UP SHIFTERS IN LATCHED SHUTDOWN PULSE GEN VB 0.23V ERROR TIMING ERR Q R S PULSE FILTER PULSE GEN DOWN SHIFTERS 500ns BLANK COMPARAT OR + AMPLIFER HV LEVEL S HIFT CC B UV DETECT HV LEVEL S HIFT R PULSE FILTER R S Q PRE DRIVER B UFFER HO 1.8V V S CS 1.8V COM Lead Definitions Symbol Description VCC IN ERR COM VB HO VS CS Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO Serves multiple functions; status reporting, linear mode timing and cycle by cycle logic shutdown Logic ground High side floating supply High side gate drive output High side floating supply return Current sense input to current sense comparator www.irf.com 15 IR2125Z Case Outline and Dimensions- MO-036AA IR2125Z IR2153Z IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/01 16 www.irf.com
IR2125Z 价格&库存

很抱歉,暂时无法提供与“IR2125Z”相匹配的价格&库存,您可以联系我们找货

免费人工找货