Data Sheet No. PD60166 revS
IR2136/IR21362/IR21363/IR21365/ IR21366/IR21367/IR21368 (J&S) & (PbF)
Features
• • • • • • • • • • • •
3-PHASE BRIDGE DRIVER
Floating channel designed for bootstrap operation Packages Fully operational to +600V Tolerant to negative transient voltage - dV/dt immune Gate drive supply range from 10 to 20V (IR2136/IR21368), 11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/ IR21366/IR21367) Undervoltage lockout for all channels 28-Lead SOIC Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers 28-Lead PDIP Matched propagation delay for all channels Cross-conduction prevention logic 44-Lead PLCC w/o 12 leads Lowside outputs out of phase with inputs. High side outputs out of phase (IR2136/IR21363/IR21365/ Feature Comparison: IR2136/IR21362/IR21363/ IR21366/IR21367/IR21368) or in phase IR21365/IR21366/IR21367/IR21368 (IR21362) with inputs. 3.3V logic compatible Part IR2136 IR21362 IR21363 IR21365 IR21366 IR21367 IR21368 Lower di/dt gate driver for Input Logic HIN, LIN HIN/LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN,LIN better noise immunity 400ns Ton (typ.) 400ns 250ns 400ns 400ns 400ns 250ns Externally programmable Toff (typ.) 380ns 380ns 180ns 380ns 380ns 380ns 180ns delay for automatic fault VIH (typ.) 2.7V 2.0V 2.0V 2.7V 2.7V 2.7V 2.0V clear VIL (typ.) 1.7V 1.3V 1.3V 1.7V 1.7V 1.7V 1.3V Also available LEAD-FREE Vitrip+ 4.3V 4.3V 0.46V 0.46V 0.46V 0.46V 4.3V
UV CC/BS+ 8.9V UV CC/BS- 8.2V 10.4V 9.4V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 8.9V 8.2V
Description
The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts.
Typical Connection
VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 FAULT VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 HO1,2,3 FAULT EN VS1,2,3 VB1,2,3
up to 600V
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
EN
RCIN ITRIP VSS LO1,2,3 COM
TO LOAD
IR2136(2)(3)(5)(6)(7)(8)
GND
www.irf.com
1
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VS VBS VHO VCC VSS VLO1,2,3 VIN
Definition
High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN,HIN,ITRIP, EN, RCIN
Min.
VB1,2,3 - 25 -0.3 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3
Max.
VB1,2,3 + 0.3 625 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 lower of (VSS + 15) or VCC + 0.3) VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300
Units
V
VFLT dV/dt PD
FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25°C
RthJA
Thermal resistance, junction to ambient
(28 lead PDIP) (28 lead SOIC) ( 44leadPLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC)
TJ TS TL
Junction temperature Storage temperature Lead temperature (soldering, 10 seconds)
VSS - 0.3 — — — — — — — — -55 —
V/ns W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB1,2,3
Definition
High side floating supply voltage IR2136(8) IR21362 IR2136(3)(5)(6)(7)
Min.
Max.
Units
VS1,2,3 VHO1,2,3 VLO1,2,3 VCC
High side floating supply offset voltage High side output voltage Low side output voltage Low side and logic fixed supply voltage
IR2136(8) IR21362 IR2136(3)(5)(6)(7)
VSS VFLT VRCIN
Logic ground FAULT output voltage RCIN input voltage
VS1,2,3 +10 VS1,2,3 +20 VS1,2,3 +11.5 VS1,2,3 +20 VS1,2,3 +12 VS1,2,3 +20 Note 1 600 VS1,2,3 VB1,2,3 0 VCC 10 20 11.5 20 12 20 -5 5 VSS VCC VSS VCC
V
Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Recommended Operating Conditions cont.
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VITRIP VIN TA
Definition
ITRIP input voltage Logic input voltage LIN , HIN (IR2136,IR21363(5)(6)(7)(8)), HIN(IR21362), EN Ambient temperature
Min.
