0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR21834

IR21834

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR21834 - HALF-BRIDGE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR21834 数据手册
Data Sheet No. PD60173 rev.G IR2183(4)(S) & (PbF) Features HALF-BRIDGE DRIVER Packages 8-Lead PDIP IR2183 14-Lead PDIP IR21834 • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V and 5V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Output source/sink current capability 1.4A/1.8A Also available LEAD-FREE (PbF) 8-Lead SOIC IR2183S 14-Lead SOIC IR21834S Description The IR2183(4)(S) are high voltage, Crosshigh speed power MOSFET and IGBT Input conduction Part Dead-Time Ground Pins Ton/Toff logic prevention drivers with dependent high and low logic side referenced output channels. Pro2181 COM HIN/LIN no none 180/220 ns prietary HVIC and latch immune 21814 VSS/COM 2183 Internal 500ns COM CMOS technologies enable ruggeHIN/LIN yes 180/220 ns 21834 Program 0.4 ~ 5 us VSS/COM dized monolithic construction. The 2184 Internal 500ns COM IN/SD yes 680/270 ns logic input is compatible with standard 21844 Program 0.4 ~ 5 us VSS/COM CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. IR2181/IR2183/IR2184 Feature Comparison Typical Connection up to 600V VCC VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM IR2183 HO VCC HIN LIN VCC HIN LIN DT VSS RDT VSS COM LO VB VS up to 600V IR21834 TO LOAD (Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2183(4)(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO DT VIN VSS dVS/dt PD Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Programmable dead-time pin voltage (IR21834 only) Logic input voltage (HIN & LIN ) Logic ground (IR21834 only) Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) Min. -0.3 VB - 25 VS - 0.3 -0.3 -0.3 VSS - 0.3 VSS - 0.3 VCC - 25 — — — — — — — — — — -50 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VSS + 10 VCC + 0.3 50 1.0 0.625 1.6 1.0 125 200 75 120 150 150 300 Units V V/ns W RthJA Thermal resistance, junction to ambient (8-lead PDIP) (8-lead SOIC) (14-lead PDIP) (14-lead SOIC) °C/W TJ TS TL Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN DT VSS Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage (HIN & LIN ) Programmable dead-time pin voltage (IR21834 only) Logic ground (IR21834 only) Min. VS + 10 Note 1 VS 10 0 VSS VSS -5 Max. VS + 20 600 VB 20 VCC VSS + 5 VCC 5 Units V TA Ambient temperature -40 125 °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2183(4)(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified. Symbol ton toff MT tr tf DT MDT Definition Turn-on propagation delay Turn-off propagation delay Delay matching | ton - toff Turn-on rise time Turn-off fall time Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO) Deadtime matching = | DTLO-HO - DTHO-LO | Min. — — Typ. 180 220 0 40 20 400 5 0 0 Max. Units Test Conditions 270 330 35 60 35 520 6 50 600 µsec nsec nsec VS = 0V VS = 0V or 600V VS = 0V VS = 0V RDT= 0 RDT = 200k (IR21834) RDT=0 RDT = 200k (IR21834) | — — — 280 4 — — Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, DT= V SS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads: HIN and LIN. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage for HIN & logic “0” for LIN Logic “0” input voltage for HIN & logic “1” for LIN High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.7 — — — — 20 0.4 — — 8.0 7.4 0.3 1.4 1.8 — — — — — 60 1.0 5 1 8.9 8.2 0.7 1.9 2.3 — 0.8 1.2 0.1 50 150 1.6 20 2 9.8 9.0 — — — A VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs µA µA mA V VCC = 10V to 20V VCC = 10V to 20V I O = 0A I O = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V HIN = 5V, LIN = 0V HIN = 0V, LIN = 5V V www.irf.com 3 IR2183(4)(S) & (PbF) Functional Block Diagrams VB 2183 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC +5V LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS VB 21834 HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER PULSE GENERATOR UV DETECT R PULSE FILTER R S Q HO VS DT +5V DEADTIME & SHOOT-THROUGH PREVENTION UV DETECT VCC LO LIN VSS/COM LEVEL SHIFT DELAY COM VSS 4 www.irf.com IR2183(4)(S) & (PbF) Lead Definitions Symbol Description HIN LIN DT VSS VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase (referenced to COM for IR2183 and VSS for IR21834) Logic input for low side gate driver output (LO), out of phase (referenced to COM for IR2183 and VSS for IR21834) Programmable dead-time lead, referenced to VSS. (IR21834 only) Logic Ground (21834 only) High side floating supply High side gate driver output High side floating supply return Low side and logic fixed supply Low side gate driver output Low side return Lead Assignments 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 1 2 3 4 HIN LIN COM LO VB HO VS VCC 8 7 6 5 8-Lead PDIP 8-Lead SOIC IR2183 1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS IR2183S 14 13 12 11 10 9 8 1 2 3 4 5 6 7 HIN LIN VSS DT COM LO VCC VB HO VS 14 13 12 11 10 9 8 14-Lead PDIP 14-Lead SOIC IR21834 www.irf.com IR21834S 5 IR2183(4)(S) & (PbF) LIN HIN 50% 50% LIN ton tr 90% toff 90% tf HO LO LO 10% 10% Figure 1. Input/Output Timing Diagram 50% 50% HIN ton tr 90% toff 90% tf HO 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% 90% HO LO DTLO-HO 10% DT HO-LO 90% 10% MDT= DTLO-HO - DT HO-LO Figure 3. Deadtime Waveform Definitions 6 www.irf.com IR2183(4)(S) & (PbF) Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 500 400 300 M ax. 500 400 M ax. 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 4B. Turn-on Propagation Delay vs. Supply Voltage Typ. 200 Typ. 100 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 4A. Turn-on Propagation Delay vs. Temperature 600 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 200 M ax. 600 500 400 300 200 100 0 10 12 14 16 18 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage M ax. Typ. Typ. 100 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 5A. Turn-off Propagation Delay vs. Temperature www.irf.com 7 IR2183(4)(S) & (PbF) 120 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 100 80 60 40 20 M ax. Typ. 120 100 80 60 40 20 0 -25 0 25 50 o M ax. Typ. 0 -50 75 100 125 10 12 14 16 18 20 Temperature ( C) Figure 6A. Turn-on Rise Time vs. Temperature Supply Voltage (V) Figure 6B. Turn-on Rise Time vs. Supply Voltage 80 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 60 40 M ax. 80 60 M ax. 40 Typ. 20 0 -50 Typ 20 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 7A. Turn-off Fall Time vs. Temperature Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage 8 www.irf.com IR2183(4)(S) & (PbF) 1100 900 Deaduime (ns) Deadtime (ns) 700 M ax. 1100 900 700 M ax. 500 300 Typ. Mi n. 500 300 100 Typ. Mi n. 100 -50 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) Figure 8A. Deadtime vs. Temperature Supply Voltage (v) Figure 8B. Deadtime vs. Supply Voltage 7 5 4 3 2 1 0 0 50 100 RDT (K° ) Figure 8C. Deadtime vs. RDT 150 200 Typ. Mi n. 6 Logic "1" Input Voltage (V) M ax. 6 Deadtime ( ° s) 5 4 3 2 1 0 -50 Mi n. -25 0 25 50 75 100 125 Temperature (oC) Figure 9A. Logic "1" Input Voltage vs. Temperature www.irf.com 9 IR2183(4)(S) & (PbF) 6 Logic "1" Input Voltage (V) 6 Logic "0" Input Voltage (V) 12 14 16 18 20 5 4 3 2 1 0 10 Supply Voltage (V) Figure 9B. Logic "1" Input Voltage vs. Supply Voltage Mi n. 5 4 3 2 1 0 -50 M ax. -25 0 25 50 o 75 100 125 Temperature ( C) Figure 10A. Logic "0" Input Voltage vs. Temperature 6 Logic "0" Input Voltage (V) High Level Output (V) 5 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 10B. Logic "0" Input Voltage vs. Supply Voltage M ax. 5 4 3 2 1 0 -50 M ax. -25 0 25 50 o 75 100 125 Temperature ( C) Figure 11A. High Level Output vs. Temperature 10 www.irf.com IR2183(4)(S) & (PbF) 5 High Level Output (V) Low Level Output (V) 4 3 2 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 11B. High Level Output vs. Supply Voltage M ax. 0.5 0.4 0.3 0.2 0.1 M ax. 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 12A. Low Level Output vs. Temperature Offset Supply Leakage Current ( Low Level Output (V) 0.4 0.3 0.2 0.1 0.0 10 12 14 16 18 20 Supply Voltage (V) Figure 12B. Low Level Output vs. Supply Voltage M ax. A) 0.5 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 13A. Offset Supply Leakage Current vs. Temperature www.irf.com 11 IR2183(4)(S) & (PbF) 500 V BS Supply Current ( A) 400 300 200 100 M ax. A) 250 200 150 100 50 0 -50 M ax. Offset Supply Leakage Current ( Typ. Mi n. 0 100 200 300 400 500 600 -25 0 25 50 75 100 125 VB Boost Voltage (V) Figure 13B. Offset Supply Leakage Current vs. VB Boost Voltage Temperature (oC) Figure 14A. VBS Supply Current vs. Temperature 250 V CC Supply Current (mA) V BS Supply Current ( A) 200 150 100 50 0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 14B. VBS Supply Current vs. VBS Floating Supply Voltage M ax. 5 4 3 2 1 M ax. Typ. Typ. Mi n. Mi n. 0 -50 -25 0 25 50 ( oC) 75 100 125 Temperature Figure 15A. V CC Supply Current vs. Tem perature 12 www.irf.com IR2183(4)(S) & (PbF) V CC Supply Current (mA) Logic "1" Input Bias Current ( 4 3 2 1 0 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 15B. V CC Supply Current vs. V CC Supply Voltage A) 5 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 M ax. Typ. Temperature (oC) Figure 16A. Logic "1" Input Bias Current vs. Temperature A) 120 100 80 60 40 20 0 10 12 14 16 18 20 Supply Voltage (V) Figure 16B. Logic "1" Input Bias Current vs. Supply Voltage M ax. Logic "0" Input Bias Current ( A) Typ. 5 4 3 2 M ax. Logic "1" Input Bias Current ( 1 0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Logic "0" Input Bias Current vs. Temperature www.irf.com 13 IR2183(4)(S) & (PbF) A) V CC and V BS UV Threshold (+) (V) 5 4 3 2 M ax. 12 11 10 9 8 7 6 -50 M ax. Typ. Mi n. Logic "0" Input Bias Current ( 1 0 10 12 14 16 18 20 Supply Voltage (V) Figure 17B. Logic "0" Input Bias Current vs. Supply Voltage -25 0 25 50 75 100 125 Temperature (oC) Figure 18. VCC and VBS Undervoltage Threshold (+) vs. Temperature 12 V CC and V BS UVThreshold (-) (V) Output Source Current (A) 11 10 M ax. 5 4 3 Typ. 9 Typ. 8 Mi n. 2 1 0 -50 Mi n. 7 6 -50 -25 0 25 50 75 100 125 -25 0 25 50 75 100 125 Temperature (oC) Figure 19. VCC and VBS Undervoltage Threshold (-) vs. Temperature Temperature (oC) Figure 20A. Output Source Current vs. Temperature 14 www.irf.com IR2183(4)(S) & (PbF) 5 Output Source Current (A) 4 3 2 Typ. 5.0 Output Sink Current (A) 4.0 3.0 2.0 Mi n. Typ. 1 Mi n. 0 10 12 14 16 18 20 Supply Voltage (V) Figure 20B. Output Source Current vs. Supply Voltage 1.