0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2301SPbF

IR2301SPbF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IR2301SPbF - HIGH AND LOW SIDE DRIVER - International Rectifier

  • 数据手册
  • 价格&库存
IR2301SPbF 数据手册
Data Sheet No. PD60201 Rev.D IR2301(S) & (PbF) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs Also available LEAD-FREE (PbF) Packages 8 Lead PDIP IR2301 8 Lead SOIC IR2301S Description 2106/2301//2108//2109/2302/2304 Feature Comparison The IR2301(S) are high voltage, high speed CrossInput conduction power MOSFET and IGBT drivers with indepenDead-Time Ground Pins Part prevention logic dent high and low side referenced output logic 2106/2301 channels. Proprietary HVIC and latch immune COM HIN/LIN no none 21064 VSS/COM CMOS technologies enable ruggedized mono2108 Internal 540ns COM HIN/LIN yes lithic construction. The logic input is compatible Programmable 0.54~5 µs 21084 VSS/COM with standard CMOS or LSTTL output, down to 2109/2302 Internal 540ns COM IN/SD yes 3.3V logic. The output drivers feature a high Programmable 0.54~5 µs 21094 VSS/COM pulse current buffer stage designed for minimum yes Internal 100ns HIN/LIN COM 2304 driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V (Refer to Lead Assignments for correct pin configuration). This/ These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. VCC VCC HIN LIN VB HO VS LO TO LOAD HIN LIN COM IR2301 www.irf.com 1 IR2301(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL Definition High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC) Min. -0.3 V B - 25 VS - 0.3 -0.3 -0.3 COM - 0.3 — — — — — — -50 — Max. 625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300 Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB VS VHO VCC VLO VIN TA Definition High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature Min. VS + 5 Note 1 VS 5 0 COM -40 Max. VS + 20 600 VB 20 VCC VCC 150 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2301(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C. Symbol ton toff MT tr tf Definition Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time Min. — — — — — Typ. 220 200 0 130 50 Max. Units Test Conditions 300 280 50 220 80 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO- Definition Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current Min. Typ. Max. Units Test Conditions 2.9 — — — — 20 50 — — 3.3 3 0.1 120 250 — — 0.8 0.3 — 60 120 5 — 4.1 3.8 0.3 200 350 — 0.8 1.4 0.6 50 100 190 20 2 5 4.7 — — — mA VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs µA V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 5V VIN = 0V V www.irf.com 3 IR2301(S) & (PbF) Functional Block Diagrams VB UV DETECT R HV LEVEL SHIFTER PULSE GENERATOR PULSE FILTER R S Q HO HIN VSS/COM LEVEL SHIFT VS VCC UV DETECT LO LIN VSS/COM LEVEL SHIFT DELAY COM Lead Definitions Symbol Description HIN LIN VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), in phase High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return 4 www.irf.com IR2301(S) & (PbF) Lead Assignments 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 1 2 3 4 VCC HIN LIN COM VB HO VS LO 8 7 6 5 8 Lead PDIP 8 Lead SOIC IR2301 IR2301S HIN LIN HIN LIN ton 50% 50% tr 90% toff 90% tf HO LO Figure 1. Input/Output Timing Diagram HO LO 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% LO HO 10% MT 90% MT LO HO Figure 3. Delay Matching Waveform Definitions www.irf.com 5 IR2301(S) & (PbF) 500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 400 300 M ax. 800 700 M ax. 600 500 400 Typ. 200 Typ. 300 200 100 100 0 -50 -25 0 25 50 o 75 100 125 5 10 15 20 ) Tem perature ( C Figure 4A. Turn-on Propagation Delay vs. Temperature Supply Voltage (V) Figure 