VSS VSS -40
Max.
VSS +5 VSS +5 125
Units
V
o
C
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
Static Electrical Characteristics
VBIAS (VCC, VBS 1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol
VIH
Definition
Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “1” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) Logic “1” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “0” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) EN positive going threshold EN negative going threshold ITRIP positive going threshold IR2136(2)(3)(6) IR21365(7)(8) ITRIP input hysteresis IR2136(2)(3)(6) IR21365(7)(8) RCIN positive going threshold RCIN input hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC and VBS supply undervoltage IR2136(8) positive going threshold IR21362 IR21363(5)(6)(7)
Min. Typ. Max. Units Test Conditions
3.0 — —
2.5 —
— —
— 0.8
VIL
VEN,TH+ VEN,THVIT,TH+
— — 0.8 0.37 3.85 — — — — — — 8.0 9.6 10.6
— — — 0.46 4.30 0.07 .15 8 3 0.9 0.4 8.9 10.4 11.1
0.8 3 — 0.55 4.75 — — — — 1.4 0.6 9.8 11.2 11.6
V
VIT,HYS
VRCIN,TH+ VRCIN,HYS VOH VOL VCCUV+ VBSUV+
IO = 20 mA IO = 20 mA
www.irf.com
3
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Static Electrical Characteristics cont.
VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol
VCCUVVBSUVVCCUVH VBSUVH ILK IQBS IQCC VIN, CLAMP ILIN+ ILINIHIN+
Definition
VCC and VBS supply undervoltage negative going threshold IR2136(8) IR21362 IR21363(5)(6)(7) VCC and VBS supply undervoltage IR2136 lockout hysteresis Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current
Input clamp voltage (HIN, LIN, ITRIP and EN)
Min. Typ. Max. Units Test Conditions
7.4 8.6 10.4 0.3 0.5 — — — — 4.9 — — — — — — — — — — — — — — 120 250 — — 8.2 9.4 10.9 0.7 1.0 0.2 — 70 1.6 5.2 200 0 100 0 200 30 0 100 0 30 0 30 0 0 200 350 50 50 9.0 10.2 11.4 — — — 50 120 2.3 5.5 300 1 220 1 300 100 1 220 1 100 1 100 1 1 — — 100 100 mA VITRIP = 5V VITRIP = 0V VENABLE= 5V VENABLE = 0V VRCIN = 0V or 15V VO=0V, PW ≤ 10 µs VO=15V, PW ≤10 µs µA VHIN = 0V VHIN = 5V VLIN = 0V
V
IR21362 IR21363(5)
µA mA V
VB1,2,3=VS1,2,3=600V
Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (HOUT = HI)
IR2136(2)(3)(5) IR21366(7)(8) IR2136(2)(3)(5) IR21366(7)(8) IR2136(3)(5) IR21362 IR21366(7)(8) IR2136(3)(5) IR21362(6)(7)(8)
VIN = 0V or 5V IIN =100µA VLIN = 5V
IHINIITRIP+ IITRIPIEN+ IENIRCIN IO+ IORON,RCIN RON,FLT
Input bias current (HOUT = LO) “high” ITRIP input bias current “low” ITRIP input bias current “high” ENABLE input bias current “low” ENABLE input bias current RCIN input bias current
Output high short circuit pulsed current Output low short circuit pulsed current RCIN low on resistance FAULT low on resistance
Ω
4
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Dynamic Electrical Characteristics
VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified.
