0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR21368JPBF

IR21368JPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR21368JPBF - 3-PHASE BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR21368JPBF 数据手册
Data Sheet No. PD60166 revS IR2136/IR21362/IR21363/IR21365/ IR21366/IR21367/IR21368 (J&S) & (PbF) Features • • • • • • • • • • • • 3-PHASE BRIDGE DRIVER Floating channel designed for bootstrap operation Packages Fully operational to +600V Tolerant to negative transient voltage - dV/dt immune Gate drive supply range from 10 to 20V (IR2136/IR21368), 11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/ IR21366/IR21367) Undervoltage lockout for all channels 28-Lead SOIC Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers 28-Lead PDIP Matched propagation delay for all channels Cross-conduction prevention logic 44-Lead PLCC w/o 12 leads Lowside outputs out of phase with inputs. High side outputs out of phase (IR2136/IR21363/IR21365/ Feature Comparison: IR2136/IR21362/IR21363/ IR21366/IR21367/IR21368) or in phase IR21365/IR21366/IR21367/IR21368 (IR21362) with inputs. 3.3V logic compatible Part IR2136 IR21362 IR21363 IR21365 IR21366 IR21367 IR21368 Lower di/dt gate driver for Input Logic HIN, LIN HIN/LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN,LIN better noise immunity 400ns Ton (typ.) 400ns 250ns 400ns 400ns 400ns 250ns Externally programmable Toff (typ.) 380ns 380ns 180ns 380ns 380ns 380ns 180ns delay for automatic fault VIH (typ.) 2.7V 2.0V 2.0V 2.7V 2.7V 2.7V 2.0V clear VIL (typ.) 1.7V 1.3V 1.3V 1.7V 1.7V 1.7V 1.3V Also available LEAD-FREE Vitrip+ 4.3V 4.3V 0.46V 0.46V 0.46V 0.46V 4.3V UV CC/BS+ 8.9V UV CC/BS- 8.2V 10.4V 9.4V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 8.9V 8.2V Description The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts. Typical Connection VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 FAULT VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 HO1,2,3 FAULT EN VS1,2,3 VB1,2,3 up to 600V (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. EN RCIN ITRIP VSS LO1,2,3 COM TO LOAD IR2136(2)(3)(5)(6)(7)(8) GND www.irf.com 1 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VS VBS VHO VCC VSS VLO1,2,3 VIN Definition High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN,HIN,ITRIP, EN, RCIN Min. VB1,2,3 - 25 -0.3 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3 Max. VB1,2,3 + 0.3 625 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 lower of (VSS + 15) or VCC + 0.3) VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 Units V VFLT dV/dt PD FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25°C RthJA Thermal resistance, junction to ambient (28 lead PDIP) (28 lead SOIC) ( 44leadPLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) VSS - 0.3 — — — — — — — — -55 — V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB1,2,3 Definition High side floating supply voltage IR2136(8) IR21362 IR2136(3)(5)(6)(7) Min. Max. Units VS1,2,3 VHO1,2,3 VLO1,2,3 VCC High side floating supply offset voltage High side output voltage Low side output voltage Low side and logic fixed supply voltage IR2136(8) IR21362 IR2136(3)(5)(6)(7) VSS VFLT VRCIN Logic ground FAULT output voltage RCIN input voltage VS1,2,3 +10 VS1,2,3 +20 VS1,2,3 +11.5 VS1,2,3 +20 VS1,2,3 +12 VS1,2,3 +20 Note 1 600 VS1,2,3 VB1,2,3 0 VCC 10 20 11.5 20 12 20 -5 5 VSS VCC VSS VCC V Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Recommended Operating Conditions cont. The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VITRIP VIN TA Definition ITRIP input voltage Logic input voltage LIN , HIN (IR2136,IR21363(5)(6)(7)(8)), HIN(IR21362), EN Ambient temperature Min. VSS VSS -40 Max. VSS +5 VSS +5 125 Units V o C Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. Static Electrical Characteristics VBIAS (VCC, VBS 1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3. Symbol VIH Definition Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “1” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) Logic “1” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “0” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) EN positive going threshold EN negative going threshold ITRIP positive going threshold IR2136(2)(3)(6) IR21365(7)(8) ITRIP input hysteresis IR2136(2)(3)(6) IR21365(7)(8) RCIN positive going threshold RCIN input hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC and VBS supply undervoltage IR2136(8) positive going threshold IR21362 IR21363(5)(6)(7) Min. Typ. Max. Units Test Conditions 3.0 — — 2.5 — — — — 0.8 VIL VEN,TH+ VEN,THVIT,TH+ — — 0.8 0.37 3.85 — — — — — — 8.0 9.6 10.6 — — — 0.46 4.30 0.07 .15 8 3 0.9 0.4 8.9 10.4 11.1 0.8 3 — 0.55 4.75 — — — — 1.4 0.6 9.8 11.2 11.6 V VIT,HYS VRCIN,TH+ VRCIN,HYS VOH VOL VCCUV+ VBSUV+ IO = 20 mA IO = 20 mA www.irf.com 3 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Static Electrical Characteristics cont. VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3. Symbol VCCUVVBSUVVCCUVH VBSUVH ILK IQBS IQCC VIN, CLAMP ILIN+ ILINIHIN+ Definition VCC and VBS supply undervoltage negative going threshold IR2136(8) IR21362 IR21363(5)(6)(7) VCC and VBS supply undervoltage IR2136 lockout hysteresis Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Input clamp voltage (HIN, LIN, ITRIP and EN) Min. Typ. Max. Units Test Conditions 7.4 8.6 10.4 0.3 0.5 — — — — 4.9 — — — — — — — — — — — — — — 120 250 — — 8.2 9.4 10.9 0.7 1.0 0.2 — 70 1.6 5.2 200 0 100 0 200 30 0 100 0 30 0 30 0 0 200 350 50 50 9.0 10.2 11.4 — — — 50 120 2.3 5.5 300 1 220 1 300 100 1 220 1 100 1 100 1 1 — — 100 100 mA VITRIP = 5V VITRIP = 0V VENABLE= 5V VENABLE = 0V VRCIN = 0V or 15V VO=0V, PW ≤ 10 µs VO=15V, PW ≤10 µs µA VHIN = 0V VHIN = 5V VLIN = 0V V IR21362 IR21363(5) µA mA V VB1,2,3=VS1,2,3=600V Input bias current (LOUT = HI) Input bias current (LOUT = LO) Input bias current (HOUT = HI) IR2136(2)(3)(5) IR21366(7)(8) IR2136(2)(3)(5) IR21366(7)(8) IR2136(3)(5) IR21362 IR21366(7)(8) IR2136(3)(5) IR21362(6)(7)(8) VIN = 0V or 5V IIN =100µA VLIN = 5V IHINIITRIP+ IITRIPIEN+ IENIRCIN IO+ IORON,RCIN RON,FLT Input bias current (HOUT = LO) “high” ITRIP input bias current “low” ITRIP input bias current “high” ENABLE input bias current “low” ENABLE input bias current RCIN input bias current Output high short circuit pulsed current Output low short circuit pulsed current RCIN low on resistance FAULT low on resistance Ω 4 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified. Symbol ton toff tr tf tEN tITRIP tbl tFLT tFILIN tFLTCLR DT MT MDT PM Definition Turn-on propagation delay Turn-off propagation delay Turn-on rise time Turn-off fall time ENABLE low to output shutdown propagation delay ITRIP blanking time ITRIP to FAULT propagation delay Input filter time (HIN, LIN, EN) (IR2136(2)(3)(5)(8) only) FAULT clear time RCIN: R=2meg, C=1nF Deadtime Matching delay ON and OFF Matching delay, max (ton,toff) - min (ton,toff), (ton,toff are applicable to all 3 channels) Output pulse width matching, PWin -PWout (fig.2) IR2136(2)(3)(5)(8) IR21366(7) IR2136(2)(3)(5)(8) IR21366(7) IR2136(2)(3)(5)(8) IR21366(7) Min. 300 — 250 — — — 300 100 500 100 400 100 1.3 220 — — — Typ. 425 250 400 180 125 50 450 250 750 150 600 200 1.65 290 40 25 40 Max. Units Test Conditions 