4B. Turn-on Propagation Delay vs. Supply Voltage 600 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 M ax. 700 600 M ax. 500 400 300 200 100 200 100 Typ. Typ. 0 -50 -25 0 25 50 o 75 100 125 5 10 15 20 ) Tem perature ( C Figure 5A. Turn-off Propagation Delay vs. Temperature Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage 6 www.irf.com IR2301(S) & (PbF) 500 400 300 200 100 Typ. 700 600 Turn-on Rise Time (ns) Turn-on Rise Time (ns) M ax. 500 400 300 200 100 0 Typ. M ax. 0 -50 -25 0 25 50 o 75 100 125 5 10 15 20 Tem perature ( C ) Figure 6A. Turn-on Rise Time vs. Temperature Supply Voltage (V) Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 200 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 150 150 M ax. 100 M ax. 100 Typ. 50 Typ. 50 0 -50 0 -25 0 25 50 o 75 100 125 5 10 15 20 ) Tem perature ( C Figure 7A. Turn-off Fall Time vs. Temperature Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage www.irf.com 7 IR2301(S) & (PbF) 6 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) -25 0 25 50 o 6 5 4 M ax. 5 4 M ax. 3 2 1 0 -50 3 2 1 0 75 100 125 5 10 15 20 ) Tem perature ( C Figure 8A. Logic “1” Input Voltage vs. Temperature Supply Voltage (V) Figure 8B. Logic “1” Input Voltage vs. Supply Voltage 6 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 6 5 4 3 2 1 0 Mi n. 5 4 3 2 1 0 -50 Mi n. -25 0 25 50 75 100 125 5 10 15 20 ) Tem perature (oC Figure 9A. Logic “0” Input Voltage vs. Temperature Supply Voltage (V) Figure 9B. Logic “0” Input Voltage vs. Supply Voltage 8 www.irf.com IR2301(S) & (PbF) 4 High Level Output Voltage (V) High Level Output Voltage (V) 6 5 M ax. 3 4 3 2 1 0 2 M ax . Typ. 1 Typ. 0 -50 -25 0 25 50 75 100 125 5 10 15 20 ) Tem perature (oC Figure 10A. High Level Output Voltage vs. Temperature Supply Voltage (V) Figure 10B. High Level Output Voltage vs. Supply Voltage 2.0 Low Level Output Voltage (V) Low Level Output Voltage (V) 2.0 1.5 1.5 M ax. 1.0 1.0 0.5 M ax. 0.5 Typ. Typ. 0.0 -50 0.0 -25 0 25 50 o 75 100 125 5 10 15 20 ) Tem perature ( C Figure 11A. Low Level Output Voltage vs. Temperature Supply Voltage (V) Figure 11B. Low Level Output Voltage vs. Supply Voltage www.irf.com 9 IR2301(S) & (PbF) Offset Supply Leakage Current ( A) 500 Offset Supply Leakage Current ( A) 400 300 200 100 M ax. 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 0 100 200 300 400 500 600 Tem perature (oC ) Figure 12A. Offset Supply Leakage Current vs. Temperature Offset Supply Voltage (V) Figure 12B. Offset Supply Leakage Current vs. Supply Voltage 200 Quiescent V BS Supply Current ( A) 200 Quiescent VBS Supply Current ( A) 150 150 100 M ax. 100 50 Typ. 50 M ax. Typ. Mi n. Mi n. 0 -50 0 -25 0 25 50 75 100 125 5 10 15 20 Tem perature (oC) Figure 13A. Quiescent VBS Supply Current vs. Temperature VBS Supply Voltage (V) Figure 13B. Quiescent VBS Supply Current vs. Supply Voltage 10 www.irf.com IR2301(S) & (PbF) 400 Quiescent VCC Supply Current ( A) 400 Quiescent VCC Supply Current ( A) 300 300 200 M ax. 200 Typ. 100 Mi n. 100 Ma x. Typ. Mi n. 0 -50 0 -25 0 25 50 75 100 125 5 10 15 20 Tem perature (oC ) Figure 14A. Quiescent VCC Supply Current vs. Temperature VCC Supply Voltage (V) Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage 60 Logic "1" Input Bias Current ( A) 50 40 30 20 10 0 -50 M ax. Typ. 50 Logic "1" Input Bias Current ( A) 0 25 50 o 40 30 M ax. 20 10 0 Typ. -25 75 100 125 5 10 15 20 ) Tem perature ( C Figure 15A. Logic “1” Input Bias Current vs. Temperature Supply Voltage (V) Figure 15B. Logic “1” Input Bias Current vs. Supply Voltage www.irf.com 11 IR2301(S) & (PbF) 5 Logic "0" Input Bias Current ( A) 5 Logic "0" Input Bias Current ( A) -25 0 25 50 C ) 75 100 125 4 3 M ax. 4 3 Ma x. 2 1 0 -50 2 1 0 5 10 15 