Data Sheet No. PD60201 Rev.D
IR2301(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation • • • • • • • •
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs Also available LEAD-FREE (PbF)
Packages
8 Lead PDIP IR2301
8 Lead SOIC IR2301S
Description
2106/2301//2108//2109/2302/2304 Feature Comparison
The IR2301(S) are high voltage, high speed CrossInput conduction power MOSFET and IGBT drivers with indepenDead-Time Ground Pins Part prevention logic dent high and low side referenced output logic 2106/2301 channels. Proprietary HVIC and latch immune COM HIN/LIN no none 21064 VSS/COM CMOS technologies enable ruggedized mono2108 Internal 540ns COM HIN/LIN yes lithic construction. The logic input is compatible Programmable 0.54~5 µs 21084 VSS/COM with standard CMOS or LSTTL output, down to 2109/2302 Internal 540ns COM IN/SD yes 3.3V logic. The output drivers feature a high Programmable 0.54~5 µs 21094 VSS/COM pulse current buffer stage designed for minimum yes Internal 100ns HIN/LIN COM 2304 driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Typical Connection
up to 600V
(Refer to Lead Assignments for correct pin configuration). This/ These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
VCC
VCC
HIN LIN
VB HO VS LO
TO LOAD
HIN LIN COM
IR2301
www.irf.com
1
IR2301(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VLO VIN dVS/dt PD RthJA TJ TS TL
Definition
High side floating absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) (8 lead PDIP) (8 lead SOIC) (8 lead PDIP) (8 lead SOIC)
Min.
-0.3 V B - 25 VS - 0.3 -0.3 -0.3 COM - 0.3 — — — — — — -50 —
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VLO VIN TA
Definition
High side floating supply absolute voltage High side floating supply offset voltage High side floating output voltage Low side and logic fixed supply voltage Low side output voltage Logic input voltage Ambient temperature
Min.
VS + 5 Note 1 VS 5 0 COM -40
Max.
VS + 20 600 VB 20 VCC VCC 150
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2301(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C.
Symbol
ton toff MT tr tf
Definition
Turn-on propagation delay Turn-off propagation delay Delay matching, HS & LS turn-on/off Turn-on rise time Turn-off fall time
Min.
— — — — —
Typ.
220 200 0 130 50
Max. Units Test Conditions
300 280 50 220 80 nsec VS = 0V VS = 0V VS = 0V VS = 0V or 600V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IIN+ IINVCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH IO+ IO-
Definition
Logic “1” input voltage Logic “0” input voltage High level output voltage, VBIAS - VO Low level output voltage, VO Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Logic “1” input bias current Logic “0” input bias current VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative negative going threshold Hysteresis Output high short circuit pulsed current Output low short circuit pulsed current
Min. Typ. Max. Units Test Conditions
2.9 — — — — 20 50 — — 3.3 3 0.1 120 250 — — 0.8 0.3 — 60 120 5 — 4.1 3.8 0.3 200 350 — 0.8 1.4 0.6 50 100 190 20 2 5 4.7 — — — mA VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs µA V VCC = 10V to 20V VCC = 10V to 20V IO = 20 mA IO = 20 mA VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 5V VIN = 0V
V
www.irf.com
3
IR2301(S) & (PbF)
Functional Block Diagrams
VB
UV DETECT R HV LEVEL SHIFTER PULSE GENERATOR PULSE FILTER R S Q
HO
HIN
VSS/COM LEVEL SHIFT
VS
VCC
UV DETECT
LO
LIN
VSS/COM LEVEL SHIFT
DELAY
COM
Lead Definitions
Symbol Description
HIN LIN VB HO VS VCC LO COM Logic input for high side gate driver output (HO), in phase Logic input for low side gate driver output (LO), in phase High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return
4
www.irf.com
IR2301(S) & (PbF)
Lead Assignments
1 2 3 4 VCC HIN LIN COM VB HO VS LO
8
7 6 5
1 2 3 4
VCC HIN LIN COM
VB HO VS LO
8
7 6 5
8 Lead PDIP
8 Lead SOIC
IR2301
IR2301S
HIN LIN
HIN LIN
ton
50%
50%
tr 90%
toff 90%
tf
HO LO
Figure 1. Input/Output Timing Diagram
HO LO
10%
10%
Figure 2. Switching Time Waveform Definitions
HIN LIN
50%
50%
LO
HO
10%
MT 90%
MT
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
5
IR2301(S) & (PbF)
500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 400 300
M ax.
800 700
M ax.
600 500 400
Typ.
200
Typ.
300 200 100
100 0 -50
-25
0
25
50
o
75
100
125
5
10
15
20
) Tem perature ( C
Figure 4A. Turn-on Propagation Delay vs. Temperature
Supply Voltage (V)
Figure 4B. Turn-on Propagation Delay vs. Supply Voltage
600 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300
M ax.
700 600
M ax.
500 400 300 200 100
200 100
Typ.
Typ.
