0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2181PBF

IR2181PBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2181PBF - HIGH AND LOW SIDE DRIVER - International Rectifier

  • 详情介绍
  • 数据手册
  • 价格&库存
IR2181PBF 数据手册
Data Sheet No. PD60172 Rev.G IR2181(4)(S) & (PbF) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) Packages 8-Lead PDIP IR2181 14-Lead PDIP IR21814 8-Lead SOIC IR2181S 14-Lead SOIC IR21814S IR2181/IR2183/IR2184 Feature Comparison Description Part The IR2181(4)(S) are high voltage, 2181 COM high speed power MOSFET and IGBT HIN/LIN no none 180/220 ns 21814 VSS/COM drivers with independent high and low 2183 Internal 500ns COM HIN/LIN yes 180/220 ns side referenced output channels. Pro21834 Program 0.4 ~ 5 us VSS/COM 2184 Internal 500ns COM prietary HVIC and latch immune IN/SD yes 680/270 ns 21844 Program 0.4 ~ 5 us VSS/COM CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Input logic Crossconduction prevention logic Dead-Time Ground Pins Ton/Toff Typical Connection up to 600V V CC V CC HIN LIN VB HO VS LO TO LOAD HIN LIN COM IR2181 IR21814 HO VCC HIN LIN up to 600V VCC HIN LIN VB VS TO LOAD (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. VSS VSS COM LO www.irf.com 1 IR2181(4) (S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN VSS dVS/dt PD Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN - IR2181/IR21814) Logic ground (IR21814 only) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) Min. -0.3 V B - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 10 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V V/ns W RthJA Thermal resistance, junction to ambient (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) °C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN VSS TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN - IR2181/IR21814) Logic ground (IR21814/IR21824 only) Ambient temperature Min. VS + 10 Note 1 VS 10 0 VSS -5 -40 Max. VS + 20 600 VB 20 VCC VSS + 5 5 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2181(4) (S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C. Symbol ton toff MT tr tf Definition Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Min. — — — — — Typ. 180 220 0 40 20 Max. Units Test Conditions 270 330 35 60 35 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage (IR2181/IR21814 ) Logic “0” input voltage (IR2181/IR21814) High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.7 — — — — 20 50 — — 8.0 7.4 0.3 1.4 1.8 — — — — — 60 120 25 — 8.9 8.2 0.7 1.9 2.3 — 0.8 1.2 0.1 50 150 240 60 1.0 9.8 9.0 — — A — VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs V µA V VCC = 10V to 20V VCC = 10V to 20V I O = 0A I O = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 5V VIN = 0V www.irf.com 3 IR2181(4) (S) & (PbF) Functional Block Diagrams VB 2181 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS VCC UV DETECT LO LIN VSS/COM LEVEL SHIFT DELAY COM VB 21814 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS VCC UV DETECT LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS 4 www.irf.com IR2181(4) (S) & (PbF) Lead Definitions Symbol Description HIN LIN VSS VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase (IR2181/IR21814) Logic input for low side gate driver output (LO), in phase (IR2181/IR21814) Logic Ground (IR21814 only) High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 8-Lead PDIP 8-Lead SOIC IR2181 IR2181S 1 2 3 4 5 6 7 HIN LIN VSS VB HO VS COM LO VCC 14 13 1 2 3 HIN LIN VSS VB HO VS COM LO VCC 14 13 12 11 10 9 8 12 4 11 5 10 6 9 7 8 14-Lead PDIP 14-Lead SOIC IR21814 www.irf.com IR21814S 5 IR2181(4) (S) & (PbF) HIN LIN HIN LIN ton 50% 50% tr 90% toff 90% tf HO LO Figure 1. Input/Output Timing Diagram HO LO 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% LO HO 10% MT 90% MT LO HO Figure 3. Delay Matching Waveform Definitions 6 www.irf.com IR2181(4) (S) & (PbF) Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 500 400 300 M ax. 500 400 M ax. 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 4B. Turn-on Propagation Delay vs. Supply Voltage Typ. 200 Typ. 