Symbol
ton toff tr tf tEN tITRIP tbl tFLT tFILIN tFLTCLR DT MT MDT PM
Definition
Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time ENABLE low to output shutdown propagation delay ITRIP blanking time ITRIP to FAULT propagation delay Input filter time (HIN, LIN, EN) (IR2136(2)(3)(5)(8) only) FAULT clear time RCIN: R=2meg, C=1nF Deadtime Matching delay ON and OFF Matching delay, max (ton,toff) - min (ton,toff), (ton,toff are applicable to all 3 channels) Output pulse width matching, PWin -PWout (fig.2) IR2136(2)(3)(5)(8) IR21366(7) IR2136(2)(3)(5)(8) IR21366(7) IR2136(2)(3)(5)(8) IR21366(7)
Min.
300 — 250 — — — 300 100 500 100 400 100 1.3 220 — — —
Typ.
425 250 400 180 125 50 450 250 750 150 600 200 1.65 290 40 25 40
Max. Units Test Conditions
550 — 550 — 190 75 600 400 1000 — 800 — 2 360 75 70 75 nS mS nS VIN, VEN = 0V or 5V VITRIP = 5V VIN = 0V or 5V VITRIP = 5V VIN = 0V or 5V VITRIP = 5V VIN = 0 & 5V VIN = 0V or 5V VITRIP = 0V VIN = 0 & 5V External dead time >400nsec VIN = 0 & 5V
ITRIP to output shutdown propagation delay
NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec
VCC UVCC, FAULT returns to high impedance. Note 2: When ITRIP 8V, the FAULT pin goes back into open-drain high-impedance Low side gate driver return High side floating supply High side gate driver outputs High voltage floating supply returns Low side gate driver output
RCIN COM VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3
Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
www.irf.com
9
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Lead Assignments
1 2 3 4 5 6 7 8 9 10 11 12 13 14
VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3
VB1 28
HIN3 HIN2 HIN1 VCC HO1 VB1 VS1
1 2 3 4 5
37 36 35
VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3
VB1 28 HO1 27 VS1 26
25
HO1 27 VS1 26
25
7
6
5
4
3
43
42
41
VB2 24 HO2 23 VS2 22
LIN1 LIN2 LIN3
8 9 10 11
VB2 24 HO2 23 VS2 22
VB2 6 HO2 7 VS2 8 9 10
IR2136
FAULT ITRIP EN RCIN VSS COM LO3
21
FAULT
IR2136
FAULT ITRIP EN RCIN VSS COM LO3
21
12 13
VB3 20 HO3 19 VS3 18
EN ITRIP
IR2136 44 LEAD PLCC w/o 12 LEADS
VB3 20 HO3 19 VS3 18
17
14 15 16 17 18 19 20 21 22 23 24 25 31 30 29
VB3 11 HO3 12 VS3 13 14
17
RCIN
LO1 16 LO2 15
LO1 16 LO2 15
COM
LO2
28 Lead PDIP
44 Lead PLCC w/o 12 leads
VSS
LO3
LO1
28 lead SOIC (wide body)
IR2136/IR21363(5)(6)(7)(8)
IR2136/IR21363(5)(6)(7)(8) (J)
IR2136/IR21363(5)(6)(7)(8) (S)
HIN3
HIN2
HIN1
VCC
HO1
VB1
VS1
1 VCC 2 3 4 5 6 7 8 9
VB1 28 HO1 27 VS1 26
25 7
1 2 3 4 37 36 35
VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 FAULT ITRIP
VB1 28 HO1 27 VS1 26
25
HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 FAULT ITRIP
6
5
4
3
43
42
41
LIN1 LIN2 LIN3
8 9 10 11
VB2 24 HO2 23 VS2 22
VB2 HO2 VS2
5 6 7 8
VB2 24 HO2 23 VS2 22
21
FAULT
21
12 13
VB3 20
ITRIP
14
9
VB3 20 HO3 19 VS3 18
17
10 EN 11 RCIN 12 VSS 13 COM 14 LO3
HO3 19
15 31 30 29 18 19 20 21 22 23 24 25