550 — 550 — 190 75 600 400 1000 — 800 — 2 360 75 70 75 nS mS nS VIN, VEN = 0V or 5V VITRIP = 5V VIN = 0V or 5V VITRIP = 5V VIN = 0V or 5V VITRIP = 5V VIN = 0 & 5V VIN = 0V or 5V VITRIP = 0V VIN = 0 & 5V External dead time >400nsec VIN = 0 & 5V ITRIP to output shutdown propagation delay NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec VCC UVCC, FAULT returns to high impedance. Note 2: When ITRIP 8V, the FAULT pin goes back into open-drain high-impedance Low side gate driver return High side floating supply High side gate driver outputs High voltage floating supply returns Low side gate driver output RCIN COM VB1,2,3 HO1,2,3 VS1,2,3 LO1,2,3 Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. www.irf.com 9 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Lead Assignments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 VB1 28 HIN3 HIN2 HIN1 VCC HO1 VB1 VS1 1 2 3 4 5 37 36 35 VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 VB1 28 HO1 27 VS1 26 25 HO1 27 VS1 26 25 7 6 5 4 3 43 42 41 VB2 24 HO2 23 VS2 22 LIN1 LIN2 LIN3 8 9 10 11 VB2 24 HO2 23 VS2 22 VB2 6 HO2 7 VS2 8 9 10 IR2136 FAULT ITRIP EN RCIN VSS COM LO3 21 FAULT IR2136 FAULT ITRIP EN RCIN VSS COM LO3 21 12 13 VB3 20 HO3 19 VS3 18 EN ITRIP IR2136 44 LEAD PLCC w/o 12 LEADS VB3 20 HO3 19 VS3 18 17 14 15 16 17 18 19 20 21 22 23 24 25 31 30 29 VB3 11 HO3 12 VS3 13 14 17 RCIN LO1 16 LO2 15 LO1 16 LO2 15 COM LO2 28 Lead PDIP 44 Lead PLCC w/o 12 leads VSS LO3 LO1 28 lead SOIC (wide body) IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (J) IR2136/IR21363(5)(6)(7)(8) (S) HIN3 HIN2 HIN1 VCC HO1 VB1 VS1 1 VCC 2 3 4 5 6 7 8 9 VB1 28 HO1 27 VS1 26 25 7 1 2 3 4 37 36 35 VCC HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 FAULT ITRIP VB1 28 HO1 27 VS1 26 25 HIN1 HIN2 HIN3 LIN1 LIN2 LIN3 FAULT ITRIP 6 5 4 3 43 42 41 LIN1 LIN2 LIN3 8 9 10 11 VB2 24 HO2 23 VS2 22 VB2 HO2 VS2 5 6 7 8 VB2 24 HO2 23 VS2 22 21 FAULT 21 12 13 VB3 20 ITRIP 14 9 VB3 20 HO3 19 VS3 18 17 10 EN 11 RCIN 12 VSS 13 COM 14 LO3 HO3 19 15 31 30 29 18 19 20 21 22 23 24 25 10 EN VB3 11 RCIN VS3 18 EN 17 16 17 HO3 12 VSS RCIN VS3 13 COM 14 LO3 LO1 16 LO2 15 LO2 VSS COM LO1 LO3 LO1 16 LO2 15 28 Lead PDIP 44 Lead PLCC w/o 12 leads 28 lead SOIC (wide body) IR21362 10 IR21362J IR21362S www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) HIN1,2,3 HIN1,2,3 LIN1,2,3 EN ITRIP FAULT RCIN HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram LIN1,2,3 HIN1,2,3 50% 50% 50% EN PW IN ten LIN1,2,3 HIN1,2,3 50% 50% 90% HO1,2,3 ton tr PW OUT toff tf LO1,2,3 HO1,2,3 LO1,2,3 90% 90% 10% 10% Figure 2. Switching Time Waveforms Figure 3. Output Enable Timing Waveform www.irf.com 11 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) LIN1,2,3 HIN1,2,3 50% 50% LIN1,2,3 HIN1,2,3 50% 50% LO1,2,3 DT 50% 50% DT HO1,2,3 50% 50% Figure 4. Internal Deadtime Timing Waveforms Vrcin,th+ RCIN ITRIP 50% 50% FAULT tflt 50% 50% 90% tfltclr Any output titrip Figure 5. ITRIP/RCIN Timing Waveforms HIN/LIN on off high on off on off HO/LO low Figure 5.5 Input Filter Function 12 U t in,fil t in,fil www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1000 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 1000 800 800 M ax. Typ. 600 M ax. 600 400 Typ. Mi n. 400 Mi n. 200 200 0 -50 -25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Supply Voltage (V) Figure 6A. Turn-on Propagation Delay vs. Temperature Figure 6B. Turn-on Propagation Delay vs. Supply Voltage 1000 1000 Turn-off Propagation Delay (ns) Turn-on Propagation Delay (ns) 800 800 600 M ax. 600 M ax. Typ. 400 Mi n. 400 Typ. Mi n. 200 200 0 3 3.5 4 Input Voltage (V) 4.5 5 