PD - 96199A
IRF1324PbF
HEXFET® Power MOSFET
Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free
D
G S
VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited)
24V 1.2m: 1.5m: 353A 195A
c
S D G
TO-220AB IRF1324PbF
G
D
S
Gate
Drain
Max.
353 249 195 1412 300 2.0 ± 20 0.46
Source
Units
A
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case)
d
f
W W/°C V V/ns
-55 to + 175 °C 300
Avalanche Characteristics
EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Ãd
e
Thermal Resistance
Symbol
RθJC RθCS RθJA
g
270 See Fig. 14, 15, 22a, 22b
mJ A mJ
Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient
j
Parameter
Typ.
––– 0.50 –––
Max.
0.50 ––– 62
Units
°C/W
j
www.irf.com
1
09/24/09
IRF1324PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS IGSS RG
Parameter
Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance
Min. Typ. Max. Units
24 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 22 1.2 ––– ––– ––– ––– ––– 2.3
Conditions
––– V VGS = 0V, ID = 250µA ––– mV/°C Reference to 25°C, ID = 5.0mA 1.5 mΩ VGS = 10V, ID = 195A 4.0 V VDS = VGS, ID = 250µA 20 µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C 250 200 nA VGS = 20V VGS = -20V -200 ––– Ω
g
d
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR)
Parameter
Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd)
Min. Typ. Max. Units
––– 160 84 49 76 17 190 83 120 7590 3440 1960 4700 4490 ––– 240 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC
Conditions
VDS = 10V, ID = 195A ID = 195A VDS = 12V VGS = 10V ID = 195A, VDS =0V, VGS = 10V VDD = 16V ID = 195A RG = 2.7Ω VGS = 10V VGS = 0V VDS = 24V
180 ––– ––– ––– ––– Turn-On Delay Time ––– Rise Time ––– Turn-Off Delay Time ––– Fall Time ––– Input Capacitance ––– Output Capacitance ––– Reverse Transfer Capacitance ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related) –––
g g
ns
pF
ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 19V VGS = 0V, VDS = 0V to 19V
Diode Characteristics
Symbol
IS ISM VSD trr Qrr IRRM ton
i, See Fig. 11 h
D
Parameter
Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time
Min. Typ. Max. Units
––– ––– ––– ––– 353
Conditions
MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 195A, VGS = 0V TJ = 25°C VR = 20V, IF = 195A TJ = 125°C TJ = 25°C di/dt = 100A/µs TJ = 125°C TJ = 25°C
Ãd
A
1412
Reverse Recovery Charge Reverse Recovery Current Forward Turn-On Time
––– ––– 1.3 V ––– 46 ––– ns ––– 71 ––– ––– 160 ––– nC ––– 430 ––– ––– 7.7 ––– A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
S
g
Notes: Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 195A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.014mH RG = 25Ω, IAS = 195A, VGS =10V. Part not recommended for use above this value . ISD ≤ 195A, di/dt ≤ 450 A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as Rθ is measured at TJ approximately 90°C
Coss while VDS is rising from 0 to 80% VDSS.
