0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2127SPBF

IR2127SPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2127SPBF - CURRENT SENSING SINGLE CHANNEL DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2127SPBF 数据手册
Data Sheet No. PD60143-O IR2127(S) / IR2128(S) IR21271(S) & (PbF) CURRENT SENSING SINGLE CHANNEL DRIVER Features • • Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Application- specific gate drive range: Motor Drive: 12 to 20V (IR2127/IR2128) Automotive: 9 to 20V (IR21271) Undervoltage lockout 3.3V, 5V and 15V input logic compatible FAULT lead indicates shutdown has occured Output in phase with input (IR2127/IR21271) Output out of phase with input (IR2128) Product Summary VOFFSET IO+/VOUT VCSth ton/off (typ.) 600V max. 200 mA / 420 mA (IR2127/IR2128) Description • • • • • • Avaliable in Lead-Free 12 - 20V (IR21271) 9 - 20V 250 mV or 1.8V 200 & 150 ns The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts. Packages 8-Lead PDIP 8-Lead SOIC Typical Connection V CC IN FAULT COM VB HO CS VS V CC IN FAULT IR2127/IR21271 (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. V CC IN FAULT V CC IN FAULT COM VB HO CS VS IR2128 www.irf.com 1 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VIN VFLT VCS dVs/dt PD RthJA TJ TS TL Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Logic Input Voltage FAULT Output Voltage Current Sense Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA ≤ +25°C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) (8 Lead DIP) (8 Lead SOIC) (8 Lead DIP) (8 Lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VS - 0.3 — — — — — — -55 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VB + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VIN VFLT VCS TA Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Logic Input Voltage FAULT Output Voltage Current Sense Signal Voltage Ambient Temperature (IR2127/IR2128) (IR21271) Min. VS + 12 VS + 9 Note 1 VS 10 0 0 VS -40 Max. VS + 20 VS + 20 600 VB 20 VCC VCC VS + 5 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25° C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol ton toff tr tf tbl tcs tflt Definition Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time Start-Up Blanking Time CS Shutdown Propagation Delay CS to FAULT Pull-Up Propagation Delay Min. — — — — 500 — — Typ. Max. Units Test Conditions 200 150 80 40 700 240 340 250 200 130 65 900 360 510 ns VS = 0V VS = 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to V S. Symbol VIH VIL VCSTH+ VOH VOL ILK IQBS IQCC IIN+ IINICS+ ICSVBSUV+ VBSUVIO+ IORon, FLT Definition Logic “1” Input Voltage Logic “0” Input Voltage Logic “0” Input Voltage Logic “1” Input Voltage CS Input Positive Going Threshold Low Level Output Voltage, V O Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current Logic “0” Input Bias Current “High” CS Bias Current “High” CS Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold (IR2127/IR2128) (IR21271) (IR2127/IR2128) (IR21271) (IR2127/IR21271) (IR2128) (IR2127/IR21271) (IR2128) (IR2127/IR2128) (IR21271) Min. 3.0 — 180 — — — — — — — — — — 8.8 6.3 7.5 6.0 200 420 — Typ. Max. Units Test Conditions — — 250 1.8 — — — 200 60 7.0 — — — 10.3 7.2 9.0 6.8 250 500 125 — V 0.8 320 — 100 100 50 400 120 15 1.0 1.0 1.0 11.8 8.2 10.6 7.7 — mA — — Ω VO = 0V, VIN = 5V PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs µA mV V mV IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 5V VIN = 0V VCS = 3V VCS = 0V VCC = 10V to 20V High Level Output Voltage, VBIAS - VO V Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current FAULT - Low on Resistance www.irf.com 3 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) Functional