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 6C. Turn-on Propagation Delay vs. Input Voltage Figure 7A. Turn-off Propagation Delay vs. Temperature www.irf.com 13 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1000 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 1000 800 M ax. 800 M ax. 600 Typ. 600 Typ. 400 Mi n. 400 Mi n. 200 200 0 10 12 14 16 18 20 Supply Voltage (V) 0 3 3.5 4 Input Voltage (V) 4.5 5 Figure 7B. Turn-off Propagation Delay vs. Supply Voltage Figure 7C. Turn-off Propagation Delay vs. Input Voltage 400 400 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 300 300 M ax. 200 M ax. 200 Typ. 100 Typ. 100 0 -50 -25 0 25 50 o 0 75 100 125 10 12 14 16 18 20 Temperature ( C) Supply Voltage (V) Figure 8A. Turn-on Rise Time vs. Temperature Figure 8B. Turn-on Rise Time vs. Supply Voltage 14 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 200 200 Turn-off Fall Time (ns) 100 M ax. Turn-off Fall Time (ns) 150 150 100 M ax. Typ. 50 Typ. 50 0 -50 -25 0 25 50 75 100 125 Temperature (oC) 0 10 12 14 16 18 20 Supply Voltage (V) Figure 9A. Turn-off Fall Time vs. Temperature Figure 9B. Turn-off Fall Time vs. Supply Voltage 1000 EN to Output Shutdown Time (ns) EN to Output Shutdown Time (ns) 1000 800 800 M ax. 600 M ax. Typ. 600 Typ. 400 Mi n. 400 Mi n. 200 200 0 -50 -25 0 25 50 75 100 125 Temperature (oC) 0 10 12 14 16 18 20 Supply Voltage (V) Figure 10A. EN to Output Shutdown Time vs. Temperature Figure 10B. EN to Output Shutdown Time vs. Supply Voltage www.irf.com 15 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1000 1500 ITRIP to Output Shutdown Time (ns) EN to Output Shutdown Time (ns) 800 M ax. 1200 M ax. 600 Typ. 900 Typ. 400 Mi n. 600 Mi n. 200 300 0 3 3.5 4 EN Voltage (V) 4.5 5 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 10C. EN to Output Shutdown Time vs. EN Voltage Figure 11A. ITRIP to Output Shutdown Time vs. Temperature ITRIP to Output Shutdown Time (ns) ITRIP to FAULT Indication Time (ns) 1500 1200 M ax. 1200 1000 800 600 400 200 0 M ax. 900 600 300 0 Typ. Typ. Mi n. Mi n. 10 12 14 16 18 20 -50 -25 0 25 50 o 75 100 125 Supply Voltage (V) Temperature ( C) Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage Figure 12A. ITRIP to FAULT Indication Time vs. Temperature 16 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1200 1000 Fault Indication Time (ns) M ax. 3.0 800 Typ. FAULT Clear Time (ms) 2.5 M ax. 2.0 Typ. 600 Mi n. 1.5 Mi n. 400 200 0 10 12 14 16 18 20 Supply Voltage (V) 1.0 0.5 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage Fig13A. FAULT Clear Time vs. Temperature 3.0 600 500 Dead Time (ns) 400 M ax. 2.5 Fault Clear Time (ms) M ax. Typ. 2.0 300 200 100 0 Typ. Mi n. 1.5 Mi n. 1.0 0.5 10 12 14 16 18 20 Supply Voltage (V) -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 13B. FAULT Clear Time vs. Supply Voltage Figure 14A. Dead Time vs. Temperature www.irf.com 17 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 600 500 M ax. 6 Logic "0" Input Threshold (V) 5 4 M ax. Dead Time (ns) 400 Typ. 300 200 100 0 Mi n. 3 2 1 0 10 12 14 16 18 20 -50 -25 0 25 50 o 75 100 125 Supply Voltage (V) Temperature ( C) Figure 14B. Dead Time Time vs. Supply Voltage Figure 15A. Logic "0" Input Threshold vs. Temperature 6 6 Logic "1" Input Threshold (V) 5 4 3 2 1 0 10 12 14 16 18 20 Mi n. Logic "0" Input Threshold (V) 5 4 3 2 1 0 Supply Voltage (V) M ax. -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 15B. Logic "0" Input Threshold vs. Supply Voltage Figure 16A. Logic "1" Input Threshold vs. Temperature 18 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) ITRIP Positive Going Threshold (mV 6 5 4 3 2 