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 4A. Turn-on Propagation Delay vs. Temperature 600 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 200 M ax. 600 500 400 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage M ax. Typ. Typ. 100 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs. Temperature www.irf.com 7 IR2181(4) (S) & (PbF) 120 120 Turn-on Rise Time (ns) 100 80 60 40 20 0 -25 0 25 50 75 100 125 M ax. Turn-on Rise Time (ns) 100 80 60 40 20 M ax. Typ. Typ. 0 -50 10 12 14 16 18 20 Temperature (oC) Figure 6A. Turn-on Rise Time vs. Temperature Supply Voltage (V) Figure 6B. Turn-on Rise Time vs. Supply Voltage 80 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 60 40 M ax. 80 60 M ax. 40 Typ. 20 0 -50 Typ 20 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 7A. Turn-off Fall Time vs. Temperature Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage 8 www.irf.com IR2181(4) (S) & (PbF) 6 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) -25 0 25 50 75 100 125 5 4 3 2 1 0 -50 Mi n. 6 5 4 3 2 1 0 10 12 14 16 18 20 Temperature (oC) Figure 8A. Logic "1" Input Voltage vs. Temperature Supply Voltage (V) Figure 8B. Logic "1" Input Voltage vs. Supply Voltage Mi n. 6 Logic "0" Input Voltage (V) 5 4 3 2 1 0 -50 M ax. 6 Logic "0" Input Voltage (V) 5 4 3 2 1 0 -25 0 25 50 75 100 125 M ax. 10 12 14 16 18 20 Temperature (oC) Figure 9A. Logic "0" Input Voltage vs. Temperature Supply Voltage (V) Figure 9B. Logic "0" Input Voltage vs. Supply Voltage www.irf.com 9 IR2181(4) (S) & (PbF) 5 High Level Output (V) High Level Output (V) 4 3 2 1 0 -50 M ax. 5 4 3 2 1 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Supply Voltage (V) Figure 10B. High Level Output vs. Supply Voltage M ax. Figure 10A. High Level Output vs. Temperature 0.5 Low Level Output (V) Low Level Output (V) 0.4 0.3 0.2 0.1 M ax. 0.5 0.4 0.3 0.2 0.1 0.0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Supply Voltage (V) Figure 11B. Low Level Output vs. Supply Voltage M ax. 0.0 -50 Figure 11A. Low Level Output vs. Temperature 10 www.irf.com IR2181(4) (S) & (PbF) Offset Supply Leakage Current ( ◊ A) 500 400 300 200 100 M ax. Offset Supply Leakage Current ( ◊ A) 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 0 100 200 300 400 500 600 Temperature (oC) Figure 12A. Offset Supply Leakage Current vs. Temperature VB Boost Voltage (V) Figure 12B. Offset Supply Leakage Current vs. VB Boost Voltage 250 V BS Supply Current ( ◊ A) 200 150 100 50 0 -50 M ax. 250 V BS Supply Current ( ◊ A) 200 150 100 50 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 13A. VBS Supply Current vs. Temperature VBS Floating Supply Voltage (V) Figure 13B. VBS Supply Current vs. VBS Floating Supply Voltage M ax. Typ. Typ. Mi n. Mi n. www.irf.com 11 IR2181(4) (S) & (PbF) 500 V CC Supply Current ( ◊ A) 400 300 M ax. 500 V CC Supply Current ( ◊ A) 400 300 M ax. 200 Typ. 200 100 0 Typ. 100 Mi n. Mi n. 0 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 14A. VCC Supply Current vs. VCC Temperature VCC Supply Voltage (V) Figure 14B. VCC Supply Current vs. VCC Supply Voltage Logic "1" Input Bias Current ( ◊ A) 100 80 60 40 20 0 -50 M ax. Typ. Logic "1" Input Bias Current ( ◊ A) 120 120 100 80 60 40 20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage M ax. Typ. -25 0 25 50 75 100 125 Temperature (oC) Figure 15A. Logic "1" Input Bias Current vs. Temperature 12 www.irf.com IR2181(4) (S) & (PbF) Logic "0" Input Bias Current ( ◊ A) 4 3 2 M ax. Logic "0" Input Bias Current ( ◊ A) -25 0 25 50 75 100 125 5 5 4 3 2 M ax. 1 0 -50 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 16B. Logic "0" Input Bias Current vs. Supply Voltage Temperature (oC) Figure 16A. Logic "0" Input Bias Current vs. Temperature V CC and V BS UV Threshold (+) (V) V CC and V BS UVThreshold (-) (V) 12 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 M ax. Typ. Mi n. 12 11 10 M ax. 9 Typ. 8 Mi n. 7 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature Temperature (oC) Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature www.irf.com 13 IR2181(4) (S) & (PbF) 5 Output Source Current (A) 4 3 Typ. 5 Output Source Current (A) -25 0 25 50 75 100 125 4 3 2 Typ. 2 1 0 -50 Mi n. 1 Mi n. 0 10 12 14 16 18 20 Temperature (oC) Figure 19A. Output Source Current vs. Temperature Supply Voltage (V) Figure 19B. Output Source Current vs. Supply Voltage 5.0 Output Sink Current (A) 4.0 3.0 2.0 Mi n. 5 Output Sink Current (A) -25 0 25 50 75 100 125 4 3 2 1 0 10 12 14 16 18 20 Temperature (oC) Figure 20A. Output Sink Current vs. Temperature Supply Voltage (V) Figure 20B. Output Sink Current vs. Supply Voltage Typ. Typ. Mi n. 1.0 -50 14 www.irf.com IR2181(4) (S) & (PbF) 140 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 140 120 Temperature o( C) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v o Temprature (C) Figure 21. IR2181 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V Fi u re 22. I 2181 vs . Fre q u e n cy (I FB C 30), g R R R gate =22 Ω, V C C =15V 140 120 o Temperature ( C) 140 120 Temperature oC) ( 100 80 60 40 20 1 10 100 1000 1 10 100 140v 70v 0v 100 140v 80 60 40 20 Frequency (KHz) 70v 0v 1000 Frequency (KHz) Fi u re 23. I 2181 vs . Fre q u e n cy (I FB C 40), g R R R gate =15 Ω, V C C =15V Fi u re 24. I 2181 vs . Fre q u e n cy (I FP E50), g R R R gate =10 Ω, V C C =15V www.irf.com 15 IR2181(4) (S) & (PbF) 140 o Temperature ( C) 140 120 100 80 60 40 20 1 10 100 1000 1 10 100 1000 Frequency (KHz) 140v 70v 0v 120 Temperature oC) ( 100 80 60 40 20 Frequency (KHz) 140v 70v 0v Fi u re 25. I 21814 vs . Fre q u e n cy (I FB C 20), g R R R gate =33 Ω , V C C =15V Fi u re 26. I 21814 vs . Fre q u e n cy (I FB C 30), g R R R gate =22 Ω, V C C =15V 140 120 o Temperature (C) o Temperature ( C) 140 120 100 80 60 40 20 1 10 100 1000 1 10 100 140v 70v 100 80 60 40 20 Frequency (KHz) 140v 70v 0v 0v 1000 Frequency (KHz) Fi u re 27. I 21814 vs . Fre q u e n cy (I FB C 40), g R R R gate =15 Ω, V C C =15V Fi u re 28. I 21814 vs . Fre q u e n cy (I FP E50), g R R R g ate =10 Ω , V C C =15V 16 www.irf.com IR2181(4) (S) & (PbF) 140 120 o Temperature ( C) 140 120 Temperature oC) ( 140v 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 100 70v 80 60 40 20 1 10 100 0v 1000 Frequency (KHz) Fi u re 29. I 2181s vs . Fre q u e n cy (I FB C 20), g R R R gate =33 Ω , V C C =15V Fi u re 30. I 2181s vs . Fre q u e n cy (I FB C 30), g R R R gate =22 Ω , V C C =15V 140 120 o Temperature ( C) 140v 70v 140 120 140V 70V 0V 0v o Tempreture ( C) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Fi u re 31. I 2181s vs . Fre q u e n cy (I FB C 40), g R R R gate =15 Ω, V C C =15V Fi u re 32. I 2181s vs . Fre q u e n cy (I FP E50), g R R R gate =10 Ω, V C C =15V www.irf.com 17 IR2181(4) (S) & (PbF) 140 120 o Temperature ( C) o Temperature ( C) 140 120 100 80 60 40 20 140v 70v 0v 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 1 10 100 1000 Frequency (KHz) Fi u re 33. I 21814s vs . Fre q u e n cy (I FB C 20), g R R R gate =33 Ω , V C C =15V Fi u re 34. I 21814s vs . Fre q u e n cy (I FB C 30), g R R R gate =22 Ω , V C C =15V 140 120 Temperature oC) ( Temperature oC) ( 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 140 120 100 80 60 40 20 1 10 100 140v 70v 0v 1000 Frequency (KHz) Fi u re 35. I 21814s vs . Fre q u e n cy (I FB C 40), g R R R gate =15 Ω, V C C =15V Fi u re 36. I 21814s vs . Fre q u e n cy (I FP E50), g R R R gate =10 Ω, V C C =15V 18 www.irf.com IR2181(4) (S) & (PbF) Case outlines 8-Lead PDIP D A 5 B FOOTPRINT 8X 0.72 [.028] 01-6014 01-3003 01 (MS-001AB) DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC www.irf.com 01-6027 01-0021 11 (MS-012AA) 19 IR2181(4) (S) & (PbF) 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14-Lead SOIC (narrow body) 20 01-6019 01-3063 00 (MS-012AB) www.irf.com IR2181(4) (S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2181 order IR2181 8-Lead SOIC IR2181S order IR2181S 14-Lead PDIP IR21814 order IR21814 14-Lead SOIC IR21814 order IR21814S Leadfree Part 8-Lead PDIP IR2181 order IR2181PbF 8-Lead SOIC IR2181S order IR2181SPbF 14-Lead PDIP IR21814 order IR21814PbF 14-Lead SOIC IR21814 order IR21814SPbF Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/15/2004 www.irf.com 21
IR2181PBF
物料型号:IR2181(4)(S)&(PbF)