0 -50
-25
0
25
50
o
75
100
125
5
10
15
20
) Tem perature ( C
Figure 5A. Turn-off Propagation Delay vs. Temperature
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay vs. Supply Voltage
6
www.irf.com
IR2301(S) & (PbF)
500 400 300 200 100
Typ.
700 600
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
M ax.
500 400 300 200 100 0
Typ.
M ax.
0 -50
-25
0
25
50
o
75
100
125
5
10
15
20
Tem perature ( C )
Figure 6A. Turn-on Rise Time vs. Temperature
Supply Voltage (V)
Figure 6B. Turn-on Rise Time vs. Supply Voltage
200
200
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
150
150
M ax.
100
M ax.
100
Typ.
50
Typ.
50
0 -50
0 -25 0 25 50
o
75
100
125
5
10
15
20
) Tem perature ( C
Figure 7A. Turn-off Fall Time vs. Temperature
Supply Voltage (V)
Figure 7B. Turn-off Fall Time vs. Supply Voltage
www.irf.com
7
IR2301(S) & (PbF)
6 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) -25 0 25 50
o
6 5 4
M ax.
5 4
M ax.
3 2 1 0 -50
3 2 1 0
75
100
125
5
10
15
20
) Tem perature ( C
Figure 8A. Logic “1” Input Voltage vs. Temperature
Supply Voltage (V)
Figure 8B. Logic “1” Input Voltage vs. Supply Voltage
6 Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
6 5 4 3 2 1 0
Mi n.
5 4 3 2 1 0 -50
Mi n.
-25
0
25
50
75
100
125
5
10
15
20
) Tem perature (oC
Figure 9A. Logic “0” Input Voltage vs. Temperature
Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage vs. Supply Voltage
8
www.irf.com
IR2301(S) & (PbF)
4 High Level Output Voltage (V)
High Level Output Voltage (V)
6 5
M ax.
3
4 3 2 1 0
2
M ax .
Typ.
1
Typ.
0 -50
-25
0
25
50
75
100
125
5
10
15
20
) Tem perature (oC Figure 10A. High Level Output Voltage vs. Temperature
Supply Voltage (V)
Figure 10B. High Level Output Voltage vs. Supply Voltage
2.0 Low Level Output Voltage (V) Low Level Output Voltage (V)
2.0
1.5
1.5
M ax.
1.0
1.0
0.5
M ax.
0.5
Typ.
Typ.
0.0 -50
0.0 -25 0 25 50
o
75
100
125
5
10
15
20
) Tem perature ( C
Figure 11A. Low Level Output Voltage vs. Temperature
Supply Voltage (V)
Figure 11B. Low Level Output Voltage vs. Supply Voltage
www.irf.com
9
IR2301(S) & (PbF)
Offset Supply Leakage Current ( A)
500 Offset Supply Leakage Current ( A) 400 300 200 100
M ax.
500 400 300 200 100
M ax.
0 -50
-25
0
25
50
75
100
125
0 100
200
300
400
500
600
Tem perature (oC )
Figure 12A. Offset Supply Leakage Current vs. Temperature
Offset Supply Voltage (V)
Figure 12B. Offset Supply Leakage Current vs. Supply Voltage
200 Quiescent V BS Supply Current ( A)
200 Quiescent VBS Supply Current ( A)
150
150
100
M ax.
100
50
Typ.
50
M ax. Typ. Mi n.
Mi n.
0 -50
0
-25 0 25 50 75 100 125
5
10
15
20
Tem perature (oC)
Figure 13A. Quiescent VBS Supply Current vs. Temperature
VBS Supply Voltage (V)
Figure 13B. Quiescent VBS Supply Current vs. Supply Voltage
10
www.irf.com
IR2301(S) & (PbF)
400 Quiescent VCC Supply Current ( A)
400 Quiescent VCC Supply Current ( A)
300
300
200
M ax.
200
Typ.
100
Mi n.
100
Ma x. Typ. Mi n.
0 -50
0
-25 0 25 50 75 100 125
5
10
15
20
Tem perature (oC )
Figure 14A. Quiescent VCC Supply Current vs. Temperature
VCC Supply Voltage (V)
Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage
60 Logic "1" Input Bias Current ( A) 50 40 30 20 10 0 -50
M ax. Typ.
50 Logic "1" Input Bias Current ( A) 0 25 50
o
40 30
M ax.
20 10 0
Typ.
-25
75
100
125
5
10
15
20
) Tem perature ( C
Figure 15A. Logic “1” Input Bias Current vs. Temperature
Supply Voltage (V)
Figure 15B. Logic “1” Input Bias Current vs. Supply Voltage
www.irf.com
11
IR2301(S) & (PbF)
5 Logic "0" Input Bias Current ( A)
5 Logic "0" Input Bias Current ( A)
-25 0 25 50 C ) 75 100 125
4 3
M ax.
4 3
Ma x.
2 1 0 -50
2 1 0 5 10 15 20
Tem perature (o
Supply Voltage (V)
Figure 16B. Logic “0” Input Bias Currentt vs. Supply Voltage
Figure 16A. Logic “0” Input Bias Current vs. Temperature
V CC and VBS Undervoltage Threshold (+) (V)
6
V CC and VBS Undervoltage Threshold (-) (V)
6
M ax.