Block Diagram IR2127/IR21271 VCC UV DETECT UP SHIFTERS IN PULSE GEN VB DELAY FAULT PULSE FILTER DOWN SHIFTER PULSE GEN Q R S + CS VS HV LEVEL SHIFT VB R R S Q BUFFER PULSE FILTER HO Q R S COM Functional Block Diagram IR2128 VB 5V UP SHIFTERS IN PULSE GEN VB DELAY FAULT PULSE FILTER DOWN SHIFTER PULSE GEN Q R S + CS VS UV DETECT HV LEVEL SHIFT VCC R R S Q BUFFER PULSE FILTER HO Q R S COM 4 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) Lead Definitions Symbol VCC IN FAULT Description Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271) out of phase with HO (IR2128) Indicates over-current shutdown has occurred, negative logic Logic ground High side floating supply High side gate drive output High side floating supply return Current sense input to current sense comparator COM VB HO VS CS Lead Assignments 8 Lead PDIP 8 Lead SOIC IR2127/IR21271 IR2127S/IR21271S 8 Lead PDIP 8 Lead SOIC IR2128 www.irf.com IR2128S 5 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) IN (IR2128) IN IN (IR2128) 50% 50% (IR2127/ IR21271) CS 50% 50% IN (IR2127/ t IR21271) on tr 90% toff 90% tf FAULT HO 10% 10% Figure 2. Switching Time Waveform Definition HO Figure 1. Input/Output Timing Diagram IN (IR2128) IN 50% 50% (IR2127/ IR21271) CS tbl 90% HO FAULT Figure 3. Start-up Blanking Time Waveform Definitions VCSTH CS tcs HO 90% VCSTH CS tflt FAULT 90% Figure 4. CS Shutdown Waveform Definitions Figure 5. CS to FAULT Waveform Definitions 6 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 500 500 400 M ax. 300 200 100 0 10 12 14 16 18 20 Turn-On Delay Time (ns) 300 Max. 200 100 Typ 0 -50 -25 Turn-On Delay Time (ns) 400 T yp . 0 25 50 75 100 125 Tem pe rature o (°C) Temperature ( C) VBIAS Supply Voltage (V) Figure 10A Turn-On Time vs. Temperature Figure 10B Turn-On Time vs. Supply Voltage 350 Turn-On Delay Time (ns) 500 400 300 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20 Turn-Off Delay Time (ns) 300 M ax 200 100 Typ. 0 -50 -25 0 25 50 75 Tem perature (°C) 100 125 Input Voltage (V) Temperature ( o C) Figure 10C Turn-On Time vs. Input Voltage Figure 11A Turn-Off Time vs. Temperature 500 400 350 Turn-Off Delay Time (ns) 400 300 Max. 200 100 0 10 12 14 16 18 20 Typ. Turn-Off Delay Time (ns) 300 250 200 150 100 50 0 0 2 4 6 8 10 12 14 Input V oltage (V ) 16 18 20 Typ . Ma x . VBIAS Supply Voltage (V) Figure 11B Turn-Off Time vs. Supply Voltage Figure 11C Turn-OffTime vs. Input Voltage www.irf.com 7 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 100 0 10 12 14 16 18 20 Max. Typ. 400 300 200 100 Max . Typ -25 0 25 50 75 100 125 Temperature ( o C) Tem perature (°C) 0 -50 VBIAS Supply Voltage (V) Figure 12A Turn-On Rise Time vs. Temperature Figure 12B Turn-On Rise Time vs. Supply Voltage 200 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 150 150 100 M ax. 50 Typ 0 . -50 -25 100 Max. Typ. 50 0 0 25 50 75 100 125 Te mperature (°C) 10 12 14 16 18 20 Temperature ( o C) VBIAS Supply Voltage (V) Figure 13A Turn-Off Fall Time vs. Temperature Figure 13B Turn-Off Fall Time vs. Voltage 1400 1200 1000 800 600 400 200 0 -50 Min. Max. Typ Start-Up Blanking time (ns) (ns ) Start-Up Blanking Time 1600 Start-Up Blanking Time (ns) 1600 1400 1200 1000 800 600 400 200 0 10 12 14 16 18 20 Vcc Supply Voltage (V) Max. Typ. Min. -25 0 25 50 Temperature ( o C) 75 100 125 Figure 14A Start-Up Blanking Time vs. Temperature Figure 14B Start-Up Blanking Time vs Voltage 8 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) CS Shutdown Propagation Delay (ns) CS Shutdown Propagation Delay (ns) 500 400 300 200 100 0 -50 M ax . Typ. 500 M AX. 400 300 200 100 0 10 12 14 16 18 20 Vcc Supply Voltage(V) Vcc Supply Voltage (V) Typ. -25 0 25 50 75 100 125 Temperature ( o C) Figure 15A CS Shutdown Propagation Delay vs. Temperature Figure 15B CS Shutdown Propagation Delay vs. Voltage 800 800 CS to FAULT Pull-Up PropagationTim e (ns) (ns) Delay Delay Time 700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ Max. CS to FAULT Pull-Up Propagation Delay Time (ns) Time (ns) 700 600 500 400 300 200 100 0 10 12 14 16 VCC Supply Voltage (V) 18 20 Typ Max. Temperature ( o C) Figure 16A CS to FAULT Pull-Up Propagation Delay vs. Temperature Figure 16B CS to FAULT Pull-Up Propagation Delay vs. Voltage 8 7 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Min. 8 7 6 5 4 3 2 1 0 10 12 14 16 VCC Supply Voltage (V) VCC Supply Voltage (V) 18 20 Min. Input Voltage (V) Temperature ( o C) Figure 17A Logic “1” Input Voltage (IR2127) Logic “0” Input Voltage (IR2128) vs Temperature Input Voltage (V) Figure 17B Logic “1” Input Voltage (IR2127) Logic “0” Input Voltage (IR2128) vs Voltage www.irf.com 9 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 4 3.2 4 3.2 Input Voltage (V) Input Voltage (V) 2.4 1.6 0.8 0 -50 2.4 1.6 M ax 0.8 0 -25 50 Temperature ( o C) 0 25 75 100 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 18A Logic “0” Input Voltage (IR2127) Logic “1” Input Voltage (IR2128) vs Temperature Figure 18B Logic “0” Input Voltage (IR2127) Logic “1” Input Voltage (IR2128) vs Voltage CS Input Positive Going Voltage m(V) 500 400 300 200 100 Min. 0 -50 -25 0 25 50 75 100 125 Max. Typ. CS Input Positive Going Voltage (mV) 500 400 300 200 100 0 10 12 14 16 18 20 Max. Typ. Min. Temperature ( o C) Vcc Vcc Supply Voltage (V) Supply Voltage (V) Figure 19A CS Input Positive Going Voltage vs Temperature (IR2127/IR2128) Figure 19B CS Input Positive Going Voltage vs Voltage (IR2127/IR2128) 1 1 High Level Output Voltage (V) 0.8 0.6 0.4 0.2 Max. High Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 Max. 0 -50 -25 0 25 50 75 100 125 Temperature ( o C) Vcc Supply Voltage (V) Figure 20A High Level Output vs Temperature Figure 20B High Level Output vs Voltage 10 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 1 1 Low Level Output Voltage (V) 0.8 0.6 0.4 0.2 Max. Low Level Output Voltage (V) 0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 Max. 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Vcc Supply Voltage (V) Figure 21A Low Level Output vs Temperature Figure 21B Low Level Output vs Voltage Offset Supply Leakage Current (uA) 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 500 Offset Supply Leakage Current (uA) 400 300 200 100 0 0 100 200 300 400 500 600 Max. Max. Temperature (o C) VB Boost Voltage (V) Figure 22A Offset Supply Current vs Temperature Figure 22B Offset Supply Current vs Voltage 800 800 VBS Supply Current (uA) 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ. M ax. VBS Supply Current (uA) 700 700 600 500 400 300 200 100 0 10 12 14 16 18 20 Typ. M ax. Temperature (o C) Vcc Supply Voltage (V) Figure 23A VBS Supply Current vs Temperature Figure 23B VBS Supply Current vs Voltage www.irf.com 11 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 300 Vcc Supply Current (uA) Vcc Supply Current (uA) 300 250 200 150 100 50 0 10 Typ 12 14 16 18 20 Max . 