Mi n. 800 700 600 500 400 300 200 -50 Logic "1" Input Threshold (V) M ax. Typ. Mi n. 1 0 10 12 14 16 18 20 Supply Voltage (V) -25 0 25 50 o 75 100 125 Temperature ( C) Figure 16B. Logic "1" Input Threshold vs. Supply Voltage Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only) ITRIP Positive Going Threshold (mV 700 600 500 400 300 200 10 12 14 16 18 20 Supply Voltage (V) M ax. Typ. Mi n. ITRIP Positive Going Threshold (V 800 5.5 5.0 M ax. 4.5 Typ. 4.0 3.5 Mi n. 3.0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only) Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only) www.irf.com 19 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 5.5 ITRIP Positive Going Threshold (V High Level Output Voltage (V) 5.0 M ax. 3.0 2.5 2.0 1.5 M ax. 4.5 Typ. 4.0 3.5 3.0 12 Mi n. 1.0 Typ. 0.5 0.0 14 16 Supply Voltage (V) 18 20 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only) Figure 18A. High Level Output vs. Temperature 3.0 High Level Output Voltage (V) 2.5 2.0 M ax. 1.2 Low Level Output Voltage (V) 1.0 0.8 0.6 M ax. 1.5 Typ. 1.0 0.5 0.0 10 12 14 16 18 20 Supply Voltage (V) 0.4 0.2 0.0 -50 -25 0 25 50 o Typ. 75 100 125 Temperature ( C) Figure 18B. High Level Output vs. Supply Voltage Figure 19A. Low Level Output vs. Temperature 20 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) V CC or V BS Undervoltage Lockout (+) (V 1. 2 12 11 10 9 8 7 -50 M ax. Low Level Output Voltage (V) 1. 0 0. 8 M ax. 0. 6 0. 4 0. 2 0. 0 10 12 14 16 18 20 Typ. Typ. Mi n. -25 0 25 50 75 100 125 Supply Voltage (V) Figure 19B. Low Level Output vs. Supply Voltage Temperature (oC) Figure 20. VCC or VBS Undervoltage (+) vs. Temperature (IR2136/IR21368 Only) V CC or V BS Undervoltage Lockout (-) (V) 11 10 9 8 Mi n. M ax. VCC or VBS Undervoltage Lockout (+) (V) 13 12 M ax. 11 Typ. Typ. 10 Mi n. 7 6 -50 9 8 -50 -25 0 25 50 o -25 0 25 50 75 100 125 75 100 125 Temperature (oC) Temperature ( C) Figure 21. VCC or VBS Undervoltage (-) vs. Temperature (IR2136/IR21368 Only) Figure 22. VCC or VBS Undervoltage (+) vs. Temperature (IR21362 Only) www.irf.com 21 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) V CC or V BS Undervoltage Lockout (+) (V) VCC or V BS Undervoltage Lockout (-) (V) 12 13 11 M ax. 12 M ax. 10 Typ. 9 Mi n. 11 Typ. 8 Mi n. 7 -50 -25 0 25 50 75 100 125 Temperature (oC) 10 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 24. V CC or V BS Undervoltage (+) vs. Temperature (IR21363/21365/IR21366/IR21367 Only) Figure 23. VCC or VBS Undervoltage (-) vs. Temperature (IR21362 Only) V CC or V BS Undervoltage Lockout (-) (V) Offset Supply Leakage Current ( µA) 13 500 400 300 200 12 M ax. 11 Typ. Mi n. 10 100 M ax. 9 -50 -25 0 25 50 75 100 125 0 -50 -25 0 25 50 o 75 100 125 Temperature ( oC) Temperature ( C) Figure 25. V CC or V BS Undervoltage (-) vs. Temperature (IR21363/21365/IR21366/IR21367 Only) Figure 26A. Offset Supply Leakage Current vs. Temperature 22 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 500 Offset Supply Leakage Current ( A) 250 200 150 M ax. 300 VBS Supply Current (µA) 400 200 100 50 Typ. 100 M ax. 0 100 0 200 300 400 500 600 -50 -25 0 25 50 o 75 100 125 V B B oost Voltage (V) Temperature ( C) Figure 26B. Offset Supply Leakage Current vs. VB Boost Voltage Figure 27A. VBS Supply Current vs. Temperature 250 5 VCC Supply Current (mA) 4 3 2 1 0 10 12 14 16 18 20 VBS Supply Current ( A) 200 150 100 M ax. M ax. 50 Typ. Typ. 0 VBS Floating Supply Voltage (V) -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 27B. VBS Supply Current vs. VBS Floating Supply Voltage Figure 28A. VCC Supply Current vs. Temperature www.irf.com 23 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 5 800 Logic "1" Input Current ( µA) VCC Supply Current (mA) 4 600 3 400 2 M ax. 200 M ax. 1 Typ. Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 28B. VCC Supply Current vs. VCC Supply Voltage Figure 29A. Logic "1" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only) 800 300 Logic "1" Input Current ( µA) 250 200 150 100 50 0 10 12 14 16 18 20 M ax. Logic "1" Input Current ( A) 600 400 M ax. 200 Typ. Typ. 0 Supply Voltage (V) -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only) Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only) 24 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 300 250 200 150 M ax. 600 Logic "0" Input Current ( µA) 500 400 300 200 M ax. Logic "1" Input Current ( A) 100 50 0 10 12 14 16 18 20 Supply Voltage (V) Typ. 100 Typ. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only) Figure 30A. Logic "0" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only) 600 Logic "0" Input Current ( A) 500 400 300 200 M ax. 4 Logic "0" Input Current ( µA) 3 2 M ax. 1 100 Typ. 0 10 12 14 16 18 20 Supply Voltage (V) Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only) Typ. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 30C. Logic "0" Input Current vs. Temperature (IR21362 High Side Only) www.irf.com 25 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 4 250 "High" ITRIP Current ( µA) Logic "0" Input Current ( A) 200 150 3 2 100 50 M ax. M ax. 1 Typ. Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 30D. Logic "0" Input Current vs. Supply Voltage (IR21362 High Side Only) Figure 31A. "High" ITRIP Current vs. Temperature 250 4 "Low" ITRIP Current (µA) "High" ITRIP Current ( A) 200 3 150 M ax. 2 M ax. 100 50 1 Typ. Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 31B. "High" ITRIP Current vs. Supply Voltage Figure 32A. "Low" ITRIP Current vs. Temperature 26 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 4 200 "Low" ITRIP Current ( A) "High" IEN Current (µA) 3 150 2 100 M ax. M ax. 1 50 Typ. Typ. 0 10 12 14 16 18 20 0 -50 -25 0 25 50 o 75 100 125 Supply Voltage (V) Figure 32B. "Low" ITRIP Current vs. Supply Voltage Temperature ( C) Figure 33A. "High" IEN Current vs. Temperature 250 4 "Low" IEN Current ( A) µ "High" IEN Current ( A) 200 3 150 M ax. 2 100 M ax. 1 50 Typ. Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 33B. "High" IEN Current vs. Supply Voltage Figure 34A. "Low" IEN Current vs. Temperature www.irf.com 27 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 4 RCIN Input Bias Current ( A) 4 "Low" IEN Current ( A) 3 3 2 2 1 M ax. M ax. 1 0 Typ. Typ. 10 12 14 16 18 20 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Supply Voltage (V) Figure 34B. "Low" IEN Current vs. Supply Voltage Figure 35A. RCIN Input Bias Current vs. Temperature Figure 34B. “Low” IEN Current vs. Supply Voltage 4 400 Output Source Current (mA) RCIN Input Bias Current ( A) 3 300 Typ. 2 200 Mi n. M ax. 1 100 Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 35B. RCIN Input Bias Current vs. Supply Voltage Figure 36A. Output Source Current vs. Temperature 28 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 500 500 Output Sink Current (mA) Output Source Current (mA) 400 400 300 Typ. 300 Mi n. 200 Typ. 200 100 100 Mi n. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 36B. Output Source Current vs. Supply Voltage Figure 37A. Output Sink Current vs. Temperature 600 500 Output Sink Current (mA) 400 300 Typ. 250 RCIN Low On-resistance ( Ω ) 200 150 100 M ax. 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Mi n. 50 Typ. 