5
Typ.
5
M ax.
Typ.
4
Mi n.
4
Mi n.
3
3
2 -50
-25
0
25
50
o
75
100
125
2 -50
-25
0
25
50
o
75
100
125
) Tem perature ( C
Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature
) Tem perature ( C
Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature
12
www.irf.com
IR2301(S) & (PbF)
400 Output Source Current (mA) Output Source Current (mA)
400
300
Typ.
300
200
200
Mi n.
100
100
Typ. Mi n.
0 -50
0 -25 0 25 50 75 100 125 5 10 15 20 Supply Voltage (V)
Figure 19B. Output Source Current vs. Supply Voltage
Tem perature (oC )
Figure 19A. Output Source Current vs. Temperature
600 Output Sink Current (mA) Output Sink Current (mA) 500
Typ.
600 500 400 300 200
Typ.
400 300
Mi n.
200 100 0 -50
100
Mi n.
0 -25 0 25 50
o
75
100
125
5
10
15
20
) Tem perature ( C
Figure 20A. Output Sink Current vs. Temperature
Supply Voltage (V)
Figure 20B. Output Sink Current vs. Supply Voltage
www.irf.com
13
IR2301(S) & (PbF)
0 Maximum V Negative Offset (V) S
Typ.
140 120 Temprature (oC) 100 80 60 40 20
5 10 15 20
140V 70V 0V
-2 -4 -6 -8 -10 -12 VBS Floating Supply Voltage (V)
1
10
100
1000
Frequency (KHz) Figure 22. IR2301 vs. Frequency (IRFBC20), Rgate=33Ω , VCC=15V
Figure 21. Maximum VS Negative Offset vs. VBS Floating Supply Voltage
140 120 Temperature (oC)
Temperature (oC)
140 120 100
140V
100
140V
80
70V
80 60 40 20 1 10 100
70V 0V
60 40 20 1 10 100
0V
1000
1000
Frequency (KHz) Figure 24. IR2301 vs. Frequency (IRFBC40), Rgate=15Ω , VCC=15V
Frequency (KHz) Figure 23. IR2301 vs. Frequency (IRFBC30), Rgate=22W, Vcc=15V
14
www.irf.com
IR2301(S) & (PbF)
140 120 Temperature (oC) 100 80 60 40 20 1 10 100
140V 70V
140
0V
120 Temperature (oC) 100 80 60 40 20
140V 70V 0V
1000
1
10
100
1000
Frequency (KHz) Figure 25. IR2301 vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V
Frequency (KHz) Figure 26. IR2301S vs. Frequency (IRFBC20), Rgate=33Ω , VCC=15V
140 120 Temperature (oC)
140V
140 120 Temperature (oC)
140V 70V
0V
100 80 60 40 20 1 10 100
70V 0V
100 80 60 40 20
1000
1
10
100
1000
Frequency (KHz) Figure 27. IR2301S vs. Frequency (IRFBC30), Rgate=22Ω , VCC=15V
Frequency (KHz) Figure 28. IR2301S vs. Frequency (IRFBC40), Rgate=15Ω , VCC=15V
www.irf.com
15
IR2301(S) & (PbF)
140 120 Tempreture (oC) 100 80 60 40 20 1 10
140V 70V 0V
100
1000
Frequency (KHz) Figure 29. IR2301S vs. Frequency (IRFPE50), Rgate=10Ω , VCC=15V
Case Outlines
8 Lead PDIP
01-6014 01-3003 01 (MS-001AB)
16
www.irf.com
IR2301(S) & (PbF)
D A 5
B
FOOTPRINT 8X 0.72 [.028]
DIM A b c D
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574
MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
A1 .0040
6 E
8
7
6
5 H 0.25 [.010] A
E
6.46 [.255]
1
2
3
4
e e1 H K L
8X 1.78 [.070]
.050 BASIC .025 BASIC .2284 .0099 .016 0° .2440 .0196 .050 8°
1.27 BASIC 0.635 BASIC 5.80 0.25 0.40 0° 6.20 0.50 1.27 8°
6X
e e1
3X 1.27 [.050]
y
A C 0.10 [.004] y
K x 45°
8X b 0.25 [.010]
A1 CAB
8X L 7
8X c
NOTES: 1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.
8 Lead SOIC
01-6027 01-0021 11 (MS-012AA)
www.irf.com
17
IR2301(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx YWW? ?XXXX
Lot Code (Prod mode - 4 digit SPN code) IR logo
Date code
Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released
Assembly site code Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free) 8-Lead PDIP IR2301 order IR2301 8-Lead SOIC IR2301S order IR2301S Leadfree Part 8-Lead PDIP R2301 order IR2301PbF 8-Lead SOIC IR2301S order IR2301SPbF
This product has been designed and qualified for the Automotive market. Qualification Standards can be found on IR’s Web Site http://www.irf.com Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 9/7/2004
18
www.irf.com
很抱歉,暂时无法提供与“IR2301SPbF”相匹配的价格&库存,您可以联系我们找货
免费人工找货