250 200 150 100 50 0 -50 Max . Typ . -25 0 25 50 75 100 125 Vcc Supply Voltage (V) Temperature ( oC) Figure 24A Vcc Supply Current vs Temperature 40 40 Figure 24B Vcc Supply Current vs Voltage Logic “1” Input Bias Current (uA) 35 30 25 20 15 Max. 10 5 0 Typ -50 -25 0 25 50 75 100 125 Logic “1” Input Bias Current (uA) 35 30 25 20 15 10 5 0 10 12 14 16 18 20 Typ Max. Temperature ( o C) Vcc Supply Voltage (V) Figure 25A Logic “1” Input Current vs Temperature Figure 25B Logic “1” Input Current vs Voltage 5 5 Logic “0” Input Current (uA) 3 2 Max. 1 0 -50 Logic “0” Input Current (uA) 4 4 3 2 Max. 1 0 10 12 14 16 18 20 -25 0 25 50 75 100 125 Temperature ( oC) Vcc Supply Voltage (V) Figure 26A Logic “0” Input Current vs Temperature Figure 26B Logic “0” Input Current vs Voltage 12 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 5 “High” CS Bias Current (uA) “High” CS Bias Current (uA) 5 4 3 2 Max. 1 0 10 12 14 16 18 20 Vcc Supply Voltage (V) 4 3 2 Max. 1 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 27A “High” CS Bias Current vs Temperature 5 “Low” CS Bias Current (uA) “Low” CS Bias Current (uA) Figure 27B “High” CS Bias Current vs Voltage 5 4 3 2 Max. 1 0 4 3 2 Max. 1 0 -50 -25 0 25 50 75 100 125 Temperature (o C) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 28A “Low” CS Bias Current vs Temperature Figure 28B “Low” CS Bias Current vs Voltage 15 15 VBS UVLO Threshold + (V) 14 13 12 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature oC) Temperature ((°C) Max. Typ. Min. VBS UVLO Threshold + (V) 14 13 12 11 10 9 8 7 6 10 12 14 16 18 20 M in. Max. Typ VCC Supply Voltage (V) (V) Vcc Supply Voltage Figure 29A VBS Undervoltage Threshold (+) vs Temperature (IR2127/IR2128) Figure 29B VBS Undervoltage Threshold (+) vs Voltage (IR2127/IR2128) www.irf.com 13 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) 15 15 VBS UVLO Threshold - (V) 13 12 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Min. Max. Typ. VBS UVLO Threshold - (V) 14 14 13 12 11 10 9 8 7 6 10 12 14 16 18 20 Min. Typ. Max. Temperature ( o C) Vcc Supply Voltage (V) Figure 30A VBS Undervoltage Threshold (-) vs Temperature (IR2127/IR2128) Figure 30B VBS Undervoltage Threshold (-) vs Voltage (IR2127/IR2128) 500 500 Output Source Current (mA) 400 Typ. 300 200 100 0 -50 Min. Output Source Current (mA) 400 300 200 100 Min. 0 10 12 14 16 18 20 Typ. -25 0 25 50 75 100 125 Temperature ( o C) VBIAS Supply Voltage (V) Figure 31A Output Source Current vs Temperature Figure 31B Output Source Current vs Voltage 800 800 Output Sink Current (mA) 600 500 400 300 200 100 0 -50 Typ. Output Sink Current (mA) 700 700 600 500 400 300 200 100 0 10 12 14 16 18 20 Min. Typ. Min. -25 0 25 50 75 100 125 Temperature ( oC) VBIAS Supply Voltage (V) Figure 32A Output Sink Current vs Temperature Figure 32B Output Sink Current vs Voltage 14 www.irf.com IR2127(S) / IR21271(S) / IR2128(S) & (PbF) Case outlines 8-Lead PDIP D A 5 B F OOT PRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 DIM A b A1 .0040 c 8 6 E 1 7 6 5 H 0.25 [.010] A 6.46 [.255] D E e e1 H K L 8X 1.78 [.070] 2 3 4 .050 BAS IC .025 BAS IC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 A C 3X 1.27 [.050] y K x 45° y 0.10 [.004] 8X b 0.25 [.010] NOT ES : 1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIME TER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S]. 4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA. A1 CAB 8X L 7 8X c 4. OUT LINE CONFORMS T O JEDE C OUTLINE MS-012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O A SUBS TRAT E. 8-Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 15 IR2127(S) / IR21271(S) / IR2128(S) & (PbF) ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S order order order order order order IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S Lead-Free Part 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S order order order order order order IR2127PbF IR2127SPbF IR21271PbF IR21271SPbF IR2128PbF IR2128SPbF This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/08/04 16 www.irf.com
IR2127SPBF 价格&库存

很抱歉,暂时无法提供与“IR2127SPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货