器件简介:IR2181(4)(S)&(PbF) 是由International Rectifier生产的高电压、高速功率MOSFET和IGBT驱动器,具有独立的高侧和低侧参考输出通道。

采用专有的HVIC和抗锁定CMOS技术,实现坚固的单片结构。

逻辑输入兼容标准CMOS或LSTTL输出,低至3.3V逻辑。

输出驱动器具有高脉冲电流缓冲级,旨在最小化驱动交叉导通。

浮动通道可用于驱动高侧配置中的N沟道功率MOSFET或IGBT,可操作高达600V。


引脚分配: - HIN/LIN:高侧/低侧门驱动输出逻辑输入,与IR2181/IR21814同步。

- VSS:逻辑地(仅IR21814)。

- VB:高侧浮动供电。

- HO/LO:高侧/低侧门驱动输出。

- Vs:高侧浮动供电返回。

- Vcc:低侧和逻辑固定供电。

- COM:低侧返回。


参数特性: - 浮动通道设计用于自举操作,可完全操作至+600V。

- 耐负瞬态电压,差分电压dv/dt免疫。

- 门驱动供电范围从10至20V。

- 两个通道均具有欠压锁定。

- 与3.3V和5V输入逻辑兼容。

- 两个通道的匹配传播延迟。

- 逻辑和电源地±5V偏移。


功能详解: - IR2181(4)(S)&(PbF) 驱动器专为高电压应用设计,具有最小驱动交叉导通和高脉冲电流缓冲级。

- 浮动通道可以用于高侧N沟道功率MOSFET或IGBT的驱动,操作高达600V。

- 设计用于标准CMOS或LSTTL输出,逻辑输入兼容低至3.3V。


应用信息: - 该器件适用于需要高电压驱动的应用,如电源转换、电机控制和工业控制系统。


封装信息: - 提供8引脚PDIP、8引脚SOIC、14引脚PDIP和14引脚SOIC封装。

- 也提供无铅版本,标记为"PbF"。
IR2181PBF 价格&库存

很抱歉,暂时无法提供与“IR2181PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货