10 EN
VB3
11 RCIN
VS3 18
EN
17 16 17
HO3
12 VSS
RCIN
VS3
13 COM 14 LO3
LO1 16 LO2 15
LO2 VSS COM LO1 LO3
LO1 16 LO2 15
28 Lead PDIP
44 Lead PLCC w/o 12 leads
28 lead SOIC (wide body)
IR21362
10
IR21362J
IR21362S
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
HIN1,2,3
HIN1,2,3
LIN1,2,3
EN
ITRIP
FAULT
RCIN
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram
LIN1,2,3 HIN1,2,3
50%
50%
50%
EN
PW IN
ten
LIN1,2,3 HIN1,2,3
50%
50%
90%
HO1,2,3
ton tr PW OUT toff tf
LO1,2,3
HO1,2,3 LO1,2,3
90%
90%
10%
10%
Figure 2. Switching Time Waveforms
Figure 3. Output Enable Timing Waveform
www.irf.com
11
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
LIN1,2,3 HIN1,2,3
50%
50%
LIN1,2,3 HIN1,2,3
50%
50%
LO1,2,3
DT
50%
50%
DT
HO1,2,3
50%
50%
Figure 4. Internal Deadtime Timing Waveforms
Vrcin,th+ RCIN
ITRIP
50%
50%
FAULT
tflt
50%
50%
90%
tfltclr
Any output titrip
Figure 5. ITRIP/RCIN Timing Waveforms
HIN/LIN
on off high
on
off
on off
HO/LO
low
Figure 5.5 Input Filter Function
12
U
t in,fil
t in,fil
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1000 Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
1000
800
800
M ax. Typ.
600
M ax.
600
400
Typ. Mi n.
400
Mi n.
200
200
0 -50 -25 0 25 50
o
0
75
100
125
10
12
14
16
18
20
Temperature ( C)
Supply Voltage (V)
Figure 6A. Turn-on Propagation Delay vs. Temperature
Figure 6B. Turn-on Propagation Delay vs. Supply Voltage
1000
1000 Turn-off Propagation Delay (ns)
Turn-on Propagation Delay (ns)
800
800
600
M ax.
600
M ax.
Typ.
400
Mi n.
400
Typ. Mi n.
200
200
0 3 3.5 4 Input Voltage (V) 4.5 5
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 6C. Turn-on Propagation Delay vs. Input Voltage
Figure 7A. Turn-off Propagation Delay vs. Temperature
www.irf.com
13
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1000 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns)
1000
800
M ax.
800
M ax.
600
Typ.
600
Typ.
400
Mi n.
400
Mi n.
200
200
0 10 12 14 16 18 20 Supply Voltage (V)
0 3 3.5 4 Input Voltage (V) 4.5 5
Figure 7B. Turn-off Propagation Delay vs. Supply Voltage
Figure 7C. Turn-off Propagation Delay vs. Input Voltage
400
400
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
300
300
M ax.
200
M ax.
200
Typ.
100
Typ.
100
0 -50 -25 0 25 50
o
0 75 100 125 10 12 14 16 18 20 Temperature ( C) Supply Voltage (V)
Figure 8A. Turn-on Rise Time vs. Temperature
Figure 8B. Turn-on Rise Time vs. Supply Voltage
14
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
200
200
Turn-off Fall Time (ns)
100
M ax.
Turn-off Fall Time (ns)
150
150
100
M ax.
Typ.
50
Typ.
50
0 -50 -25 0 25 50 75 100 125 Temperature (oC)
0 10 12 14 16 18 20 Supply Voltage (V)
Figure 9A. Turn-off Fall Time vs. Temperature
Figure 9B. Turn-off Fall Time vs. Supply Voltage
1000 EN to Output Shutdown Time (ns)
EN to Output Shutdown Time (ns)
1000
800
800
M ax.
600
M ax. Typ.
600
Typ.
400
Mi n.
400
Mi n.