20 Tem perature (o Supply Voltage (V) Figure 16B. Logic “0” Input Bias Currentt vs. Supply Voltage Figure 16A. Logic “0” Input Bias Current vs. Temperature V CC and VBS Undervoltage Threshold (+) (V) 6 V CC and VBS Undervoltage Threshold (-) (V) 6 M ax. 5 Typ. 5 M ax. Typ. 4 Mi n. 4 Mi n. 3 3 2 -50 -25 0 25 50 o 75 100 125 2 -50 -25 0 25 50 o 75 100 125 ) Tem perature ( C Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature ) Tem perature ( C Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature 12 www.irf.com IR2301(S) & (PbF) 400 Output Source Current (mA) Output Source Current (mA) 400 300 Typ. 300 200 200 Mi n. 100 100 Typ. Mi n. 0 -50 0 -25 0 25 50 75 100 125 5 10 15 20 Supply Voltage (V) Figure 19B. Output Source Current vs. Supply Voltage Tem perature (oC ) Figure 19A. Output Source Current vs. Temperature 600 Output Sink Current (mA) Output Sink Current (mA) 500 Typ. 600 500 400 300 200 Typ. 400 300 Mi n. 200 100 0 -50 100 Mi n. 0 -25 0 25 50 o 75 100 125 5 10 15 20 ) Tem perature ( C Figure 20A. Output Sink Current vs. Temperature Supply Voltage (V) Figure 20B. Output Sink Current vs. Supply Voltage www.irf.com 13 IR2301(S) & (PbF) 0 Maximum V Negative Offset (V) S Typ. 140 120 Temprature (oC) 100 80 60 40 20 5 10 15 20 140V 70V 0V -2 -4 -6 -8 -10 -12 VBS Floating Supply Voltage (V) 1 10 100 1000 Frequency (KHz) Figure 22. IR2301 vs. Frequency (IRFBC20), Rgate=33Ω , VCC=15V Figure 21. Maximum VS Negative Offset vs. VBS Floating Supply Voltage 140 120 Temperature (oC) Temperature (oC) 140 120 100 140V 100 140V 80 70V 80 60 40 20 1 10 100 70V 0V 60 40 20 1 10 100 0V 1000 1000 Frequency (KHz) Figure 24. IR2301 vs. Frequency (IRFBC40), Rgate=15Ω , VCC=15V Frequency (KHz) Figure 23. IR2301 vs. Frequency (IRFBC30), Rgate=22W, Vcc=15V 14 www.irf.com IR2301(S) & (PbF) 140 120 Temperature (oC) 100 80 60 40 20 1 10 100 140V 70V 140 0V 120 Temperature (oC) 100 80 60 40 20 140V 70V 0V 1000 1 10 100 1000 Frequency (KHz) Figure 25. IR2301 vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V Frequency (KHz) Figure 26. IR2301S vs. Frequency (IRFBC20), Rgate=33Ω , VCC=15V 140 120 Temperature (oC) 140V 140 120 Temperature (oC) 140V 70V 0V 100 80 60 40 20 1 10 100 70V 0V 100 80 60 40 20 1000 1 10 100 1000 Frequency (KHz) Figure 27. IR2301S vs. Frequency (IRFBC30), Rgate=22Ω , VCC=15V Frequency (KHz) Figure 28. IR2301S vs. Frequency (IRFBC40), Rgate=15Ω , VCC=15V www.irf.com 15 IR2301(S) & (PbF) 140 120 Tempreture (oC) 100 80 60 40 20 1 10 140V 70V 0V 100 1000 Frequency (KHz) Figure 29. IR2301S vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V Case Outlines 8 Lead PDIP 01-6014 01-3003 01 (MS-001AB) 16 www.irf.com IR2301(S) & (PbF) D A 5 B FOOTPRINT 8X 0.72 [.028] DIM A b c D INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00 A1 .0040 6 E 8 7 6 5 H 0.25 [.010] A E 6.46 [.255] 1 2 3 4 e e1 H K L 8X 1.78 [.070] .050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8° 1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8° 6X e e1 3X 1.27 [.050] y A C 0.10 [.004] y K x 45° 8X b 0.25 [.010] A1 CAB 8X L 7 8X c NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 8 Lead SOIC 01-6027 01-0021 11 (MS-012AA) www.irf.com 17 IR2301(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? ?XXXX Lot Code (Prod mode - 4 digit SPN code) IR logo Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2301 order IR2301 8-Lead SOIC IR2301S order IR2301S Leadfree Part 8-Lead PDIP R2301 order IR2301PbF 8-Lead SOIC IR2301S order IR2301SPbF This product has been designed and qualified for the Automotive market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 9/7/2004 18 www.irf.com
IR2301SPbF 价格&库存

很抱歉,暂时无法提供与“IR2301SPbF”相匹配的价格&库存,您可以联系我们找货

免费人工找货