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 37B. Output Sink Current vs. Supply Voltage Figure 38A. RCIN Low On-resistance vs. Temperature www.irf.com 29 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 250 250 FAULT Low On-resistance ( Ω ) RCIN Low On-resistance ( ) 200 200 150 150 M ax. 100 Typ. 100 M ax. 50 50 Typ. 0 10 12 14 16 18 20 Supply Voltage (V) 0 -50 -25 0 25 50 o 75 100 125 Temperature ( C) Figure 38B. RCIN Low On-resistance vs. Supply Voltage Figure 39A. FAULT Low On-resistance vs. Temperature 250 ) 0 VS Offset Supply Voltage (V) FAULT Low On-resistance ( 200 -3 Typ. 150 M ax. -6 100 Typ. -9 50 -12 0 10 12 14 16 18 20 Supply Voltage (V) -15 10 12 14 16 18 20 Supply Voltage (V) Figure 39B. FAULT Low On-resistance vs. Supply Voltage Figure 40. Maximum VS Negative Offset vs. VBS Supply Voltage 30 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 120 Junction Temperature oC) ( 100 80 60 40 20 0.1 1 10 Frequency (KHz) 100 300V 200V 100V 0V 120 o Junction Temperature ( C) 100 80 60 300V 200V 100 V 0V 40 20 0.1 1 10 Frequency (KHz) 100 Figure 41. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V Figure 42. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V 120 120 o Junction Temperature ( C) 80 o Junction Temperature ( C) 100 100 80 300V 60 300V 200V 100 0V V 60 200V 100 V 0V 40 40 20 0.1 1 10 Frequency (KHz) 100 20 0.1 1 10 Frequency (KHz) 100 Figure 43. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V Figure 44. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V www.irf.com 31 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 120 120 o Junction Temperature ( C) 80 Junction Temperature (oC) 100 100 80 60 60 300V 200V 100V 0V 40 300V 200V 100V 0V 40 20 0.1 1 10 Frequency (KHz) 100 20 0.1 1 10 Frequency (KHz) 100 Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V 120 120 o Junction Temperature ( C) o Junction Temperature ( C) 100 100 80 80 60 300V 200V 100V 0V 60 300V 200V 100V 40 40 0V 20 0.1 1 10 Frequency (KHz) 100 20 0.1 1 10 Frequency (KHz) 100 Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V 32 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 120 120 o Junction Temperature ( C) 80 Junction Temperature (oC) 100 100 80 60 60 300V 40 300V 200V 100 V 0V 40 200V 100 0V V 20 0.1 1 10 Frequency (KHz) 100 20 0.1 1 10 Frequency (KHz) 100 Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V 120 120 300V Junction Temperature (oC) Junction Temperature ( oC) 100 100 200V 80 80 100 V 60 300V 200V 100 V 0V 60 0V 40 40 20 0.1 1 10 Frequency (KHz) 100 20 0.1 1 10 Frequency (KHz) 100 Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V www.irf.com 33 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Case outlines 28-Lead PDIP (wide body) 01-6011 01-3024 02 (MS-011AB) 28-Lead SOIC (wide body) 34 01-6013 01-3040 02 ( MS-013AE) www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) NOTES 44-Lead PLCC w/o 12 leads 01-6009 00 01-3004 02(mod.) (MS-018AC) www.irf.com 35 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J Leadfree Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J order order order order order order order order order order order order IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (S) IR2136/IR21363(5)(6)(7)(8) (J) IR21362 IR21362S IR21362J IR2136/IR21363(5)(6)(7)(8)PbF IR2136/IR21363(5)(6)(7)(8) (S)PbF IR2136/IR21363(5)(6)(7)(8) (J)PbF IR21362PbF IR21362SPbF IR21362JPbF WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level http://www.irf.com/ Data and specifications subject to change without notice. 4/13/2004 36 www.irf.com
IR21368JPBF 价格&库存

很抱歉,暂时无法提供与“IR21368JPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货