200
200
0 -50 -25 0 25 50 75 100 125 Temperature (oC)
0 10 12 14 16 18 20 Supply Voltage (V)
Figure 10A. EN to Output Shutdown Time vs. Temperature
Figure 10B. EN to Output Shutdown Time vs. Supply Voltage
www.irf.com
15
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1000
1500 ITRIP to Output Shutdown Time (ns)
EN to Output Shutdown Time (ns)
800
M ax.
1200
M ax.
600
Typ.
900
Typ.
400
Mi n.
600
Mi n.
200
300
0 3 3.5 4 EN Voltage (V) 4.5 5
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 10C. EN to Output Shutdown Time vs. EN Voltage
Figure 11A. ITRIP to Output Shutdown Time vs. Temperature
ITRIP to Output Shutdown Time (ns)
ITRIP to FAULT Indication Time (ns)
1500 1200
M ax.
1200 1000 800 600 400 200 0
M ax.
900 600 300 0
Typ.
Typ.
Mi n.
Mi n.
10
12
14
16
18
20
-50
-25
0
25
50
o
75
100
125
Supply Voltage (V)
Temperature ( C)
Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage
Figure 12A. ITRIP to FAULT Indication Time vs. Temperature
16
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1200 1000 Fault Indication Time (ns)
M ax.
3.0
800
Typ.
FAULT Clear Time (ms)
2.5
M ax.
2.0
Typ.
600
Mi n.
1.5
Mi n.
400 200 0 10 12 14 16 18 20 Supply Voltage (V)
1.0
0.5 -50 -25 0 25 50 75 100 125
Temperature (oC)
Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage
Fig13A. FAULT Clear Time vs. Temperature
3.0
600 500 Dead Time (ns) 400
M ax.
2.5 Fault Clear Time (ms)
M ax. Typ.
2.0
300 200 100 0
Typ. Mi n.
1.5
Mi n.
1.0
0.5 10 12 14 16 18 20 Supply Voltage (V)
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 13B. FAULT Clear Time vs. Supply Voltage
Figure 14A. Dead Time vs. Temperature
www.irf.com
17
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
600 500
M ax.
6 Logic "0" Input Threshold (V) 5 4
M ax.
Dead Time (ns)
400
Typ.
300 200 100 0
Mi n.
3 2 1 0
10
12
14
16
18
20
-50
-25
0
25
50
o
75
100
125
Supply Voltage (V)
Temperature ( C)
Figure 14B. Dead Time Time vs. Supply Voltage
Figure 15A. Logic "0" Input Threshold vs. Temperature
6
6 Logic "1" Input Threshold (V) 5 4 3 2 1 0
10 12 14 16 18 20
Mi n.
Logic "0" Input Threshold (V)
5 4 3 2 1 0 Supply Voltage (V)
M ax.
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 15B. Logic "0" Input Threshold vs. Supply Voltage
Figure 16A. Logic "1" Input Threshold vs. Temperature
18
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
ITRIP Positive Going Threshold (mV
6 5 4 3 2
Mi n.
800 700 600 500 400 300 200 -50
Logic "1" Input Threshold (V)
M ax. Typ.
Mi n.
1 0 10 12 14 16 18 20 Supply Voltage (V)
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 16B. Logic "1" Input Threshold vs. Supply Voltage
Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only)
ITRIP Positive Going Threshold (mV
700 600 500 400 300 200 10 12 14 16 18 20 Supply Voltage (V)
M ax. Typ. Mi n.
ITRIP Positive Going Threshold (V
800
5.5 5.0
M ax.
4.5
Typ.
4.0 3.5
Mi n.
3.0 -50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only)
Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only)
www.irf.com
19
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
5.5 ITRIP Positive Going Threshold (V High Level Output Voltage (V) 5.0
M ax.
3.0 2.5 2.0 1.5
M ax.
4.5
Typ.
4.0 3.5 3.0 12
Mi n.
1.0
Typ.
