0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF1010ZPBF

IRF1010ZPBF

  • 厂商:

    IRF

  • 封装:

  • 描述:

    IRF1010ZPBF - HEXFET® Power MOSFET - International Rectifier

  • 数据手册
  • 价格&库存
IRF1010ZPBF 数据手册
PD - 95361 AUTOMOTIVE MOSFET IRF1010ZPbF IRF1010ZSPbF IRF1010ZLPbF HEXFET® Power MOSFET D Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free VDSS = 55V RDS(on) = 7.5mΩ G S Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. Description ID = 75A Absolute Maximum Ratings TO-220AB IRF1010Z D2Pak IRF1010ZS Max. 94 66 75 360 140 TO-262 IRF1010ZL Units A Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM ™ PD @TC = 25°C Power Dissipation Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) W W/°C V mJ A mJ d 0.90 ± 20 IAR EAR TJ TSTG Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Ù h 130 180 See Fig.12a, 12b, 15, 16 -55 to + 175 g i °C 300 (1.6mm from case ) 10 lbf in (1.1N m) Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance Parameter RθJC RθCS RθJA RθJA Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient y y Typ. Max. 1.11 ––– 62 40 Units °C/W i i ––– 0.50 ––– ––– Junction-to-Ambient (PCB Mount) www.irf.com j 1 6/3/04 IRF1010ZS/LPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. Typ. Max. Units 55 ––– ––– 2.0 33 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.049 5.8 ––– ––– ––– ––– ––– ––– 63 19 24 18 150 36 92 4.5 7.5 2840 420 250 1630 360 560 ––– ––– 7.5 4.0 ––– 20 250 200 -200 95 ––– ––– ––– ––– ––– ––– ––– nH ––– ––– ––– ––– ––– ––– ––– pF ns nC nA V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A V S µA VDS = VGS, ID = 250µA VDS = 25V, ID = 75A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V ID = 75A VDS = 44V VGS = 10V VDD = 28V ID = 75A RG = 6.8 Ω VGS = 10V e e e Between lead, 6mm (0.25in.) from package and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 44V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 44V f Source-Drain Ratings and Characteristics Parameter IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units ––– ––– ––– ––– ––– ––– ––– ––– 22 15 75 A 360 1.3 33 23 V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C, IF = 75A, VDD = 25V di/dt = 100A/µs Ù e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 2 www.irf.com IRF1010ZS/LPbF 1000 TOP VGS ID, Drain-to-Source Current (A) 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 1000 TOP ID, Drain-to-Source Current (A) 100 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 100 10 4.5V 1 0.1 1 20µs PULSE WIDTH Tj = 25°C 10 100 4.5V 10 0.1 1 20µs PULSE WIDTH Tj = 175°C 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) T J = 25°C T J = 175°C 80 T J = 175°C 100 60 T J = 25°C 40 10 20 VDS = 10V 20µs PULSE WIDTH 0 0 20 40 60 80 1 4.0 5.0 6.0 7.0 VDS = 25V 20µs PULSE WIDTH 8.0 9.0 10.0 11.0 VGS, Gate-to-Source Voltage (V) ID, Drain-to-Source Current (A) Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com 3 IRF1010ZS/LPbF 5000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 20 VGS, Gate-to-Source Voltage (V) ID= 75A VDS= 44V VDS= 28V 4000 16 C, Capacitance (pF) 3000 Ciss 12 2000 8 1000 4 Coss Crss 0 1 10 100 0 0 20 40 60 80 100 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000.0 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100.0 1000 T J = 175°C 100 100µsec 10 1msec 1 Tc = 25°C Tj = 175°C Single Pulse 1 10 10msec 10.0 T J = 25°C 1.0 0.1 0.2 0.6 1.0 1.4 VGS = 0V 1.8 0.1 100 1000 VSD, Source-toDrain Voltage (V) VDS , Drain-toSource Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 4 www.irf.com IRF1010ZS/LPbF 100 RDS(on) , Drain-to-Source On Resistance 2.5 LIMITED BY PACKAGE 80 ID , Drain Current (A) ID = 75A 2.0 VGS = 10V (Normalized) 60 1.5 40 20 1.0 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature 10 Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.01 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1010ZS/LPbF EAS, Single Pulse Avalanche Energy (mJ) 15V 250 TOP 31A 53A 75A ID VDS L DRIVER 200 BOTTOM RG VGS 20V D.U.T IAS tp + V - DD 150 A 0.01Ω 100 Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp 50 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12b. Unclamped Inductive Waveforms QG Fig 12c. Maximum Avalanche Energy Vs. Drain Current 10 V QGS QGD VGS(th) Gate threshold Voltage (V) 4.0 VG 3.0 ID = 250µA Charge Fig 13a. Basic Gate Charge Waveform 2.0 L 0 DUT 1K VCC 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit Fig 14. Threshold Voltage Vs. Temperature 6 www.irf.com IRF1010ZS/LPbF 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 100 0.01 0.05 0.10 10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 140 120 EAR , Avalanche Energy (mJ) TOP Single Pulse BOTTOM 10% Duty Cycle ID = 75A 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com 7 IRF1010ZS/LPbF Driver Gate Drive D.U.T + P.W. Period D= P.W. Period VGS=10V ƒ + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt ‚ - - „ +  RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD VDD + - Re-Applied Voltage Inductor Curent Body Diode Forward Drop Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs RD VDS VGS RG 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % D.U.T. + -VDD Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1010ZS/LPbF TO-220AB Package Outline 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) Dimensions are shown in millimeters (inches) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048) 2.87 (.113) 2.62 (.103) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 1- GATE- DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN LEAD ASSIGNMENTS HEXFET 14.09 (.555) 13.47 (.530) 4- DRAIN 4.06 (.160) 3.55 (.140) 4- COLLECTOR 3X 3X 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) M BAM 3X 0.55 (.022) 0.46 (.018) 0.36 (.014) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 2.92 (.115) 2.64 (.104) 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C www.irf.com 9 IRF1010ZS/LPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information (Lead-Free) T H IS IS AN IR F 5 3 0 S W IT H L OT COD E 8 0 2 4 AS S E M B L E D O N W W 0 2 , 2 0 0 0 IN T H E AS S E M B L Y L IN E "L " N ote: "P " in as s em bly line pos ition indicates "L ead-F r ee" I N T E R N AT IO N AL R E C T IF IE R L OGO AS S E M B L Y L O T CO D E P AR T N U M B E R F 530S D AT E C O D E Y E AR 0 = 2 0 0 0 WE E K 02 L IN E L OR IN T E R N AT IO N AL R E C T IF IE R L O GO AS S E M B L Y L OT COD E P AR T N U M B E R F 530S D AT E CO D E P = D E S IG N AT E S L E AD - F R E E P R O D U C T (O P T IO N AL ) Y E AR 0 = 2 0 0 0 WE E K 02 A = AS S E M B L Y S IT E C O D E 10 www.irf.com IRF1010ZS/LPbF TO-262 Package Outline IGBT 1- GATE 2- COLLECTOR 3- EMITTER TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S IT E CODE www.irf.com 11 IRF1010ZS/LPbF D2Pak Tape & Reel Infomation Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) 1.60 (.063) 1.50 (.059) 0.368 (.0145) 0.342 (.0135) FEED DIRECTION 1.85 (.073) 1.65 (.065) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 16.10 (.634) 15.90 (.626) 4.72 (.136) 4.52 (.178) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive max. junction temperature. (See fig. 11). avalanche performance. ‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH † This value determined from sample failure population. 100% RG = 25Ω, IAS = 75A, VGS =10V. Part not tested to this value in production. recommended for use above this value. ‡ This is only applied to TO-220AB pakcage. ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%. ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the 4 or G-10 Material). For recommended footprint and soldering same charging time as Coss while VDS is rising techniques refer to application note #AN-994. from 0 to 80% VDSS .  Repetitive rating; pulse width limited by TO-220AB package is not recommended for Surface Mount Application. Notes: Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRF1010ZPBF 价格&库存

很抱歉,暂时无法提供与“IRF1010ZPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货