2
www.irf.com
IRF1324PbF
10000 ≤60µs PULSE WIDTH Tj = 25°C
TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.5V 4.0V
10000
≤60µs PULSE WIDTH
Tj = 175°C
ID, Drain-to-Source Current (A)
TOP
ID, Drain-to-Source Current (A)
1000
1000
BOTTOM
100
BOTTOM
VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.5V 4.0V
10
100
1 4.0V 0.1 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
4.0V 10 0.1 1 10 100 V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
RDS(on) , Drain-to-Source On Resistance (Normalized)
Fig 2. Typical Output Characteristics
2.0 ID = 195A VGS = 10V
ID, Drain-to-Source Current (A)
100 T J = 175°C 10 T J = 25°C
1.5
1.0
1 VDS = 15V ≤60µs PULSE WIDTH 0.1 2 3 4 5 6 7 8 9
0.5 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
100000
VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
Fig 4. Normalized On-Resistance vs. Temperature
14.0 ID= 195A
VGS, Gate-to-Source Voltage (V)
12.0 10.0 8.0 6.0 4.0 2.0 0.0
VDS= 19V VDS= 12V
C, Capacitance (pF)
10000
Ciss Coss Crss
1000 1 10 VDS, Drain-to-Source Voltage (V) 100
0
50
100
150
200
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
3
IRF1324PbF
1000 10000 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 1msec 100 Limited by package 10msec Tc = 25°C Tj = 175°C Single Pulse 1 0.0 0.5 1.0 1.5 1 10 VDS, Drain-to-Source Voltage (V) 100 VSD, Source-to-Drain Voltage (V)
100
TJ = 175°C
10
T J = 25°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
10
VGS = 0V 1.0
DC
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
400 350 300 250 200 150 100 50 0 25 50 75 100 125 150 175 T C , Case Temperature (°C) Limited By Package
Fig 8. Maximum Safe Operating Area
32 Id = 5mA
30
ID, Drain Current (A)
28
26
24 -60 -40 -20 0 20 40 60 80 100 120140 160180 T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
2.0 1.8 1.6 1.4
Fig 10. Drain-to-Source Breakdown Voltage
1200
EAS , Single Pulse Avalanche Energy (mJ)
1000 800 600 400 200 0
ID 44A 83A BOTTOM 195A TOP
Energy (µJ)
1.2 1.0 0.8 0.6 0.4 0.2 0.0 -5 0 5 10 15 20 25 30
25
50
75
100
125
150
175
Fig 11. Typical COSS Stored Energy
VDS, Drain-to-Source Voltage (V)
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
4
www.irf.com
IRF1324PbF
1
Thermal Response ( Z thJC ) °C/W
D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001
τJ τJ τ1 R1 R1 τ2 R2 R2 R3 R3 τ3 R4 R4 τC τ τ1 τ2 τ3 τ4 τ4
Ri (°C/W)
0.0125 0.0822 0.2019 0.2036
τi (sec)
0.000008 0.000078 0.001110 0.007197
Ci= τi/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1
0.001 1E-006
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse)
Avalanche Current (A)
100 0.05 0.10
0.01
10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 tav (sec) 1.0E-03 1.0E-02 1.0E-01
Fig 14. Typical Avalanche Current vs.Pulsewidth
www.irf.com
5
IRF1324PbF
300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 195A
Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
EAR , Avalanche Energy (mJ)
4.5
VGS(th) , Gate threshold Voltage (V)
4.0 3.5 3.0 2.5 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) ID = 250µA ID = 1.0mA ID = 1.0A
Fig 16. Threshold Voltage vs. Temperature
6
www.irf.com
IRF1324PbF
D.U.T
Driver Gate Drive
+
P.W.
Period
D=
P.W. Period VGS=10V
+
Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
• • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test
VDD
VDD
+ -
Re-Applied Voltage
Body Diode
Forward Drop
Inductor Curent Inductor Current
Ripple ≤ 5% ISD
* VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
tp
DRIVER
VDS
L
RG
VGS 20V
D.U.T
IAS tp
+ V - DD
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
VDS VGS RG RD
Fig 22b. Unclamped Inductive Waveforms
VDS 90%
D.U.T.
+
- VDD
V10V GS
Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 %
10% VGS
td(on) tr t d(off) tf
Fig 23a. Switching Time Test Circuit
Current Regulator Same Type as D.U.T.
Fig 23b. Switching Time Waveforms
Id Vds Vgs
50KΩ 12V .2µF .3µF
D.U.T. VGS
3mA
+ V - DS
Vgs(th)
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Qgd
Qgodr
www.irf.com
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
7
IRF1324PbF
Dimensions are shown in millimeters (inches)
TO-220AB Package Outline
TO-220AB Part Marking Information
@Y6HQG@) UCDTÃDTÃ6IÃDSA GPUÃ8P9@Ã Ã DIU@SI6UDPI6G (Ã! S@8UDAD@S GPBP 96U@Ã8P9@ Ir)ÃÅQÅÃvÃhriyÃyvrÃvv vqvphrÃÅGrhqÃÃA
rrÅ `@6SÃÃ2Ã! X@@FÃ ( GDI@Ã8 Q6SUÃIVH7@S &'(
6TT@H7G@9ÃPIÃXXÃ
DIÃUC@Ã6TT@H7G`ÃGDI@ÃÅ8Å
6TT@H7G` GPUÃ8P9@
TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/2009
8
www.irf.com