0.5 0.0
14
16 Supply Voltage (V)
18
20
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only)
Figure 18A. High Level Output vs. Temperature
3.0 High Level Output Voltage (V) 2.5 2.0
M ax.
1.2 Low Level Output Voltage (V) 1.0 0.8 0.6
M ax.
1.5
Typ.
1.0 0.5 0.0 10 12 14 16 18 20 Supply Voltage (V)
0.4 0.2 0.0 -50 -25 0 25 50
o
Typ.
75
100
125
Temperature ( C)
Figure 18B. High Level Output vs. Supply Voltage
Figure 19A. Low Level Output vs. Temperature
20
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
V CC or V BS Undervoltage Lockout (+) (V
1. 2
12 11 10 9 8 7 -50
M ax.
Low Level Output Voltage (V)
1. 0 0. 8
M ax.
0. 6 0. 4 0. 2 0. 0 10 12 14 16 18 20
Typ.
Typ.
Mi n.
-25
0
25
50
75
100
125
Supply Voltage (V) Figure 19B. Low Level Output vs. Supply Voltage
Temperature (oC) Figure 20. VCC or VBS Undervoltage (+) vs. Temperature (IR2136/IR21368 Only)
V CC or V BS Undervoltage Lockout (-) (V)
11 10 9 8
Mi n. M ax.
VCC or VBS Undervoltage Lockout (+) (V)
13 12
M ax.
11
Typ.
Typ.
10
Mi n.
7 6 -50
9 8 -50 -25 0 25 50
o
-25
0
25
50
75
100
125
75
100
125
Temperature (oC)
Temperature ( C)
Figure 21. VCC or VBS Undervoltage (-) vs. Temperature (IR2136/IR21368 Only)
Figure 22. VCC or VBS Undervoltage (+) vs. Temperature (IR21362 Only)
www.irf.com
21
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
V CC or V BS Undervoltage Lockout (+) (V)
VCC or V BS Undervoltage Lockout (-) (V)
12
13
11
M ax.
12
M ax.
10
Typ.
9
Mi n.
11
Typ.
8
Mi n.
7 -50 -25 0 25 50 75 100 125 Temperature (oC)
10 -50
-25
0
25
50
o
75
100
125
Temperature ( C) Figure 24. V CC or V BS Undervoltage (+) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)
Figure 23. VCC or VBS Undervoltage (-) vs. Temperature (IR21362 Only)
V CC or V BS Undervoltage Lockout (-) (V)
Offset Supply Leakage Current ( µA)
13
500 400 300 200
12
M ax.
11
Typ. Mi n.
10
100
M ax.
9 -50
-25
0
25
50
75
100
125
0 -50 -25 0 25 50
o
75
100
125
Temperature ( oC)
Temperature ( C)
Figure 25. V CC or V BS Undervoltage (-) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)
Figure 26A. Offset Supply Leakage Current vs. Temperature
22
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
500 Offset Supply Leakage Current ( A)
250 200 150
M ax.
300
VBS Supply Current (µA)
400
200
100 50
Typ.
100
M ax.
0 100
0
200 300 400 500 600
-50
-25
0
25
50
o
75
100
125
V B B oost Voltage (V)
Temperature ( C)
Figure 26B. Offset Supply Leakage Current vs. VB Boost Voltage
Figure 27A. VBS Supply Current vs. Temperature
250
5 VCC Supply Current (mA) 4 3 2 1 0
10 12 14 16 18 20
VBS Supply Current ( A)
200
150
100
M ax.
M ax.
50
Typ.
Typ.
0 VBS Floating Supply Voltage (V)
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 27B. VBS Supply Current vs. VBS Floating Supply Voltage
Figure 28A. VCC Supply Current vs. Temperature
www.irf.com
23
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
5
800 Logic "1" Input Current ( µA)
VCC Supply Current (mA)
4
600
3
400
2
M ax.
200
M ax.