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 21A. Output Sink Current vs. Temperature 5 Output Sink Current (A) 4 o Temprature ( C) 140 120 100 80 60 40 20 10 12 14 16 18 20 140v 70v 0v 3 2 1 0 Supply Voltage (V) Figure 21B. Output Sink Current vs. Supply Voltage Typ. Mi n. 1 10 100 1000 Frequency (KHz) Figure 22. IR2183 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com 15 IR2183(4)(S) & (PbF) 140 120 o Temperature ( C) o Temperature ( C) 140 120 100 140v 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 80 60 40 20 1 10 100 70v 0v 1000 Frequency (KHz) Figure 23. IR2183 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 24. IR2183 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 o Temperature ( C) 140v 70v 0v 140 120 o Temperature ( C) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v Figure 25. IR2183 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V Figure 26. IR21834 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 16 www.irf.com IR2183(4)(S) & (PbF) 140 120 o Temperature ( C) o Temperature ( C) 140 120 100 80 60 40 20 140v 70v 0v 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v 1 10 100 1000 Frequency (KHz) Figure 27. IR21834 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 28. IR21834 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 Temperature oC) ( 100 80 60 40 20 1 10 100 140v 140 120 o Temperature ( C) 70v 0v 100 80 60 40 20 140v 70v 0v 1000 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 29. IR21834 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V Figure 30. IR2183s vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com 17 IR2183(4)(S) & (PbF) 140 120 o Temperature ( C) o Temperature ( C) 140v 140 120 140v 70v 0v 100 80 60 40 20 1 10 100 100 80 60 40 20 70v 0v 1000 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 31. IR2183s vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 32. IR2183s vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 120 o Tempreture ( C) 140V 70V 0V 140 120 o Temperature ( C) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 100 80 60 40 20 1 10 100 1000 Frequency (KHz) 140v 70v 0v Figure 33. IR2183s vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V Figure 34. IR21834s vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 18 www.irf.com IR2183(4)(S) & (PbF) 140 120 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 1000 140v 70v 0v o Temperature ( C) 100 80 60 40 20 Frequency (KHz) 140v 70v 0v 1 10 100 1000 Frequency (KHz) Fi u re 36. I 21834s vs . Fre q u e n cy (I FB C 40), g R R R gate =15 Ω , V C C =15V Figure 35. IR21834s vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140 120 o Temperature ( C) 140v 70v 0v 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Fi u re 37. I 21834s vs . Fre q u e n cy (I FP E50), g R R R gate =10 Ω , V C C =15V www.irf.com 19 IR2183(4)(S) & (PbF) Case outlines 8-Lead PDIP 01-6014 01-3003 01 (MS-001AB) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] NOTES: A1 CAB 8X L 7 8X c 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8-Lead SOIC 20 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2183(4)(S) & (PbF) 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 14-Lead SOIC (narrow body) 01-6019 01-3063 00 (MS-012AB) www.irf.com 21 IR2183(4)(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2183 order IR2183 8-Lead SOIC IR2183S order IR2183S 14-Lead PDIP IR21834 order IR21834 14-Lead SOIC IR21834 order IR21834S Leadfree Part 8-Lead PDIP IR2183 order IR2183PbF 8-Lead SOIC IR2183S order IR2183SPbF 14-Lead PDIP IR21834 order IR21834PbF 14-Lead SOIC IR21834 order IR21834SPbF Thisproduct has been designed and qualified for the industrial market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/15/2004 22 www.irf.com
IR21834 价格&库存

很抱歉,暂时无法提供与“IR21834”相匹配的价格&库存,您可以联系我们找货

免费人工找货