PD - 95483
AUTOMOTIVE MOSFET
Features
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free
G
IRF1010EZPbF IRF1010EZSPbF IRF1010EZLPbF
HEXFET® Power MOSFET
D
VDSS = 60V RDS(on) = 8.5mΩ
S
Description
Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
ID = 75A
TO-220AB IRF1010EZ
D2Pak IRF1010EZS
TO-262 IRF1010EZL
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (tested) IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (See Fig. 9) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current
Max.
84 60 75 340 140 0.90 ± 20 99 180 See Fig.12a,12b,15,16 -55 to + 175
Units
A
c
Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current
W W/°C V mJ A mJ °C
c
i
d
Repetitive Avalanche Energy Operating Junction and Storage Temperature Range
h
Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw
300 (1.6mm from case ) 10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC RθCS RθJA RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Junction-to-Ambient (PCB Mount, steady state)
Typ.
––– 0.50 ––– –––
Max.
1.11 ––– 62 40
Units
°C/W
j
HEXFET®
is a registered trademark of International Rectifier.
www.irf.com
1
06/29/04
IRF1010EZ/S/LPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
Min. Typ. Max. Units
60 ––– ––– 2.0 200 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.058 ––– 6.8 8.5 ––– 4.0 ––– ––– ––– 20 ––– 250 ––– 200 ––– -200 58 86 19 28 21 32 19 ––– 90 ––– 38 ––– 54 ––– 4.5 ––– 7.5 2810 420 200 1440 320 510 ––– ––– ––– ––– ––– ––– ––– pF V V/°C mΩ V S µA nA nC
Conditions
VGS = 0V, ID = 250µA Reference to 25°C, ID = 1mA VGS = 10V, ID = 51A VDS = VGS, ID = 250µA VDS = 25V, ID = 51A VDS = 60V, VGS = 0V VDS = 60V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 51A VDS = 48V VGS = 10V VDD = 30V ID = 51A RG = 7.95Ω VGS = 10V D Between lead,
f
f f
ns
nH
6mm (0.25in.) from package
G
S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 48V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 41 54 84 A 340 1.3 62 81 V ns nC
Conditions
MOSFET symbol showing the integral reverse
G D
Ã
p-n junction diode. TJ = 25°C, IS = 51A, VGS = 0V TJ = 25°C, IF = 51A, VDD = 30V di/dt = 100A/µs
f
S
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.077mH, RG = 25Ω, IAS = 51A, VGS =10V. Part not recommended for use above this value. ISD ≤ 51A, di/dt ≤ 260A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994.
2
www.irf.com
IRF1010EZ/S/LPbF
10000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
ID, Drain-to-Source Current (A)
1000
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
100
10
4.5V
10
1
20µs PULSE WIDTH Tj = 175°C
1 4.5V 0.1 0.1 1
20µs PULSE WIDTH Tj = 25°C
0.1 0.01 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
100
Gfs, Forward Transconductance (S)
90 80 70 60 50 40 30 20 10 0 T J = 175°C T J = 25°C
ID, Drain-to-Source Current (Α)
100
T J = 175°C
10
1
T J = 25°C
0.1 4 5 6 7 8 9 10
0
20
40
60
80
100
120
140
VGS, Gate-to-Source Voltage (V)
ID,Drain-to-Source Current (A)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance vs. Drain Current
www.irf.com
3
IRF1010EZ/S/LPbF
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
12.0 ID= 51A
VGS, Gate-to-Source Voltage (V)
10.0
VDS= 48V VDS= 30V VDS= 12V
C, Capacitance(pF)
10000
8.0 6.0
Ciss
1000
4.0
Coss Crss
100 1 10 100
2.0
0.0 0 10 20 30 40 50 60
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000.00
10000 OPERATION IN THIS AREA LIMITED BY R DS(on)
100.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
100µsec 1msec
10.00
T J = 175°C
10
1.00
T J = 25°C
1
10msec Tc = 25°C Tj = 175°C Single Pulse 1 10 VDS, Drain-to-Source Voltage (V) 100
VGS = 0V 0.10 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VSD, Source-to-Drain Voltage (V)
0.1
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF1010EZ/S/LPbF
100
RDS(on) , Drain-to-Source On Resistance (Normalized)
2.5
90 80
ID, Drain Current (A)
Limited By Package
ID = 84A VGS = 10V
2.0
70 60 50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (°C)
1.5
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 10. Normalized On-Resistance vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20
0.1
R1 R1 τJ τ1 τ2 R2 R2 R3 R3 τ3 τC τ τ3
0.10 0.05 0.02 0.01
τJ
τ1
τ2
Ri (°C/W) τi (sec) 0.415 0.000246 0.410 0.000898 0.285 0.009546
0.01
Ci= τi /Ri Ci= i/Ri
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001 0.001
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1010EZ/S/LPbF
15V
400
EAS , Single Pulse Avalanche Energy (mJ)
350 300 250 200 150 100 50 0 25 50 75 100
VDS
L
DRIVER
ID TOP 5.7A 9.1A BOTTOM 51A
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy vs. Drain Current
10 V
QGS VG QGD
4.5
VGS(th) Gate threshold Voltage (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175
Charge
ID = 250µA
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
50KΩ 12V .2µF .3µF
D.U.T. VGS
3mA
+ V - DS
T J , Temperature ( °C )
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage vs. Temperature
6
www.irf.com
IRF1010EZ/S/LPbF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses
0.05 0.10
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
100
EAR , Avalanche Energy (mJ)
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 51A
75
50
25
0 25 50 75 100 125 150 175
Starting T J , Junction Temperature (°C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
www.irf.com
7
IRF1010EZ/S/LPbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V DS VGS RG 10V
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
RD
D.U.T.
+
-VDD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF1010EZ/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113) 2.62 (.103)
10.54 (.415) 10.29 (.405)
3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240)
-B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS HEXFET GATE 1LEAD ASSIGNMENTS
IGBTs, CoPACK 1234GATE COLLECTOR EMITTER COLLECTOR
14.09 (.555) 13.47 (.530)
21- GATE DRAIN 32- DRAINSOURCE 3- SOURCE 4 - DRAIN 4- DRAIN 4.06 (.160) 3.55 (.140)
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R
Note: "P" in assembly line position indicates "Lead-Free"
DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C
www.irf.com
9
IRF1010EZ/S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
THIS IS AN IRF530S WIT H L OT CODE 8024 AS S EMBL ED ON WW 02, 2000 IN THE AS S EMBLY LINE "L" Note: "P" in assembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBE R F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L
OR
INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S IT E CODE
10
www.irf.com
IRF1010EZ/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER
DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C
OR
INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S IT E CODE
www.irf.com
11
IRF1010EZ/S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153)
1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
11.60 (.457) 11.40 (.449)
15.42 (.609) 15.22 (.601)
24.30 (.957) 23.90 (.941)
TRL
10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178)
FEED DIRECTION
13.50 (.532) 12.80 (.504)
27.40 (1.079) 23.90 (.941)
4
330.00 (14.173) MAX.
60.00 (2.362) MIN.
NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
30.40 (1.197) MAX.
26.40 (1.039) 24.40 (.961) 3
4
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04
12
www.irf.com