1
Typ.
Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 28B. VCC Supply Current vs. VCC Supply Voltage
Figure 29A. Logic "1" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)
800
300 Logic "1" Input Current ( µA) 250 200 150 100 50 0
10 12 14 16 18 20
M ax.
Logic "1" Input Current ( A)
600
400
M ax.
200
Typ.
Typ.
0 Supply Voltage (V)
-50
-25
0
25
50
o
75
100
125
Temperature ( C)
Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)
Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only)
24
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
300 250 200 150
M ax.
600 Logic "0" Input Current ( µA) 500 400 300 200
M ax.
Logic "1" Input Current ( A)
100 50 0 10 12 14 16 18 20 Supply Voltage (V)
Typ.
100
Typ.
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only)
Figure 30A. Logic "0" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)
600 Logic "0" Input Current ( A) 500 400 300 200
M ax.
4 Logic "0" Input Current ( µA)
3
2
M ax.
1
100
Typ.
0 10 12 14 16 18 20 Supply Voltage (V) Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)
Typ.
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 30C. Logic "0" Input Current vs. Temperature (IR21362 High Side Only)
www.irf.com
25
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
4
250 "High" ITRIP Current ( µA)
Logic "0" Input Current ( A)
200 150
3
2
100 50
M ax.
M ax.
1
Typ.
Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 30D. Logic "0" Input Current vs. Supply Voltage (IR21362 High Side Only)
Figure 31A. "High" ITRIP Current vs. Temperature
250
4 "Low" ITRIP Current (µA)
"High" ITRIP Current ( A)
200
3
150
M ax.
2
M ax.
100
50
1
Typ.
Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 31B. "High" ITRIP Current vs. Supply Voltage
Figure 32A. "Low" ITRIP Current vs. Temperature
26
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
4
200
"Low" ITRIP Current ( A)
"High" IEN Current (µA)
3
150
2
100
M ax.
M ax.
1
50
Typ.
Typ.
0 10 12 14 16 18 20
0 -50 -25 0 25 50
o
75
100
125
Supply Voltage (V) Figure 32B. "Low" ITRIP Current vs. Supply Voltage
Temperature ( C)
Figure 33A. "High" IEN Current vs. Temperature
250
4
"Low" IEN Current ( A) µ
"High" IEN Current ( A)
200
3
150
M ax.
2
100
M ax.
1
50
Typ. Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 33B. "High" IEN Current vs. Supply Voltage
Figure 34A. "Low" IEN Current vs. Temperature
www.irf.com
27
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
4
RCIN Input Bias Current ( A)
4
"Low" IEN Current ( A)
3
3
2
2
1
M ax.
M ax.
1
0
Typ.
Typ.
10
12
14
16
18
20
0 -50 -25 0 25 50 75 100 125 Temperature (oC)
Supply Voltage (V)
Figure 34B. "Low" IEN Current vs. Supply Voltage
Figure 35A. RCIN Input Bias Current vs. Temperature
Figure 34B. “Low” IEN Current vs. Supply Voltage
4
400 Output Source Current (mA)
RCIN Input Bias Current ( A)
3
300
Typ.
2
200
Mi n.
M ax.
1
100
Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 35B. RCIN Input Bias Current vs. Supply Voltage
Figure 36A. Output Source Current vs. Temperature
28
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
500
500 Output Sink Current (mA)
Output Source Current (mA)
400
400 300
Typ.
300
Mi n.
200
Typ.
200 100
100
Mi n.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 36B. Output Source Current vs. Supply Voltage
Figure 37A. Output Sink Current vs. Temperature
600 500 Output Sink Current (mA) 400 300
Typ.
250 RCIN Low On-resistance ( Ω )
200 150
100
M ax.
200 100 0 10 12 14 16 18 20 Supply Voltage (V)
Mi n.
50
Typ.
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 37B. Output Sink Current vs. Supply Voltage
Figure 38A. RCIN Low On-resistance vs. Temperature
www.irf.com
29
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
250
250 FAULT Low On-resistance ( Ω )
RCIN Low On-resistance ( )
200
200 150
150
M ax.
100
Typ.
100
M ax.
50
50
Typ.
0 10 12 14 16 18 20 Supply Voltage (V)
0 -50 -25 0 25 50
o
75
100
125
Temperature ( C)
Figure 38B. RCIN Low On-resistance vs. Supply Voltage
Figure 39A. FAULT Low On-resistance vs. Temperature
250 )
0 VS Offset Supply Voltage (V)
FAULT Low On-resistance (
200
-3
Typ.
150
M ax.
-6
100
Typ.
-9
50
-12
0 10 12 14 16 18 20 Supply Voltage (V)
-15 10 12 14 16 18 20 Supply Voltage (V)
Figure 39B. FAULT Low On-resistance vs. Supply Voltage
Figure 40. Maximum VS Negative Offset vs. VBS Supply Voltage
30
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
120 Junction Temperature oC) ( 100 80 60 40 20 0.1 1 10 Frequency (KHz) 100
300V 200V 100V 0V
120
o Junction Temperature ( C)
100
80
60
300V 200V 100 V 0V
40
20 0.1 1 10 Frequency (KHz) 100
Figure 41. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V
Figure 42. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V
120
120
o Junction Temperature ( C)
80
o Junction Temperature ( C)
100
100
80
300V
60
300V 200V 100 0V V
60
200V 100 V 0V
40
40
20 0.1 1 10 Frequency (KHz) 100
20 0.1 1 10 Frequency (KHz) 100
Figure 43. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V
Figure 44. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V
www.irf.com
31
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
120
120
o Junction Temperature ( C)
80
Junction Temperature (oC)
100
100
80
60
60
300V 200V 100V 0V
40
300V 200V 100V 0V
40
20 0.1 1 10 Frequency (KHz) 100
20 0.1 1 10 Frequency (KHz) 100
Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V
Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V
120
120
o Junction Temperature ( C)
o Junction Temperature ( C)
100
100
80
80
60
300V 200V 100V 0V
60
300V 200V 100V
40
40
0V
20 0.1 1 10 Frequency (KHz) 100
20 0.1 1 10 Frequency (KHz) 100
Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V
Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V
32
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
120
120
o Junction Temperature ( C)
80
Junction Temperature (oC)
100
100
80
60
60
300V
40
300V 200V 100 V 0V
40
200V 100 0V V
20 0.1 1 10 Frequency (KHz) 100
20 0.1 1 10 Frequency (KHz) 100
Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V
Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V
120
120
300V
Junction Temperature (oC)
Junction Temperature ( oC)
100
100
200V
80
80
100 V
60
300V 200V 100 V 0V
60
0V
40
40
20 0.1 1 10 Frequency (KHz) 100
20 0.1 1 10 Frequency (KHz) 100
Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V
Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V
www.irf.com
33
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Case outlines
28-Lead PDIP (wide body)
01-6011 01-3024 02 (MS-011AB)
28-Lead SOIC (wide body)
34
01-6013 01-3040 02 ( MS-013AE)
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
NOTES
44-Lead PLCC w/o 12 leads
01-6009 00 01-3004 02(mod.) (MS-018AC)
www.irf.com
35
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
Basic Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J Leadfree Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J order order order order order order order order order order order order IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (S) IR2136/IR21363(5)(6)(7)(8) (J) IR21362 IR21362S IR21362J IR2136/IR21363(5)(6)(7)(8)PbF IR2136/IR21363(5)(6)(7)(8) (S)PbF IR2136/IR21363(5)(6)(7)(8) (J)PbF IR21362PbF IR21362SPbF IR21362JPbF
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level http://www.irf.com/ Data and specifications subject to change without notice. 4/13/2004
36
www.irf.com